
1 23

Empirical Software Engineering
An International Journal

ISSN 1382-3256
Volume 22
Number 6

Empir Software Eng (2017)
22:2972-3016
DOI 10.1007/s10664-017-9499-z

Reengineering legacy applications into
software product lines: a systematic
mapping

Wesley K. G. Assunção, Roberto
E. Lopez-Herrejon, Lukas Linsbauer,
Silvia R. Vergilio & Alexander Egyed

1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.

Empir Software Eng (2017) 22:2972–3016
DOI 10.1007/s10664-017-9499-z

Reengineering legacy applications into software product
lines: a systematic mapping

Wesley K. G. Assunção1,2 ·Roberto E. Lopez-Herrejon3 ·
Lukas Linsbauer4 ·Silvia R. Vergilio1 ·
Alexander Egyed4

Published online: 8 February 2017
© Springer Science+Business Media New York 2017

Abstract Software Product Lines (SPLs) are families of systems that share common assets
allowing a disciplined reuse. Rarely SPLs start from scratch, instead they usually start from
a set of existing systems that undergo a reengineering process. Many approaches to con-
duct the reengineering process have been proposed and documented in research literature.
This scenario is a clear testament to the interest in this research area. We conducted a sys-
tematic mapping study to provide an overview of the current research on reengineering of
existing systems to SPLs, identify the community activity in regarding of venues and fre-
quency of publications in this field, and point out trends and open issues that could serve
as references for future research. This study identified 119 relevant publications. These

Communicated by: Per Runeson

� Wesley K. G. Assunção
wesleyk@inf.ufpr.br

Roberto E. Lopez-Herrejon
roberto.lopez@etsmtl.ca

Lukas Linsbauer
lukas.linsbauer@jku.at

Silvia R. Vergilio
silvia@inf.ufpr.br

Alexander Egyed
alexander.egyed@jku.at

1 DInf, Federal University of Paraná (UFPR), CP: 19081, CEP: 81.531-980, Curitiba, Brazil

2 COTSI, Federal University of Technology - Paraná (UTFPR), Cristo Rei Street,
19. CEP: 85.902-490, Toledo, Brazil

3 Department of Software Engineering and IT, École de Technologie Supérieure, (ÉTS),
Notre-Dame Street Ouest. 1100, H3C 1K3, Montreal, Canada

4 ISSE, Johannes Kepler University Linz (JKU), Altenbergerstr. 69, 4040 Linz, Austria

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-017-9499-z&domain=pdf
mailto:wesleyk@inf.ufpr.br
mailto:roberto.lopez@etsmtl.ca
mailto:lukas.linsbauer@jku.at
mailto:silvia@inf.ufpr.br
mailto:alexander.egyed@jku.at

Empir Software Eng (2017) 22:2972–3016 2973

primary sources were classified in six different dimensions related to reengineering phases,
strategies applied, types of systems used in the evaluation, input artefacts, output artefacts,
and tool support. The analysis of the results points out the existence of a consolidate com-
munity on this topic and a wide range of strategies to deal with different phases and tasks
of the reengineering process, besides the availability of some tools. We identify some open
issues and areas for future research such as the implementation of automation and tool
support, the use of different sources of information, need for improvements in the feature
management, the definition of ways to combine different strategies and methods, lack of
sophisticated refactoring, need for new metrics and measures and more robust empirical
evaluation. Reengineering of existing systems into SPLs is an active research topic with real
benefits in practice. This mapping study motivates new research in this field as well as the
adoption of systematic reuse in software companies.

Keywords Systematic reuse · Legacy systems · Evolution · Reengineering ·
Product family

1 Introduction

The premise of software reuse strategies is to use existing artefacts to build new soft-
ware, aiming to reduce time-to-market, improving productivity and producing high quality
software (Krueger 1992). According to Riva and Del Rosso, reuse is generally employed
through an ad hoc strategy, called “clone-and-own methodology” (Riva and Del Rosso
2003). When customers request for additional features, existing systems are cloned and
adapted to fulfill the new requirements. A main disadvantage of this methodology is the
simultaneous maintenance of a typically large number of individual product variants (Faust
and Verhoef 2003). In this scenario, as the number of features increases so does the complex-
ity of their development and maintenance, hence a systematic reuse approach is necessary.
A way to tackle this problem is the adoption of a Software Product Line (SPL) approach
(Linden et al. 2007; Pohl and Böckle 2005).

An SPL is a set of systems that share common features, and are designed for a spe-
cific domain (Clements and Northrop 2001; Linden et al. 2007). The main advantage of an
SPL is the systematic reuse of the common infrastructure – artefacts and assets – which
is shared to create different product variants. Software Product Line Engineering (SPLE)
is the discipline of developing and managing SPLs. SPLE identifies two types of assets:
the common assets, reused in all products, and the variable assets, related to those features
that are provided only by some products. In addition, SPLE deals with the effective man-
agement of SPLs throughout their entire life cycle. A way to undertake SPLE is by using
existing product variants as the basis to create SPL assets, known as extractive approach
(Krueger 2002).

Clone-and-own methodology was identified by a recent study as the most common reuse
scenario in practice (Dubinsky et al. 2013). In this context, the extractive approach is the
more common way to systematize the software reuse with SPLs and encompasses the
reengineering of existing systems, leading to a systematic reuse and easier maintenance,
because the systems are not maintained individually but instead as a group considering
both common and variable assets. Besides these technical benefits, the reengineering of
existing systems into an SPL allows companies to preserve their investment and aggregate
knowledge obtained during the development of individual systems. Because of these

Author's personal copy

2974 Empir Software Eng (2017) 22:2972–3016

reasons, the extractive approach has attracted interest from companies, with many systems
in production, and researchers (e.g. Lozano (2011)).

This increased interest prompted us to perform a systematic mapping study, an evidence-
based method used to build a classification scheme and structure of a field of interest
(Petersen et al. 2008, 2015). The goal of this study is threefold: (1) to provide an overview
of the current research regarding the reengineering process of existing systems into SPLs,
(2) identify the activity of the research community regarding the venues and frequency of
publications in this field, and (3) point out research trends and gaps to direct future research
on the subject.

This paper is an extension of our previous work (Assunção and Vergilio 2014). In our
previous work we presented results of a systematic mapping on feature location and migra-
tion of existing systems to SPLs. We observed a consolidate research community in both
areas and a strong relation between feature location and the reengineering process to migrate
systems to SPLs. Despite extensive research, some phases on the reengineering process to
undertake the migration task have not been fully investigated. Furthermore, we noticed the
existence of a wide number of techniques adopted for the reengineering process and feature
location. In this paper we make the following extensions to our previous work:

– Inclusion of more primary sources: we extended the range of dates, including two years
of additional content, and the inclusion criteria, leading to 56 new pieces of work;

– An enriched background: more details about clone-and-own, software product lines,
and the reengineering process are provided to support the readers that are new to the
field;

– Inclusion of new research questions and an extended classification schema: eight
research question are added and a classification schema with new dimensions is
considered;

– More in depth analysis: the results are presented and analysed in more depth and detail.
Such analysis takes into account the publication venues, the relation of the input/output
artefacts with the strategies, and work on the intersection of different phases and
strategies;

– Detailed description of research avenues: the main limitations of the existing
approaches are pointed out. The goal is to synthesize evidence that suggests important
implications for practice, and to identify challenges and areas for improvement.

The paper is organized as follows. Section 2 reviews the concepts of clone-and-own,
software product lines, and the reengineering of systems to software product lines. Section 3
presents the methodology adopted in our mapping study. Section 4 describes the outcomes
of the mapping process and discusses important findings and research opportunities that
were identified. The threats to validity are presented in Section 5 and the related work in
Section 6. Section 7 summarizes our conclusions.

2 Background

This section briefly reviews terminology and main concepts used throughout the paper.

2.1 Clone-and-Own

The most common scenario of reuse in practice is ad hoc techniques. For instance, when
there exists demand for a new product that has some similar functionalities to an existing

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2975

product, usually developers fork the new product from other already existing software and
then adapt it to fit the new requirements. These ad hoc practices are collectively called
Clone-and-Own (C&O) (Dubinsky et al. 2013). Besides offering a simple and efficient
way to reuse software artefact, products developed following C&O practices have their
own and independent development life cycle. C&O approaches may work fine with small
number of products, depending on products complexity, the development organization and
its software engineering practices. However, in most situations, adding new systems is no
longer doable either because of managerial, economical or technical reasons. For instance,
the maintenance of many independent products leads to multiple problems like inefficient
feature update or bug fixing, duplicate functionality, redundant and inadequate testing, etc
(Dubinsky et al. 2013).

Variability is the capacity of software artefacts to vary. Besides the problems regarding
maintenance of duplicated software artefacts, when we have to deal with a set of system
variants another problem raises, known as variability management. The management of
variability in a scenario with multiple system variants face several issues, i.e, extracting
variability from technical artefacts, tool support, design decisions management and enforce-
ment, testing of artefacts with variability, domain design, etc (Chen and Babar 2010;
Metzger and Pohl 2014). The software product line approach is the premier alternative to
cope effectively with the problems that emerge with the C&O practices, as discussed in next
section.

2.2 Software Product Lines

Software Product Line (SPL) is “a set of software-intensive systems that share a common,
managed set of features satisfying the specific needs of a particular market segment or
mission” (Clements and Northrop 2001). Over the last two decades extensive research and
practice have been done in the field of SPLs (Heradio et al. 2016). The benefits provided by
SPL practices are better customization, improved software reuse, and faster time to market.
The basis of the approach is that the products are built using a core asset base instead of
being developed one by one from scratch (Heradio et al. 2016). Members of an SPL are
distinguished by the set of features they provide (Pohl and Böckle 2005). A feature is “a
prominent or distinctive user-visible aspect, quality or characteristic of a software system
or systems” (Kang et al. 1990). Features are the building blocks of the products of an SPL.

Software Product Line Engineering (SPLE) is the discipline responsible to develop SPLs.
SPLE exploits the commonality (i.e., a property shared by all products of an SPL) and the
variability (i.e., the capacity of different applications of the product line to vary). An effec-
tive management and realization of variability is at the core of successful SPL development
(Svahnberg et al. 2005). Krueger reported three ways used by companies as start point to
SPLE (Krueger 2002):

– The proactive approach: first engineers perform a complete domain analysis, to have
a full scope of products, then they develop reusable domain artefacts, and finally they
use these artefacts to application engineering;

– The reactive approach: engineers incrementally grow their family of products applying
both domain and application engineering every time a new product is developed;

– The extractive approach: engineers use existing custom software systems by extracting
the common and varying artefacts, migrating them to an SPL.

The extractive approach is the most common way to adopt SPLs in companies with many
software system variants in production (Krueger 2002). Besides, providing the benefits of

Author's personal copy

2976 Empir Software Eng (2017) 22:2972–3016

systematic reuse promoted by SPLs, the investment and knowledge necessary to develop
the existing system are held.

2.3 Reengineering of Systems

According to Chikofsky and Cross, reengineering is “the examination and alteration of a
subject system to reconstitute it in a new form and the subsequent implementation of the
new form” (Chikofsky and Cross J.HI 1990). Sometimes this term is confused with the
term reverse engineering. However, the same authors define reverse engineering as “the
process of analyzing a subject system to identify the system’s components and their inter-
relationships and create representations of the system in another form or at a higher level
of abstraction.” We can see that reverse engineering is concerned with understanding the
systems, on the other hand, reengineering is concerned with restructuring/refactoring the
systems. In this sense, reverse engineering is a prerequisite to the reengineering process,
since we need to understand the subject system that we have to transform (Demeyer et al.
2009).

In the context of our work, the reengineering has focus on transforming a set of exist-
ing systems into an SPL. This set of existing systems can be reached by the use of ad hoc
strategies of reuse, as mentioned in Section 2.1, or from a set of legacy systems. Reengineer-
ing of software systems into SPLs was the focus of two papers found in literature (Laguna
and Crespo 2013; Fenske et al. 2013). These papers present a coarse-grained overview of
the reengineering activity, answering questions about existing approaches, techniques, open
challenges, and suggesting a taxonomy for existing approaches. From this point of view,
our mapping study also has as goal the identification of approaches and techniques used for
the reengineering process, but with focus on fine-grained details.

SPLE proposes activities to manage features, create variability models, and use variabil-
ity mechanisms. However, taking into account the reengineering process, there are questions
regarding the flow of reengineering phases, artefacts commonly used, tool support, etc., that
remain unanswered. Recalling the goal of this paper, in this mapping we aim at exploring
the literature to understand the reengineering process, and answer a set of research questions
that remain open.

3 Systematic Mapping Process

Systematic mappings are studies designed to provide an overview of a research field
and find research opportunities. After the search and selection of the relevant litera-
ture, the studies are classified and counted regarding categories of interest in the field
(Petersen et al. 2008, 2015).

The study was carried out according to the mapping process proposed by Petersen et al.
(2008, 2015), which includes the main activities: definition of research questions, conduc-
tion of the search and screening of papers, classification scheme, and data extraction and
mapping. Each activity is described next.

3.1 Research Questions

As mentioned in the introduction, the goal of our systematic mapping is threefold: (1) to
provide an overview of the current research on the field, (2) identify the publication venues
and frequency, and (3) point out research trend and gaps for future work. Furthermore,

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2977

motivated by questions unanswered in related work, such as the flow of the reengineering
process phases, input/output artefacts, and case studies used in evaluations; we formulated
eight research questions grouped in three categories, as follows:

1. Current research on reengineering systems into SPLs:

– RQ1: What are the common phases of the reengineering process? The goal of this
question is to identify the common phases applied in the reengineering process.
Furthermore, we can analyse the number of works devoted to each phase, and then
to identify possible needs not addressed in the field;

– RQ2: What are the strategies used in the reengineering process? In our context, a
strategy is the application of a technique or method to obtain an SPL from existing
systems. This question helps us to catalogue the strategies, techniques and methods,
currently employed in the reengineering process;

– RQ3: What are the artefacts used as input and output? A wide range of arte-
facts are produced along the software development process. In this question, we
analyse what are the artefacts used for each strategy, considering both inputs and
outputs;

– RQ4: What is the provenance of the systems used for the evaluation of the pro-
posed approaches? Our goal for this question is to obtain information regarding
the provenance of the case studies used in the evaluations, for instance, academic
or industrial systems. Based on this information, we can gauge at the maturity of
the approaches in a specific scenario;

– RQ5: What are the tools available that support the reengineering process? This
question aims at cataloging the specific tools proposed and used to support
the reengineering process. A list of existing tools can be used as reference for
practitioners who need support for the reengineering process;

2. Publications venues and frequency:

– RQ6: Where has work been published? There are few conferences and workshops
devoted specifically to SPLs, but research on this subject can be published in dif-
ferent venues of Computer Science and Software Engineering. We want to know
the most used fora to identify where the specialized community on this research
topic has been publishing;

– RQ7: How have publication frequencies changed? This question aims at analysing
the evolution of the number of published papers on this research topic over the
years. This information can help us to assess how relevant and active this topic is
in the Software Engineering community.

3. Trends and research opportunities:

– RQ8: What are the research gaps and trends in the field of reengineering of sys-
tems variants into SPL? This question aims at analyzing the limitation of existing
approaches and identifying research directions for future work to motivate new
research on this topic.

3.2 Conducting Search and Screening of Papers

In order to answer our research questions, the first step was the selection of relevant studies
from the literature. To conduct the search of studies we must define a set of search terms. To
reach a good set of terms we used a test-set of known papers that ought to be found. Using

Author's personal copy

2978 Empir Software Eng (2017) 22:2972–3016

Table 1 Search Terms
Feature Location Terms

”feature location”, “concept location”, “concern location”, “feature
mining”, “feature identification”, “feature mapping”

Reengineering Terms

reengineering, refactoring, reconstruction, migration, migrating, evo-
lution, legacy, restructuring, “re-engineering”, “re-structuring”

SPL Terms

”application engineering”, commonality, “core asset”, “domain anal-
ysis”, “domain engineering”, “feature analysis”, “feature based”,
“feature diagram”, “feature model”, “feature modeling”, “feature
oriented”, “highly-configurable system”, “process family”, “product
family”, “product line”, “product line engineering”, “software fam-
ily”, “software product family”, “software product line”, “software
reuse”, SPL, variability, “variability analysis”, “variability manage-
ment”,”variability modeling”, “variability-intensive system”, variant,
variation, “variation point”

this reference set, we tried different combinations of keywords. In this way, we reached
three groups.

The first group for terms regarding the location of features, which are the building blocks
of SPLs. Feature location is the initial and crucial task to identify the functional parts of
existing systems to be re-engineered into SPLS. The second group relates to the notion of
reengineering of systems. For the second group we use terms similar to those presented in
a related work (Laguna and Crespo 2013). The third group relates to common SPL termi-
nology. For the last group, we employed SPL terms collected from twelve mapping studies
on several aspects of SPLs that we used in a recent survey on Search-Based Software Engi-
neering for SPLs (Lopez-Herrejon et al. 2015). The set of terms used to perform the search
is presented in Table 1.1

The search query composed by these terms is as follows:2

(“feature location” OR “concept location” OR “concern location” OR “feature
mining” OR “feature identification” OR “feature mapping”) AND (reengineering OR
refactoring OR reconstruction OR migration OR migrating OR evolution OR legacy OR
restructuring OR “re-engineering” OR “re-structuring”) AND (”application engineering”
OR ”commonality” OR “core asset” OR “domain analysis” OR “domain engineering”
OR “feature analysis” OR “feature based” OR “feature diagram” OR “feature model” OR
“feature modeling” OR “feature oriented” OR “highly-configurable system” OR “process
family” OR “product family” OR “product line” OR “product line engineering” OR “soft-
ware family” OR “software product family” OR “software product line” OR “software
reuse” OR “SPL” OR “variability” OR ”variability analysis” OR “variability manage-
ment” OR”variability modeling” OR “variability-intensive system” OR ”variant” OR
“variation” OR “variation point”)

1Alternative term spellings or upper/lower case are not shown in the table and were found not to be relevant
for our searches.
2Some databases have a limit of character for the search string. In these cases the search query used
was: ("feature location" OR "concept location" OR "concern location" OR
"feature mining") AND (reengineering OR refactoring OR reconstruction
OR migration OR migrating) AND ("product line" OR "product-line" OR
"product family" OR "program family")

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2979

Fig. 1 Steps of the search and selection of the relevant papers

The search and selection of the relevant primary sources were conducted in five steps,
shown in Fig. 1. In the first step we performed the search for relevant publications by using
the search string presented above. The search started in 2014 when we prepared our previous
work (Assunção and Vergilio 2014), then we performed the search again starting on January
4th 2016 and ended on February 12th 2016. We used seven academic databases, shown in
Table 2. In the table the last column presents the number of studies found in each database.
At the end of this step, we obtained a set of 2051 papers. In the second step, the title of
the works was read to select the relevant ones. When the title was not enough to clarify the
relevance of the paper, then the abstract was read. After reviewing the title and abstract of
the 2051 papers, we selected 240 studies.

In the third step 40 duplicate publications found in different databases were discarded
(see Fig. 1), remaining 200. In Step 4, we read the full length papers and the inclu-
sion/exclusion criteria presented in Table 3 were applied. We designed a set of inclusion
and exclusion criteria to select only studies that fit the goals of our study. In summary we
selected only papers peer reviewed, in English, available online, and with focus on reengi-
neering multiple systems to SPLs. Considering these criteria, a final set with 82 papers was
obtained.

In the last step (Step 5) we performed snowballing readings. In the snowballing reading,
citations and the reference list of found papers are used to identify other relevant studies

Table 2 Academic databases
used in the mapping Database URL #

Science Direct http://www.sciencedirect.com 1080

Scopus http://www.scopus.com 379

Web of Science http://www.isiknowledge.com 7

IEEE Xplore http://ieeexplore.ieee.org 3

ACM Digital Library http://dl.acm.org 10

Springer http://www.springerlink.com 333

Google Scholar http://scholar.google.com 239

Author's personal copy

http://www.sciencedirect.com
http://www.scopus.com
http://www.isiknowledge.com
http://ieeexplore.ieee.org
http://dl.acm.org
http://www.springerlink.com
http://scholar.google.com

2980 Empir Software Eng (2017) 22:2972–3016

Table 3 Inclusion and exclusion
criteria Inclusion criteria

− Text in English;

− Publications in journals, conferences, workshops, abstracts,

tutorials, short papers, tool demonstration, entire thesis, book

chapter, and technical reports;

− Available in an electronic format: eps, DOC, HTML, etc;

− With focus on reengineering of SPLs starting from multiple

systems.

Exclusion criteria

− Position papers, doctoral symposium;

− Mapping studies, surveys, state-of-art and literature review;

− Papers not available online;

− Without focus on reengineering and SPL;

− Starting the reengineering process with a single system.

(Wohlin 2014). We performed backward snowballing, that encompassed the use of the ref-
erence list of the 82 papers obtained in the previous step. We went through the reference
lists looking for new relevant studies. For each paper identified for possible inclusion, we
read the paper and applied the inclusion and exclusion criteria. Then, we identified 37 new
relevant studies in this step. After this, the final set was composed of 119 papers.

The search and screening of papers discussed above were performed by the first and
second authors. After composing the final set of primary sources the fourth author reviewed
the included papers, hence assessed by an individual person.

3.3 Classification Scheme and Data Extraction

A classification scheme was used to guide the data extraction from relevant studies. Consid-
ering the goals and research questions of our mapping, there is no standard set of categories
regarding the reengineering process known in literature. Considering this case we created
our own classification scheme iteratively during the reading of the studies. The four steps to
create the classification scheme were: (1) first we determined six dimensions related to the
research questions about the reengineering process (RQ1 to RQ5), (2) then we read the pri-
mary sources, collected and documented all relevant concepts or terms taking into account
the dimensions, (3) next the sets of concepts and terms from different papers were com-
bined together, for that we analyzed which parts of the identified information were similar
or common in different studies, and finally (4) one category for each similar/common item
was created in the correlated dimension. This process was performed initially by the first
author for our previous work (Assunção and Vergilio 2014) and refined after the search for
new papers by the first three authors.

The dimensions defined about the reengineering process are: addressed reengineering
phase (RQ1), type of technique or method applied (RQ2), artefact used as input for the
process (RQ3), artefact generated as output (RQ3), type of systems used in the evaluation
(RQ4), and existence of tool support (RQ5). The dimensions and categories, and a brief
description of them are presented in Table 4. Each paper can belong to more than one
category. Further details about the categories of each dimension are provided in the results.

Besides the classification scheme, we also captured complementary data regarding
the reengineering process: what technique/method/algorithm was applied in each strategy

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2981

Table 4 Classification Scheme

Dimensions Categories Description

Reengineering
Phase

Detection Relevant information is extracted from the input artefacts, e.g.
source code, to understand the existing structure, data flow,
relationships, existing features, etc.

Analysis The information discovered is used to infer, design and organize
new partitions that cluster the functional features.

Transformation When transformations are performed on the considered artefacts
(such as source code) aiming at enabling the systematic reuse.

Strategy Expert-driven Strategy based on the expertise of specialists: software engi-
neers, software architects, developers, stakeholders, etc.

Static analysis Static analysis relies on following or analysing structural infor-
mation of static artefacts, in other words, without their execution
(Wichmann et al. 1995).

Dynamic analysis When tools are used to collect and analyse information about
the artefact’s execution, in general considering a low-level of
abstraction, such as source code (Cornelissen et al. 2009).

Information Retrieval This strategy leverages the fact that identifiers and comments
represent domain knowledge. Commonly this strategy considers
the textual similarity (Manning et al. 2008).

Search-based This strategy applies algorithms from the optimization field,
such as Genetic Algorithms (Harman et al. 2009).

Input artefacts Domain information An example of this category is high level description of systems
in specific domain and domain analysis.

Requirements Documents containing feature descriptions, customer requests,
test sets generated, implementation and operation aspects, etc.

Design models Design artefacts include models such as class diagrams, state
machines, or entity-relationship database model.

Source code Corresponds to the system implementation in a programming
language.

Output artefacts Features discovered Features identified or mined from artefacts where they are not
well-modularized or spread in multiple implementation units.

Features mapped Traceability links between known features and artefacts related
with them, for instance, from requirements to source code.

Reports Reports with information such as the variability among the sys-
tems, impact on the reengineering to SPLs, and potential reuse
in legacy system variants.

Source code refactored Source code refactored is an output provided to allow a better
organization of the features with the SPLE.

Type of Systems Industrial/Open source Industrial or Open source systems are real case studies, devel-
oped by open source communities or by private companies.
These systems vary from small to large systems.

Academic/Illustrative Academic or Illustrative systems, a.k.a. toy systems. Are gener-
ally small systems presented in text books or used to illustrate
how approaches work.

None When the approaches do not use any system for their evaluation.

Tool support Use of tool When the study points the use of a tool to support the reengi-
neering process.

None When the approaches do not use any tool to support the reengi-
neering process.

Author's personal copy

2982 Empir Software Eng (2017) 22:2972–3016

category (RQ2), name of the systems used in the evaluation (RQ4), and name of the tools
(RQ5). Furthermore, to answer other research questions the following data was also col-
lected: paper title and publication venue (RQ6), publication year (RQ7), and approaches
limitations, gaps, and future work mentioned (RQ8). In the next sections, the results and
analysis of this classification are presented.

To assess the quality of the classification we proceed as described next. A subset of six
papers from the the primary sources were selected and classified individually by the first
three authors. Then the authors had a meeting to discuss the classifications. After agreeing
regarding the classification, the first author classified the remaining papers. The final set of
classifications was reviewed by the second and fourth authors.

4 Results

In this section, we describe the results of the data extraction phase. In Section 4.8 we present
our analysis, identified trends, and research opportunities.

4.1 RQ1 - Phases of the Reengineering Process

In the context of obtaining SPLs from existing systems, there is not an established or widely
accepted set of phases to conduct the reengineering process. Because of this, we inferred
the phases using the data from the primary sources we identified. In most cases the phases
of proposed approaches are not clearly described, so we inferred them also by considering
the type of input and output artefacts. In summary, we observed that the main tasks that the
approaches do are: (1) to identify the features existing in a set of systems or map features to
their implementation, (2) to analyse the available artefacts and information to propose a pos-
sible SPL representation, and (3) to perform the modification in the artefacts to obtain the
SPL. These phases are respectively called detection, analysis, and transformation, recalling
the terminology proposed by Anwikar et al. (2012).

Based on the above mentioned, we created an overview of the reverse engineering pro-
cess with focus on SPLs, which is presented in Fig. 2. Depicted on the left part of the
figure we have the systems developed following C&O practices. The solid line represents

Fig. 2 Software reengineering process

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2983

the entire process of reengineering, however, it is usually composed by some phases, shown
by dashed lines.

The generic phases of the reengineering process of existing systems into SPLs are: (1)
Detection phase is the begining of the process, devoted to detecting the variability and
commonality among existing products. Such as show in Fig. 2, the variabilities and com-
monalities are represented in terms of features. Common support in this phase is given by
feature location techniques, which aim at locating the artifacts responsible for implementing
the system functionalities. The management of the features and the mapping/traceability to
the software artefacts that implement them are tasks of the SPLE domain engineering pro-
cess (Dit et al. 2013; Rubin and Chechik 2013). (2) Analysis phase involves the organization
of discovered variability and commonality. This step is devoted to creating the variabil-
ity model, shown in the middle of Fig. 2, to express the valid combinations of features of
an SPL. The feature model is the most popular form of variability model. Feature models
are tree-like structures used to establish the existing relations between features (Kang et al.
1990). (3) Transformation phase is the last step of the process. Here artefacts that implement
the features and the variability model are used to create the SPL, using a variability mech-
anism. For instance, the simplest mechanism is based on #ifdef statements made to the
artefacts that are pre-processed, shown in the right of Fig. 2, following the desired feature
selection, to create different products (Bachmann and Clements 2005). The reengineering
can also be done considering design models (Wagner 2014).

Taking into account the phases of the reenginering process, Fig. 3a presents the distribu-
tion of studies among detection, analysis and transformation. We can observe that detection
and analysis phases have received roughly the same attention. A possible reason for that
is the existing relationship between them. When the detection is performed the analysis is
a natural continuation. To extract information from artefacts without discovering helpful
information for their reuse seems to make no sense. Consider that performing only detection
without analysis would make sense for certain maintenance tasks (e.g. bug fixing), how-
ever, maintenance issues are outside of the scope of our mapping study. The transformation
phase, which allows the actual systematic reuse of the artefacts, has not been extensively
investigated.

Many proposed approaches have focus on more than one phase. Figure 3b presents
the number of papers addressing each phase and the papers in more than one phase. As

a

b

59

1 0

30

819

Detection Analysis

Transformation

2

Fig. 3 Reengineering phases

Author's personal copy

2984 Empir Software Eng (2017) 22:2972–3016

mentioned before, most papers involve detection and analysis (59), followed by papers that
cover the three phases (30). Those papers with focus in only one phase are mainly in detec-
tion (19) and few ones in analysis (8) and transformation (2). Not surprisingly, we did not
find papers with focus on detection and transformation only, because it does not make sense
to perform these phases without adequate analysis. Table 5 presents the reference of studies
according to the phases and their intersections.

Figure 4 presents a bubble chart with the number of the papers in each phase by year.
Again, we can observe a correlation between detection and analysis. In spite of the lower

Table 5 Publications per phase

Phase # References

Detection 19 (Lohar et al. 2013; Falessi et al. 2010; Maia et al. 2008; Li
et al. 2005; Stuikys and Valincius 2011; Knodel et al. 2005;
Al-msie’deen et al. 2013; Heidenreich et al. 2008; Ferrari et al.
2013; Eisenbarth et al. 2001; Rubin and Chechik 2012b; Ziadi
et al. 2012; Rubin et al. 2012; Eyal-Salman et al. 2013c; Van
Der Storm 2007; Shao et al. 2013; Linsbauer et al. 2014; Niu
et al. 2014; Guzman and Maalej 2014)

Analysis 8 (Linsbauer et al. 2013; Ryssel et al. 2011; Segura et al. 2012;
Stoermer and O’Brien 2001; Linsbauer et al. 2014; Lopez-
Herrejon et al. 2015; Eriksson et al. 2005; Eyal-Salman et al.
2014)

Transformation 2 (Romero et al. 2013; Mohamed et al. 2014)

Detect. + Analy. 59 (Schulze et al. 2013; Passos et al. 2013; Seidl et al. 2012;
She et al. 2011; Koziolek et al. 2013; Anwikar et al. 2012;
Eyal-Salman et al. 2012; Davril et al. 2013; Merschen et al.
2011; Xue et al. 2012; Damaṡeviċius et al. 2012; Xue et al.
2010; AL-Msie’deen et al. 2012; Kelly et al. 2011; Nunes et al.
2013; Yang et al. 2009; Eyal Salman et al. 2013; Ziadi et al.
2014; Valinċius et al. 2013; Ali et al. 2011; Eyal-Salman et al.
2013b; Olszak and Jørgensen 2012; She et al. 2014; Peng et al.
2013; Gamez and Fuentes 2013; Sampath 2013; Alves et al.
2007; Li et al. 2007; Frenzel et al. 2007; Polzer et al. 2012;
AL-Msie’deen et al. 2013; Kulesza et al. 2007; Almeida et al.
2006; Noor et al. 2008; Bécan 2013; Trifu 2010; She 2013;
Acher et al. 2013; Haslinger et al. 2011; Eyal-Salman et al.
2013a; Martinez et al. 2014; Nöbauer et al. 2014a; Klatt et al.
2014; Acher et al. 2011; Nöbauer et al. 2014b; Gharsellaoui
et al. 2015; Maazoun et al. 2014a; Mefteh et al. 2014; Maâzoun
et al. 2014b; Abbasi et al. 2014; Alves et al. 2008; Weston et al.
2009; Chen et al. 2005; Acher et al. 2012; Hariri et al. 2013;
Mu et al. 2009; Yu et al. 2013; Bagheri et al. 2012; Boutkova
and Houdek 2011)

Analy. + Transf. 1 (Kolb et al. 2006)

Detect. + Analy. + Transf. 30 (Santos et al. 2013; Nunes et al. 2012; Rubin et al. 2013;
Araújo et al. 2013; Knodel et al. 2005; Ramos and Penteado
2008; Duszynski et al. 2011; Klatt et al. 2013; Lago and Vliet
2004; Gamez and Fuentes 2011; Xue 2012; de Oliveira et al.
2012; Otsuka et al. 2011; Bayer et al. 2004; Bécan et al.
2013; Rubin and Chechik 2012a; Kang et al. 2005; Rubin and
Chechik 2010; Losavio et al. 2013; Zhang et al. 2011; Breivold
et al. 2008; Nie et al. 2012; Martinez et al. 2015; Rubin 2014;
Fischer et al. 2015; Tang and Leung 2015; Fischer et al. 2014;
Rubin et al. 2015; Faust and Verhoef 2003; Kumaki et al. 2012)

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2985

Fig. 4 Phases addressed by the studies per year

number of papers tackling transformation, we notice an interest in this phase over the years,
mainly since 2011.

4.2 RQ2 - Strategies to Perform the Reengineering

According to our schema presented in Section 3, the strategies used in the reengineering
were grouped in five categories. Figure 5a shows the number of papers in each strategy
category. Static Analysis is the category with the largest number of papers. Expert-driven
is the second most common strategy. Almost with the same attention appears Information
Retrieval. Its preference is due to the ability to deal with documents/artefacts at a high level
of abstraction, e.g. requirements in natural language.

We also observed that some studies do not use only one type of strategy, but instead
use a combination of different strategies. This combination is sometimes named “hybrid”
in literature (Rubin and Chechik 2013). For an overview about these combinations, Fig. 5b
presents the number of studies in the intersections of different categories of strategies. Static
analysis is the strategy most combined with other strategies, there are works using this
strategy combined with all the other four strategies. Expert-driven and Information Retrieval
are combined with other three strategies. Dynamic analysis and Search-based have studies

a

b

Expert-
driven

14

1

3

1

19 45

3
25

3
1

2

Static
Analysis

Search-
based

Information
Retrieval

Dynamic
Analysis

2

Fig. 5 Reengineering strategies

Author's personal copy

2986 Empir Software Eng (2017) 22:2972–3016

combined with only two other categories. The most frequent combination of strategies is
Static analysis and Expert-driven, with 14 studies. Almost half of the primary sources (14
out of 36) that apply Expert-driven are combined with almost one fourth of studies (14 out
of 64) that apply Static Analysis. Table 6 shows the references for the studies considering
the intersections.

The classification of primary sources in each category and the techniques/methods found
during the mapping are presented in Table 7. A technique or method is the concrete appli-
cation of an algorithm, tool, or approach. In the fourth, fifth, and sixth columns of the table
we present the percentage of works that deal with each phase. For example, in the category
Expert-driven 32 out of 36 studies deal with the detection phase, 31 with analysis, and 17
with transformation.

The reengineering process conducted by experts (Expert-driven strategy) is the strategy
that has the most number of works in the three phases of the reengineering process and
has the largest number or works in transformation phase. Expertise seems to be adequate to
perform the entire reengineering process. In the category of Static analysis we can observe
that some techniques/methods also have a good number of studies in the three phases, for
instance Heuristics and Overlaps; however, it does not happen for all techniques/methods of
the strategy. Static analysis has the largest number of different techniques/methods, mainly
dealing with detection and analysis. The strategy Dynamic analysis has only two meth-
ods that also have focus on the first two phases of the reengineering process. Information
Retrieval has a good coverage of studies on the detection phase. This can be justified because
of its ability to deal with large amount of data to discovery information. On the other hand
the Search-based strategy deals mainly with analysis phase. We observed that search-based
techniques have been used to create variability models that best represent existing systems,
a complex activity.

Figure 6 shows the number of publications per year and type of strategy. The first strate-
gies applied in 2001 were Expert-driven, Dynamic analysis and Information Retrieval. In
2004 the first work on Static Analysis appears, and recently in 2011, on a Search-based
strategy. Until 2013 the number of research papers grew, addressing the strategies Expert-
driven, Static Analysis, and Information Retrieval, but in the last two years the number
of studies on these strategies decreased. The number of studies addressing the strategies
Dynamic analysis and Search-based remains constant.

4.3 RQ3 - Input and Output Artefacts

In this section we summarize the results of the artefacts used. This summary is based on
the type of artefact provided as input and produced as output by each paper, shown in
Table 8. Regarding the input artefacts, Source code is the most common input artefact with
73 primary sources. Java, C, C++, and C# are the programming languages generally used.
Requirements were the second most common with 55 primary sources. Examples of require-
ment artefacts are specifications, feature descriptions, customer requests, test suites, and
documentation. Design models with 30 primary sources cover artefacts such as: class dia-
grams, state machines, and entity-relationship database models. Nine papers use Domain
information, such as products description, user comments, documentation of systems in
specific domain, and domain analysis.

Different types of artefacts are produced. We grouped them into four categories. Features
mapped, the most common output with 34 studies, and Features discovered (27 primary
sources) are in general outputs of the detection and analysis phases. When the features
are known and well defined it is only necessary to obtain the mapping of features to the

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2987

Table 6 Publications per strategy

Strategy # References

Expert-driven 19 (Schulze et al. 2013; Santos et al. 2013; Passos et al. 2013;
Koziolek et al. 2013; Rubin et al. 2013; Knodel et al. 2005;
Ramos and Penteado 2008; Stuikys and Valincius 2011;
Knodel et al. 2005; Almeida et al. 2006; Heidenreich et al.
2008; Lago and Vliet 2004; de Oliveira et al. 2012; Otsuka
et al. 2011; Zhang et al. 2011; Stoermer and O’Brien 2001;
Eriksson et al. 2005; Abbasi et al. 2014; Faust and Verhoef
2003)

Static Analysis 45 (Alves et al. 2007; Kulesza et al. 2007; Kelly et al. 2011;
Valinċius et al. 2013; Chen et al. 2005; Yu et al. 2013; Hariri
et al. 2013; Rubin et al. 2012; Nöbauer et al. 2014a; Klatt et al.
2014; Linsbauer et al. 2014; Xue et al. 2010; She et al. 2014;
Trifu 2010; She 2013; Van Der Storm 2007; Losavio et al.
2013; Nie et al. 2012; Damaṡeviċius et al. 2012; Nunes et al.
2012; She et al. 2011; Nunes et al. 2013; Bécan et al. 2013;
Rubin and Chechik 2012a; Tang and Leung 2015; Bayer et al.
2004; Kang et al. 2005; Araújo et al. 2013; Romero et al. 2013;
Seidl et al. 2012; Merschen et al. 2011; Gamez and Fuentes
2013; Polzer et al. 2012; Gamez and Fuentes 2011; Linsbauer
et al. 2013; Duszynski et al. 2011; Martinez et al. 2014; Li
et al. 2005; Acher et al. 2012; Frenzel et al. 2007; Mu et al.
2009; Haslinger et al. 2011; Rubin and Chechik 2012b; 2010;
Peng et al. 2013)

Dynamic Analysis 3 (Anwikar et al. 2012; Maia et al. 2008; Olszak and Jørgensen
2012)

Information Retrieval 25 (Ryssel et al. 2011; Sampath 2013; AL-Msie’deen et al. 2013;
Xue et al. 2012; AL-Msie’deen et al. 2012; Eyal-Salman et
al. 2013b; Xue 2012; Gharsellaoui et al. 2015; Maazoun et
al. 2014a; Maâzoun et al. 2014b; Eyal-Salman et al. 2013a, c;
Mefteh et al. 2014; Ziadi et al. 2012; Niu et al. 2014; Eyal-
Salman et al. 2012; Eyal Salman et al. 2013; Shao et al. 2013;
Davril et al. 2013; Falessi et al. 2010; Ferrari et al. 2013;
Guzman and Maalej 2014; Li et al. 2007; Kumaki et al. 2012;
Ziadi et al. 2014)

Search-based 3 (Segura et al. 2012; Lopez-Herrejon et al. 2015; Linsbauer et al. 2014)

Exp. + Stat. 14 (Weston et al. 2009; Bécan 2013; Nöbauer et al. 2014b;
Breivold et al. 2008; Martinez et al. 2015; Fischer et al. 2015;
2014; Mohamed et al. 2014; Noor et al. 2008; Acher et al.
2013; Kolb et al. 2006; Acher et al. 2011; Rubin 2014; Rubin
et al. 2015)

Exp. + IR 2 (Boutkova and Houdek 2011; Bagheri et al. 2012)

Exp. + SB 1 (Lohar et al. 2013)

Stat. + Dyn 1 (Klatt et al. 2013)

Stat. + IR 3 (Eyal-Salman et al. 2014; Alves et al. 2008; Al-msie’deen et al. 2013)

Stat. + SB 1 (Ali et al. 2011)

Dyn. + IR 2 (Yang et al. 2009; Eisenbarth et al. 2001)

elements, commonly in source code. When these features are disorganized or spread across
many code units, it is necessary to discover the features and its elements. 13 primary sources
has as output Reports, which are often generated with information such as the variabil-
ity among the systems, impact on the reengineering to SPLs, and potential reuse in legacy

Author's personal copy

2988 Empir Software Eng (2017) 22:2972–3016

Ta
bl
e
7

St
ra

te
gi

es
an

d
m

et
ho

ds
us

ed

St
ra

te
gy

Te
ch

ni
qu

e/
M

et
ho

d
#

#
pe

r
Ph

as
e

R
ef

er
en

ce
s

D
et

.
A

n.
T

r.

E
xp

er
t-

dr
iv

en
E

xp
er

tis
e

36
32

31
17

(S
ch

ul
ze

et
al

.2
01

3;
L

oh
ar

et
al

.2
01

3;
Sa

nt
os

et
al

.2
01

3;
Pa

s-
so

s
et

al
.2

01
3;

K
oz

io
le

k
et

al
.2

01
3;

R
ub

in
et

al
.2

01
3;

K
no

de
l

et
al

.2
00

5;
R

am
os

an
d

Pe
nt

ea
do

20
08

;
St

ui
ky

s
an

d
V

al
in

ci
us

20
11

;
K

no
de

l
et

al
.

20
05

;
A

lm
ei

da
et

al
.

20
06

;
N

oo
r

et
al

.
20

08
;

H
ei

de
nr

ei
ch

et
al

.
20

08
;

B
éc

an
20

13
;

L
ag

o
an

d
V

lie
t

20
04

;
de

O
liv

ei
ra

et
al

.2
01

2;
O

ts
uk

a
et

al
.2

01
1;

A
ch

er
et

al
.

20
13

;Z
ha

ng
et

al
.2

01
1;

St
oe

rm
er

an
d

O
’B

ri
en

20
01

;B
re

iv
ol

d
et

al
.2

00
8;

K
ol

b
et

al
.2

00
6;

A
ch

er
et

al
.2

01
1;

N
öb

au
er

et
al

.
20

14
b;

M
ar

tin
ez

et
al

.2
01

5;
R

ub
in

20
14

;E
ri

ks
so

n
et

al
.2

00
5;

Fi
sc

he
r

et
al

.2
01

5;
M

oh
am

ed
et

al
.2

01
4;

A
bb

as
ie

ta
l.

20
14

;
Fi

sc
he

re
ta

l.
20

14
;R

ub
in

et
al

.2
01

5;
Fa

us
ta

nd
V

er
ho

ef
20

03
;

W
es

to
n

et
al

.2
00

9;
B

ag
he

ri
et

al
.2

01
2;

B
ou

tk
ov

a
an

d
H

ou
de

k
20

11
)

St
at

ic
A

na
ly

si
s

C
lu

st
er

in
g

13
12

12
0

(W
es

to
n

et
al

.
20

09
;

K
el

ly
et

al
.

20
11

;
V

al
in

ċi
us

et
al

.
20

13
;

C
he

n
et

al
.

20
05

;
B

éc
an

20
13

;
N

öb
au

er
et

al
.

20
14

b;
R

ub
in

et
al

.2
01

2;
D

am
aṡ

ev
iċ

iu
s

et
al

.2
01

2;
E

ya
l-

Sa
lm

an
et

al
.2

01
4;

A
lv

es
et

al
.2

00
8;

H
ar

ir
ie

ta
l.

20
13

;Y
u

et
al

.2
01

3)

G
ra

ph
-b

as
ed

12
12

11
3

(C
he

n
et

al
.2

00
5;

K
la

tt
et

al
.2

01
4;

X
ue

et
al

.2
01

0;
K

la
tt

et
al

.
20

13
;

Sh
e

et
al

.
20

14
;

T
ri

fu
20

10
;

Sh
e

20
13

;
V

an
D

er
St

or
m

20
07

;L
os

av
io

et
al

.2
01

3;
N

ie
et

al
.2

01
2;

D
am

aṡ
ev

iċ
iu

s
et

al
.

20
12

;P
en

g
et

al
.2

01
3)

H
eu

ri
st

ic
s

11
11

11
7

(B
éc

an
20

13
;

N
öb

au
er

et
al

.
20

14
b;

N
un

es
et

al
.

20
12

;
Sh

e
et

al
.

20
11

;
N

un
es

et
al

.
20

13
;

B
éc

an
et

al
.

20
13

;
R

ub
in

an
d

C
he

ch
ik

20
12

a;
Ta

ng
an

d
L

eu
ng

20
15

;B
ay

er
et

al
.2

00
4;

K
an

g
et

al
.2

00
5;

A
ra

új
o

et
al

.2
01

3)

O
ve

rl
ap

s
11

10
9

6
(M

ar
tin

ez
et

al
.

20
15

;
Fi

sc
he

r
et

al
.

20
15

;
20

14
;

L
in

sb
au

er
et

al
.2

01
3;

D
us

zy
ns

ki
et

al
.2

01
1;

M
ar

tin
ez

et
al

.2
01

4;
L

in
s-

ba
ue

r
et

al
.

20
14

;
H

as
lin

ge
r

et
al

.
20

11
;

R
ub

in
20

14
;

R
ub

in
et

al
.2

01
5;

R
ub

in
an

d
C

he
ch

ik
20

12
b)

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2989

Ta
bl
e
7

(c
on

tin
ue

d)

St
ra

te
gy

Te
ch

ni
qu

e/
M

et
ho

d
#

#
pe

r
Ph

as
e

R
ef

er
en

ce
s

D
et

.
A

n.
T

r.

St
ru

ct
ur

al
Si

m
ila

ri
ty

10
9

8
4

(N
oo

r
et

al
.2

00
8;

A
ch

er
et

al
.2

01
3;

K
ol

b
et

al
.2

00
6;

A
ch

er
et

al
.2

01
1;

A
l-

m
si

e’
de

en
et

al
.2

01
3;

R
ub

in
an

d
C

he
ch

ik
20

10
;

Pe
ng

et
al

.2
01

3;
R

ub
in

20
14

;
R

ub
in

et
al

.2
01

5;
R

ub
in

et
al

.
20

12
)

M
od

el
T

ra
ns

fo
rm

at
io

n
8

7
7

3
(R

om
er

o
et

al
.2

01
3;

K
ul

es
za

et
al

.2
00

7;
A

ra
új

o
et

al
.2

01
3;

Se
id

l
et

al
.

20
12

;
M

er
sc

he
n

et
al

.
20

11
;

G
am

ez
an

d
Fu

en
te

s
20

13
;P

ol
ze

r
et

al
.2

01
2;

G
am

ez
an

d
Fu

en
te

s
20

11
)

D
ep

en
de

nc
y

A
na

ly
si

s
5

5
4

1
(B

re
iv

ol
d

et
al

.2
00

8;
A

li
et

al
.2

01
1;

N
öb

au
er

et
al

.2
01

4a
;K

la
tt

et
al

.2
01

4;
L

in
sb

au
er

et
al

.2
01

4)

R
ul

e-
ba

se
d

3
2

2
1

(H
ar

ir
ie

ta
l.

20
13

;M
oh

am
ed

et
al

.2
01

4;
M

u
et

al
.2

00
9)

A
sp

ec
tP

ro
gr

am
m

in
g

2
2

2
0

(A
lv

es
et

al
.2

00
7;

K
ul

es
za

et
al

.2
00

7)

D
at

a
Fl

ow
A

na
ly

si
s

2
2

2
2

(B
ay

er
et

al
.2

00
4;

K
an

g
et

al
.2

00
5)

Pr
og

ra
m

sl
ic

in
g

1
1

0
0

(L
ie

ta
l.

20
05

)

Pr
op

os
iti

on
al

lo
gi

c
1

1
1

0
(A

ch
er

et
al

.2
01

2)

R
ef

le
xi

on
M

et
ho

d
1

1
1

0
(F

re
nz

el
et

al
.2

00
7)

D
yn

am
ic

A
na

ly
si

s
E

xe
cu

tio
n

T
ra

ci
ng

5
5

3
1

(K
la

tt
et

al
.2

01
3;

A
nw

ik
ar

et
al

.2
01

2;
M

ai
a

et
al

.2
00

8;
O

ls
za

k
an

d
Jø

rg
en

se
n

20
12

;E
is

en
ba

rt
h

et
al

.2
00

1)

D
at

a
A

cc
es

s
Se

m
an

tic
s

1
1

1
0

(Y
an

g
et

al
.2

00
9)

In
fo

rm
at

io
n

R
et

ri
ev

al
Fo

rm
al

C
on

ce
pt

A
na

ly
si

s
17

15
14

1
(E

is
en

ba
rt

h
et

al
.

20
01

;
Y

an
g

et
al

.
20

09
;

E
ya

l-
Sa

lm
an

et
al

.
20

14
;

R
ys

se
l

et
al

.
20

11
;

Sa
m

pa
th

20
13

;
A

L
-M

si
e’

de
en

et
al

.
20

13
;

A
l-

m
si

e’
de

en
et

al
.

20
13

;
X

ue
et

al
.

20
12

;
A

L
-

M
si

e’
de

en
et

al
.

20
12

;
E

ya
l-

Sa
lm

an
et

al
.

20
13

b;
X

ue
20

12
;

G
ha

rs
el

la
ou

ie
ta

l.
20

15
;M

aa
zo

un
et

al
.2

01
4a

;M
aâ

zo
un

et
al

.
20

14
b;

;E
ya

l-
Sa

lm
an

et
al

.2
01

3a
,c

M
ef

te
h

et
al

.2
01

4)

Author's personal copy

2990 Empir Software Eng (2017) 22:2972–3016

Ta
bl
e
7

(c
on

tin
ue

d)

St
ra

te
gy

Te
ch

ni
qu

e/
M

et
ho

d
#

#
pe

r
Ph

as
e

R
ef

er
en

ce
s

D
et

.
A

n.
T

r.

L
at

en
tS

em
an

tic
In

de
xi

ng
14

14
11

1
(A

l-
m

si
e’

de
en

et
al

.
20

13
;

X
ue

et
al

.
20

12
;

A
L

-M
si

e’
de

en
et

al
.2

01
2;

E
ya

l-
Sa

lm
an

et
al

.2
01

3b
;X

ue
20

12
;G

ha
rs

el
la

ou
i

et
al

.2
01

5;
M

aa
zo

un
et

al
.2

01
4a

;M
aâ

zo
un

et
al

.2
01

4b
;E

ya
l-

Sa
lm

an
et

al
.2

01
3a

,c
;E

ya
l-

Sa
lm

an
et

al
.2

01
2;

E
ya

lS
al

m
an

et
al

.2
01

3;
Sh

ao
et

al
.2

01
3;

A
lv

es
et

al
.2

00
8)

O
th

er
N

at
ur

al
L

an
gu

ag
e

Pr
oc

es
si

ng
te

ch
ni

qu
es

7
7

3
0

(M
ef

te
h

et
al

.2
01

4;
B

ou
tk

ov
a

an
d

H
ou

de
k

20
11

;F
al

es
si

et
al

.
20

10
;

Fe
rr

ar
i

et
al

.
20

13
;

G
uz

m
an

an
d

M
aa

le
j

20
14

;
B

ag
he

ri
et

al
.2

01
2;

N
iu

et
al

.2
01

4)

V
ec

to
r

Sp
ac

e
M

od
el

4
4

3
1

(E
ya

l-
Sa

lm
an

et
al

.2
01

3a
,c

;K
um

ak
ie

ta
l.

20
12

;A
lv

es
et

al
.2

00
8)

W
or

d
Fr

eq
ue

nc
y

2
2

1
0

(Z
ia

di
et

al
.2

01
2;

Z
ia

di
et

al
.2

01
4)

D
at

a
M

in
in

g
2

2
1

0
(D

av
ri

le
ta

l.
20

13
;G

uz
m

an
an

d
M

aa
le

j2
01

4)

O
nt

ol
og

y
2

2
2

0
(B

ag
he

ri
et

al
.2

01
2;

L
ie

ta
l.

20
07

)

Se
ar

ch
-b

as
ed

G
en

et
ic

A
lg

or
ith

m
3

1
2

0
(L

oh
ar

et
al

.2
01

3;
Se

gu
ra

et
al

.2
01

2;
L

op
ez

-H
er

re
jo

n
et

al
.2

01
5)

G
en

et
ic

Pr
og

ra
m

m
in

g
1

0
1

0
(L

in
sb

au
er

et
al

.2
01

4)

N
on

-d
om

in
at

ed
G

en
et

ic
A

lg
or

ith
m

II
1

1
1

0
(A

li
et

al
.2

01
1)

H
ill

cl
im

bi
ng

1
0

1
0

(L
op

ez
-H

er
re

jo
n

et
al

.2
01

5)

R
an

do
m

se
ar

ch
1

0
1

0
(L

op
ez

-H
er

re
jo

n
et

al
.2

01
5)

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2991

Fig. 6 Strategies addressed by the studies per year

system variants. Source code refactored, the second more generated output with 31 studies,
is a common output of the transformation phase. After generating a feature-to-code trace-
ability, the source-code elements associated to a feature can be: clustered into a Java package
(in case of object-oriented programming, e.g. Olszak and Jørgensen (2012)), migrated to
an aspect (in aspect-oriented programming, e.g. Alves et al. (2007)), or reformulated as
components assets (e.g. Knodel et al. (2005)).

To analyse the relationship between strategies and inputs/outputs artefacts we use Fig. 7,
which shows a bubble chart that maps the studies considering both dimensions. Expert-
driven, Static analysis and Information Retrieval are strategies that have primary sources
that use the four categories of input and output. In these strategies the most common input
is the Source code (26, 38, and 20, respectively), and the most common output is the Source
code refactored (15) for Expert-drive and Features discovered for Static analysis (30) and
Information Retrieval (17). Dynamic analysis does not use Domain information as input
and it also does not have primary sources that generate Reports. Finally, the Search-based
strategy has primary sources that use as input Requirements, Design models and Source
code, and generate only Features discovered and Reports.

Studies of all strategies have as input Requirements, Design models and Source code, but
only studies based on Expert-driven, Static Analysis and Information Retrieval strategies
use Domain information. For all strategies there are studies producing as output Features
discovered and Source code refactored. About other outputs, only the Search-based strategy
does not generate Features mapped. Moreover, Dynamic Analysis and Search-based strate-
gies do not generate Reports, what is expected, since the studies with these strategies do not
use Domain artifacts as input.

4.4 RQ4 - Systems Used for the Evaluation

We also analysed if the approaches proposed were evaluated and what kind of systems were
used. Our results are summarized in Fig. 8. Most primary sources (57) use industrial/open
source systems in the evaluations of their studies; 44 studies use academic/illustrative sys-
tems. 12 studies use both types of systems. In these cases, academic/illustrative systems are
generally used in a controlled experiment and industrial/open source systems for a better
evaluation. None type of evaluation was found in six of the papers. The systems used vary
in the domain and size. Table 9 presents the main systems used in the evaluations.

Author's personal copy

2992 Empir Software Eng (2017) 22:2972–3016

4.5 RQ5 - Tool Support for the Reengineering Process

We present a summary of the tools proposed in the collected papers and used for evaluation.
An total of 19 tools for the reengineering support were found. We only consider tools that are
specific for the reengineering process. A brief description of the tools, and corresponding
work references are presented in Table 10. The first tool appeared in 2007 (Alves et al. 2007)

Table 8 Categories of inputs and outputs artefacts used

Category # References

Input

Domain information 9 (Bagheri et al. 2012; Almeida et al. 2006; Davril et al. 2013; Hariri et al. 2013;
Acher et al. 2012; Yu et al. 2013; Ferrari et al. 2013; Mefteh et al. 2014; Guzman
and Maalej 2014)

Requirements 55 (Almeida et al.2006; Koziolek et al. 2013; Knodel et al. 2005; Ramos and
Penteado 2008; Noor et al. 2008; Lago and Vliet 2004; Kolb et al. 2006; Maia
et al. 2008; Losavio et al. 2013; Eyal-Salman et al. 2014; Stuikys and Valincius
2011; Linsbauer et al. 2013; Eyal Salman et al. 2013; Eyal-Salman et al. 2013b;
Xue 2012; Eisenbarth et al. 2001; Eyal-Salman et al. 2013c; Van Der Storm
2007; Eyal-Salman et al. 2013a; She 2013; She et al. 2011; Haslinger et al. 2011;
Linsbauer et al. 2014; Lopez-Herrejon et al. 2015; Nunes et al. 2012, 2013; Ryssel
et al. 2011; Ali et al. 2011; Bécan 2013; Bécan et al. 2013; Rubin et al. 2013;
Araújo et al. 2013; Falessi et al. 2010; Valinċius et al. 2013; Li et al. 2007; Trifu
2010; Shao et al. 2013; Nöbauer et al. 2014a; Martinez et al. 2015; Rubin 2014;
Faust and Verhoef 2003; Kumaki et al. 2012; Niu et al. 2014; Alves et al. 2008;
Weston et al. 2009; Chen et al. 2005; Mu et al. 2009; Boutkova and Houdek
2011; Merschen et al. 2011; Polzer et al. 2012; Rubin et al. 2015; Stoermer and
O’Brien 2001; Santos et al. 2013; Mefteh et al. 2014; Eriksson et al. 2005)

Design models 30 (Faust and Verhoef 2003; Acher et al. 2013; 2011; Xue 2012; Kumaki et al.
2012; Lago and Vliet 2004; Knodel et al. 2005; Yang et al. 2009; Romero et al.
2013; Kulesza et al. 2007; Passos et al. 2013; Seidl et al. 2012; Eyal-Salman
et al. 2012; Peng et al. 2013; Mohamed et al. 2014; Gamez and Fuentes 2011;
Heidenreich et al. 2008; Segura et al. 2012; Li et al. 2005; Rubin and Chechik
2010; Knodel et al. 2005; Li et al. 2007; Martinez et al. 2015; Rubin 2014; Rubin
et al. 2015; Schulze et al. 2013; Xue et al. 2010; Martinez et al. 2014; Bécan
2013; Nie et al. 2012)

Source code 73 (Almeida et al. 2006; Faust and Verhoef 2003; Li et al. 2007; Eisenbarth et al.
2001; Nöbauer et al. 2014b; Lohar et al. 2013; Gharsellaoui et al. 2015; Stuikys
and Valincius 2011; de Oliveira et al. 2012; Van Der Storm 2007; Damaṡeviċius
et al. 2012; Olszak and Jørgensen 2012; Kang et al. 2005; Sampath 2013; Tang
and Leung 2015; Breivold et al. 2008; Alves et al. 2007; Seidl et al. 2012;
Mohamed et al. 2014; Noor et al. 2008; Linsbauer et al. 2013; Xue et al. 2012;
Klatt et al. 2013; Frenzel et al. 2007; AL-Msie’deen et al. 2013; Otsuka et al.
2011; Zhang et al. 2011; Maazoun et al. 2014a; Fischer et al. 2014; Eyal Salman
et al. 2013; Ziadi et al. 2012; Bayer et al. 2004; She et al. 2014; Gamez and
Fuentes 2013; Xue 2012; Kelly et al. 2011; Bécan 2013; Rubin and Chechik
2012a; Rubin et al. 2012; Lago and Vliet 2004; Passos et al. 2013; Eyal-Salman
et al. 2012; Peng et al. 2013; Knodel et al. 2005; Koziolek et al. 2013; Ramos
and Penteado 2008; Eyal-Salman et al. 2013a, b, c; Nunes et al. 2012; Rubin et
al. 2013; Valinċius et al. 2013; Shao et al. 2013; Nöbauer et al. 2014a; Polzer
et al. 2012; Santos et al. 2013; Al-msie’deen et al. 2013; Rubin and Chechik
2012b; Klatt et al. 2014; Trifu 2010; Anwikar et al. 2012; Martinez et al. 2015;
Rubin 2014; Rubin et al. 2015; Eyal-Salman et al. 2014; Maâzoun et al. 2014b;
Duszynski et al. 2011; AL-Msie’deen et al. 2012; Kolb et al. 2006; Ziadi et al.
2014; Fischer et al. 2015; Linsbauer et al. 2014; Abbasi et al. 2014)

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2993

Table 8 (continued)

Category # References

Output

Features mapped 34 (Rubin et al. 2015; Fischer et al. 2014, 2015; Eyal-Salman et al. 2014; Martinez
et al. 2015; Hariri et al. 2013; Rubin 2014; Boutkova and Houdek 2011;
Eisenbarth et al. 2001; Romero et al. 2013; Schulze et al. 2013; Eyal-Salman
et al. 2013a, b; Heidenreich et al. 2008; Lago and Vliet 2004; Van Der Storm
2007; Eyal-Salman et al. 2013c; Polzer et al. 2012; Anwikar et al. 2012;
Linsbauer et al. 2014; Kulesza et al. 2007; Nunes et al. 2013; Seidl et al. 2012;
Trifu 2010; Eriksson et al. 2005; Shao et al. 2013; Eyal-Salman et al. 2012;
Merschen et al. 2011; Stuikys and Valincius 2011; Linsbauer et al. 2013; Passos
et al. 2013; Peng et al. 2013; Ziadi et al. 2014; Eyal Salman et al. 2013)

Features discovered 27 (Frenzel et al. 2007; Xue et al. 2012; Maia et al. 2008; Almeida et al. 2006; Rubin
and Chechik 2010; Ferrari et al. 2013; Falessi et al. 2010; Martinez et al. 2015;
Eriksson et al. 2005; Damaṡeviċius et al. 2012; Sampath 2013; AL-Msie’deen
et al. 2013; Maazoun et al. 2014a; She et al. 2014; Bécan 2013; Valinċius et al.
2013; Maâzoun et al. 2014b; Abbasi et al. 2014; Acher et al. 2013; 2011;
Kumaki et al. 2012; Yang et al. 2009; Li et al. 2005; Xue et al. 2010; She 2013;
Linsbauer et al. 2014; Lopez-Herrejon et al. 2015)

Reports 13 (Merschen et al. 2011; Bagheri et al. 2012; Rubin 2014; Zhang
et al. 2011; Guzman and Maalej 2014; Yu et al. 2013; Niu et al.
2014; Mu et al. 2009; Knodel et al. 2005; Koziolek et al. 2013;
Noor et al. 2008; Stoermer and O’Brien 2001; Martinez et al.
2015)

Source code refactored 31 (Santos et al. 2013; Alves et al. 2007; Knodel et al. 2005; Tang and Leung 2015;
Kolb et al. 2006; Ali et al. 2011; Olszak and Jørgensen 2012; Nunes et al. 2012;
Martinez et al. 2015; Fischer et al. 2014; 2015; Rubin 2014; de Oliveira et al.
2012; Klatt et al. 2013; Rubin and Chechik 2012a; Rubin et al. 2015; Faust and
Verhoef 2003; Mohamed et al. 2014; Kumaki et al. 2012; Breivold et al. 2008;
Bayer et al. 2004; Losavio et al. 2013; Gamez and Fuentes 2011; Rubin et al.
2013; Kang et al. 2005; Otsuka et al. 2011; Xue 2012; Ramos and Penteado
2008; Maazoun et al. 2014a; Gharsellaoui et al. 2015; Kelly et al. 2011)

Fig. 7 Input and output used by the strategies

Author's personal copy

2994 Empir Software Eng (2017) 22:2972–3016

Fig. 8 Number of studies per
type of system used in the
evaluation

and since then, papers that present tools has become more common. This was expected,
because of the increasing number of papers on the subject.

Table 11 presents the phases, strategies, input and output per tool. We can observe that
most tools have focus on phases of detection and analysis, usually applying the Static anal-
ysis strategy. For Dynamic analysis and Search-based strategies, we found only one tool.
Eight tools cover the three phases of the reengineering process. Regarding the input and
output, the majority of tools use source code as input, followed by requirements and design
artifacts. Considering that source code is the most common artifact, it is expected that
refactoring of source code is the most common output. The mapping and/or discovering of
features in system variants are also well covered by the tools. There are only two tools that
generate reports to support SPL adoption.

4.6 RQ6 - Type and Fora of the Publications

First, we analyse the fora of the publications. The number of studies in each cat-
egory is presented in Fig. 9. We can see that most papers were published in peer
reviewed venues: journals, conferences, and workshops (∼92 % = 110 papers). This
indicates that the area is being disseminated through a wide range of scientific
outlets.

Conferences are the most frequent publication venue, followed by journals and work-
shops. The papers in these three types are distributed among 63 distinct venues: 17 journals,
38 conferences, and 8 workshops. Figure 10 shows the main fora with the most number
of publications. From the 63 publication venues only 18 have two or more publications,
and are accounting for a total of 65 papers, or 55 %. International Software Product Line
Conference (SPLC) and Working Conference on Reverse Engineering (WCRE) are specific
conferences and the preferred ones. Together they published 24 papers (20 %) of the pri-
mary sources. Information and Software Technology, Journal of Systems and Software, and
Software: Practice and Experience are the journals with the largest number of publications.
All of them are general Software Engineering publication venues. The main work-
shops are International Workshop on Variability Modelling of Software-Intensive Systems
(VaMoS), International Workshop on Model-driven Approaches in Software Product Line
Engineering (MAPLE) and International Workshop on Reverse Variability Engineering
(REVE).

The distribution of the number of publications does not correlate with the number of
distinct venues. For example, 52 (∼67 %) conference publications appear in 12 (∼32 %) dis-
tinct venues, while all the 20 journal papers appear in 17 distinct venues. This is maybe due
to the small number of conferences devoted to SPLs and maintenance/evolution, which are

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2995

Table 9 Systems used in evaluations

Industrial/Open source

ArgoUML (Eyal-Salman et al. 2013a; Linsbauer et al. 2014; Klatt et al. 2014; Ziadi et al. 2012; Al-msie’deen
et al. 2013; Linsbauer et al. 2013; Eyal Salman et al. 2013; Eyal-Salman et al. 2013b; AL-Msie’deen et al.
2013); Eyal-Salman et al. 2013c, 2014; Fischer et al. 2014), Linux kernel (She et al. 2011; Xue et al. 2012;
Peng et al. 2013; Xue 2012; She 2013), Softpedia Repository (Hariri et al. 2013; Yu et al. 2013; Guzman
and Maalej 2014; Bagheri et al. 2012) Eclipse Project and Plugins (Knodel et al. 2005; Bayer et al. 2004;
Martinez et al. 2015), Berkeley DB (Linsbauer et al. 2014; Xue 2012; Nie et al. 2012), Smart Home (Araújo
et al. 2013; Alves et al. 2008; Weston et al. 2009), Automarker systems (Niu et al. 2014; Boutkova and
Houdek 2011), JHotDraw (Trifu 2010; Olszak and Jørgensen 2012), Prevayler (Linsbauer et al. 2014; Tang
and Leung 2015), FraSCAti (Acher et al. 2013; 2011), Microsoft Dynamics AX (Nöbauer et al. 2014b;
2014a), Defense domain systems (Rubin et al. 2015; Eriksson et al. 2005), Gantt Project (Noor et al. 2008),
BlueJ (Olszak and Jørgensen 2012), Apache Web Server (Linsbauer et al. 2014), CCHIT Health (Lohar et al.
2013), CM-1 NASA (Lohar et al. 2013), Communications-Based Train Control (CBTC) (Ferrari et al. 2013),
Curl (Linsbauer et al. 2014), DesktopSearcher (Linsbauer et al. 2014), E-Clinic (Lohar et al. 2013), eCos
kernel (She et al. 2011), FreeBSD (She et al. 2011), Fujitsu Kyushu Network Technologies (Otsuka et al.
2011), Health watcher (Al-msie’deen et al. 2013), I-Trust (Lohar et al. 2013), Alcatel-Lucent IXM-PF (Zhang
et al. 2011), Image Memory Handler (IMH) (Kolb et al. 2006), Java Buffer Library (Damaṡeviċius et al.
2012), Jforum (Yang et al. 2009), JGossip (Yang et al. 2009), Labor Market Monitoring Software Product
Line (LMMSPL) (Shao et al. 2013), LLVM Compiler (Linsbauer et al. 2014), MVNForum (Yang et al. 2009),
Pooka Email Client (Ali et al. 2011), Power control and protection system (Breivold et al. 2008), Printworks
(Li et al. 2005), QlikView (Nöbauer et al. 2014b), SELEX Sistemi Integrati Systems (Falessi et al. 2010), SIP
Communicator (Ali et al. 2011), WebStore (Santos et al. 2013), Wget (Linsbauer et al. 2014), x264 Library
(Linsbauer et al. 2014), Traffic management systems (Niu et al. 2014), Collaborative Software Suite (CoSS)
(Hariri et al. 2013), Sudoku (Tang and Leung 2015), Web Product configurators (Abbasi et al. 2014), KePlast
platform (Linsbauer et al. 2014), GameOfLife (Fischer et al. 2014), Electric motor controller (Rubin et al.
2015), Global trading and settlement system (GTSS) (Faust and Verhoef 2003)

Academic/Illustrative

MobileMedia (Al-msie’deen et al. 2013; Eyal-Salman et al. 2013b; Linsbauer et al. 2013; Eyal-Salman
et al. 2012, 2014; Mefteh et al. 2014; Tang and Leung 2015), Mobile Phone (Araújo et al. 2013; Nie et al.
2012; Li et al. 2007; Maazoun et al. 2014a; Gharsellaoui et al. 2015), SPLOT Feature Models (She et al.
2014; Bécan 2013; Bécan et al. 2013; Haslinger et al. 2011; Acher et al. 2012; Lopez-Herrejon et al. 2015),
Graph Product Line (GPL) (Linsbauer et al. 2014; Ziadi et al. 2012), Video On Demand (Linsbauer et al.
2013; Fischer et al. 2014), Wingsoft Financial Management System (Xue et al. 2010; Xue 2012), Banking
System (Martinez et al. 2014; Maâzoun et al. 2014b), ZipMe (Linsbauer et al. 2014; Fischer et al. 2014),
Washing Machine (Rubin and Chechik 2010; Rubin 2014), Airbag (Schulze et al. 2013), DirectBank (Peng
et al. 2013), Home Automation (Nie et al. 2012), Home Service Robot (Kang et al. 2005), Insurance Polocy
(Nie et al. 2012), J2ME Games Product Line (Kulesza et al. 2007), LinkedList (Linsbauer et al. 2014), PKJab
(Linsbauer et al. 2014), Project Factory (Noor et al. 2008), SensorNetwork (Linsbauer et al. 2014), Graphical
Editor (Maia et al. 2008), Text Editing System SPL (AL-Msie’deen et al. 2012), Vending Machine (Martinez
et al. 2014), Microwave Oven (Rubin 2014), Xfig System (Eisenbarth et al. 2001), Fame-DBMS (Linsbauer
et al. 2014), Jbook (Santos et al. 2013), Notepad SPL (Ziadi et al. 2014), Software Design Robot (Kumaki
et al. 2012), Library management systems (Chen et al. 2005), Wiki engines (Acher et al. 2012), Suppliers
offering systems (Acher et al. 2012), ModelAnalyzer (Fischer et al. 2014), Draw Product Line (Fischer et al.
2014), PCM Dataset (Bécan et al. 2013)

the preferred ones in this category (conferences). On the other hand, the journals with related
publications are with general purpose on Software Engineering and Computer Science. In
this category, there is a great number of possibilities (journals) that could be chosen.

4.7 RQ7 - Number and Frequency of Publications

The evolution on the number of publications along the years is depicted in Fig. 11. The first
papers appeared in 2001 and there was an increase in the number of publications in 2005

Author's personal copy

2996 Empir Software Eng (2017) 22:2972–3016

Table 10 Tools used in the reengineering process

Name Reference Description

Variability to Aspect tool (Alves et al. 2007) Aims at extracting variations from
existing products by isolating such
variations into aspects.

FeatureMapper (Heidenreich et al. 2008; Seidl et al. 2012) A tool that allows defining map-
pings of features to model ele-
ments, specifying feature realisa-
tions.

CoDEx Tool (Trifu 2010) Creates and maintains direct trace-
ability links between functional
concerns and their respective
implementations in code.

ThreeVaMar (Rubin and Chechik 2010) This algorithm accepts as input a
model with duplications that rep-
resent systems and produces the
model of a product line.

Feature Model Extraction (Haslinger et al. 2011) An algorithm reverse engineers a
basic feature model from the fea-
ture sets, which describes the fea-
tures each system provides.

RecFeat (Nunes et al. 2012) A history-sensitive heuristic for
recovering features in code of
degenerate program families.

ETHOM (Segura et al. 2012) Uses an evolutionary algorithm for
the automated generation of feature
models.

Clone-Differentiator Tool (Xue 2012) Automatically characterizes clones
returned by a clone detector by dif-
ferentiating Program Dependence
Graphs (PDGs) of clones. It is
able to provide a precise character-
ization of semantic differences of
clones.

MapHist Tool (Nunes et al. 2013) MapHist tool applies heuristics to
explore the evolution history of the
family members in order to expand
feature mappings in evolving pro-
gram families.

SPLevo tools (Klatt et al. 2013) SPLevo is a software development
tool supporting the consolidation of
customized product copies into a
Software Product Line.

Theme/SPL (Araújo et al. 2013) A tool to enhance feature modelling
with traceability and improved sup-
port for cross-cutting concerns.

BUT4Reuse (Martinez et al. 2014; Martinez et al. 2015) This tool provides technologies for
leveraging commonality and vari-
ability of software artefacts.

ExtractorPL (Ziadi et al. 2014) A language-independent approach
which provides a quick automatic
front-end to refactor a set of sys-
tems into an SPL.

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2997

Table 10 (continued)

Name Reference Description

ECCO Tool (Fischer et al. 2014; 2015) This tool automatically locate
reusable parts in existing systems
and compose a new system from a
selection of desired features.

Model Driven SaaS (Mohamed et al. 2014) This eclipse plugin executes the
QVT transformations that were
defined based on the evolution
rules.

AUFM Suite (Bagheri et al. 2012) In-house Eclipse-based plug-in for
feature modeling.

JfeTkit (Tang and Leung 2015) JFeTkit (Java Feature Mining
Toolkit) extracts featured code
from the software legacy.

FMr-T (Maâzoun et al. 2014b) FMr-T (Feature Model recovery
Tool) is a feature model extraction
tool that identifies code variability.

ArborCraft (Weston et al. 2009) This tool suite automatically pro-
cesses natural-language require-
ments documents into a candidate
feature model.

and 2007. We observe a “boom” between 2011 and 2013, when 54.6 % of the papers were
published.

4.8 RQ8 - Trends and Research Opportunities

During the analysis of the primary sources we identified some research gaps and limitations.
In this section, we report the research opportunities and trends uncovered by our mapping
study.

4.8.1 Automation and Tool Support

We observed that further studies should envisage the implementation of tools to automate
the entire process of reengineering of existing variants to an SPL. In many papers the authors
expose only an intention to provide a tool support to their methods. The first reason to
provide tool support to the reengineering process is to reduce the manual effort (Stoermer
and O’Brien 2001; Yang et al. 2009; Mefteh et al. 2014; Abbasi et al. 2014). Moreover,
an automated process can improve the overall quality of the reengineering process, since
this process is a labour-intensive task and error-prone (Stoermer and O’Brien 2001). In this
sense, authors argue for the necessity of providing tool support, such as Sampath (2013),
Passos et al. (2013), Zhang et al. (2011), de Oliveira et al. (2012), and Acher et al. (2012),
enabling an easier and better application of their approaches.

Despite the need to automate the entire reengineering process, authors point out the miss-
ing tool support for specific tasks. For instance, for detection phase, Santos et al. point out
as future research the use of test-based feature location to automate the mapping of features
to source code (Santos et al. 2013). As another example, now for the analysis phase, Xue
et al. (2010) mention the possible use of tools to automate reconciliation of inconsistent

Author's personal copy

2998 Empir Software Eng (2017) 22:2972–3016

Ta
bl
e
11

To
ol

s
pe

r
Ph

as
e

an
d

St
ra

te
gy

To
ol

Ph
as

es
St

ra
te

gi
es

In
pu

t
O

ut
pu

t

D
et

ec
.

A
na

ly
.

T
ra

ns
.

E
xp

.
St

at
.

D
yn

.
IR

SB
D

om
.

R
eq

ui
.

D
es

ig
n

C
od

e
M

ap
p.

D
is

c.
R

ep
o.

R
ef

ac
.

V
ar

ia
bi

lit
y

to
A

sp
ec

tt
oo

l
�

�
�

�
�

Fe
at

ur
eM

ap
pe

r
�

�
�

�
�

�
�

C
oD

E
x

To
ol

�
�

�
�

�
�

T
hr

ee
V

aM
ar

�
�

�
�

�
�

Fe
at

ur
e

M
od

el
E

xt
ra

ct
io

n
�

�
�

�
�

R
ec

Fe
at

�
�

�
�

�
�

�
E

T
H

O
M

�
�

�
�

C
lo

ne
-D

if
fe

re
nt

ia
to

r
To

ol
�

�
�

�
�

�
�

�
M

ap
H

is
tT

oo
l

�
�

�
�

�
SP

L
ev

o
to

ol
s

�
�

�
�

�
�

�
T

he
m

e/
SP

L
�

�
�

�
�

�
B

U
T

4R
eu

se
�

�
�

�
�

�
�

�
�

�
�

�
E

xt
ra

ct
or

PL
�

�
�

�
�

E
C

C
O

To
ol

�
�

�
�

�
�

�
�

M
od

el
D

ri
ve

n
Sa

aS
�

�
�

�
�

�
A

U
FM

Su
ite

�
�

�
�

�
�

Jf
eT

ki
t

�
�

�
�

�
�

FM
r-

T
�

�
�

�
�

A
rb

or
C

ra
ft

�
�

�
�

�
�

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 2999

Fig. 9 Percentage of
publications per type

feature models and Li et al. (2005) argue that there is still no tool for feature aggregation and
abstraction. Regarding the transformation phase, Olszak and Jørgensen point out the labour-
intensive task of manually annotating feature entry points (Olszak and Jørgensen 2012). She
et al. describe as challenge the automation of feature location and dependency mining when
the focus of reengineering is large-scale systems (She et al. 2011).

For those papers that provide a tool, the authors recommend possible improvements.
Bécan (2013) and Merschen et al. (2011) point out that it is necessary to improve their tools.
According to the authors, the usability has impact on the effort saved. With respect to the
motivation to use their tools, Merschen et al. (2011), Damaṡeviċius et al. (2012), Ferrari
et al. (2013), and Acher et al. (2013) mention their intention on integrating their tools into
standard frameworks and environments to make them useful for developers and engineers.
So, besides the importance of existence of tools to support the reengineering, their usability
and integration into popular development frameworks should be considered. Martinez et al.
present a tool support for the reengineering process, however they argue for extend their
tool to deal with different types of artefacts (Martinez et al. 2015).

Fig. 10 Conferences, workshops and journals with most publications

Author's personal copy

3000 Empir Software Eng (2017) 22:2972–3016

Fig. 11 Number of publications per year

In summary, given the increasing interest in SPLs, the implementation of tools to support
the phases of the entire process is fundamental to the practice and use in the industry.

4.8.2 Exploiting Multiple Sources of Information for Reengineering

Another research direction observed is exploiting different information sources during the
reengineering process. A research opportunity presented by Knodel et al. is using test cases,
commonly available in most projects, in conjunction with other sources to determine fea-
tures (Knodel et al. 2005). Trifu argues for the extraction of direct flow relations from
sources other than the source code (Trifu 2010). Kelly et al. suggest exploring source code
comments and documentation to enrich their approach for concept mining (Kelly et al.
2011). Eyal-Salman et al. indicate as future work the use of relationships between source
code elements to improve the traceability and feature identification (Eyal Salman et al.
2013). Duszynski et al. (2011) and Peng et al. (2013) mentioned as research direction the
use of design knowledge such as architecture models to allow the reengineering at a high
abstraction level. Bécan et al. do not point out what specific source should be explored, but
recommend that all artefacts that may be present in software projects can be used (Bécan
et al. 2013). In the same way, Yu et al. envisage the use of multi-grained resources, such
as code bases, historical code changes, mailing lists, bug databases, software descriptions,
user evaluations, etc Yu et al. (2013). To have a benefit in using different sources of infor-
mation, Kulesza et al. say that links between the different artefacts should be constantly
managed (Kulesza et al. 2007). This enables the use of different sources in conjunction,
such as proposed by Almeida et al. (2006), that recommend as future work the use of both
domain analysis and domain design in the software evolution. In the same way She suggests
the combination of bottom-up vs. top-down synthesis using artefacts at different levels of
abstraction to cover different points of view (She 2013).

4.8.3 Feature Management

Feature management is an important task in the reengineering process, responsible for
providing the variability among the features that compose the product variants.

An identified trend is the automated recovery of feature dependencies and interactions
considering aspects such as non-functional characteristic of systems (Li et al. 2005; Ali
et al. 2011; Bagheri et al. 2012). These aspects may help to refine the feature mappings

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 3001

and improve the resulting SPL (Li et al. 2007). Many studies generate feature models as
output but, in general, constraints, such as one feature requires or excludes another feature,
are not considered (Haslinger et al. 2011; Eyal-Salman et al. 2012; Damaṡeviċius et al.
2012; AL-Msie’deen et al. 2012; Al-msie’deen et al. 2013; Ferrari et al. 2013; Xue 2012;
Ziadi et al. 2014; She et al. 2014). Automatic recovery of constraints is an open issue to be
addressed in new studies. Some authors pointed out the research opportunity related with
the support to introduce, move, or delete features on a migrated SPL (Polzer et al. 2012;
de Oliveira et al. 2012). In fact it is not directly related with the reengineering process,
but if considered during the reengineering, the future evolution and maintenance may be
easier. Another research direction is the reengineering of partial variability, where a subset
of features with variability are considered more important and hence given priority in the
reengineering process, i.e. they will be migrated first, ahead of other lower priority features
(Romero et al. 2013; Losavio et al. 2013).

4.8.4 Hybrid Approaches

Hybrid approaches can improve the results when compared with the application of only one
type of strategy. For example, new approaches could consider the combination of different
strategies. Dynamic analysis can be combined with static analysis such as recommended
in the papers (Eisenbarth et al. 2001; Frenzel et al. 2007) or static analysis combined with
information retrieval (Romero et al. 2013). Some future directions are related to the use
of incremental and interactive approaches including the expert engineers in the automatic
process. It will be useful in situations with unsound or incomplete input to provide the
required information to enable the automated process (Haslinger et al. 2011; Davril et al.
2013).

Another research direction is the combination of techniques to better explore the artefacts
used in the reengineering. For example the combination of Formal Concept Analysis and
Latent Semantic Indexing to further explore the requirements artefacts (Eyal-Salman et al.
2012; AL-Msie’deen et al. 2013). Furthermore, some authors expose the opportunity of
using additional techniques (Rubin and Chechik 2012b; Anwikar et al. 2012; Acher et al.
2012). Recently, studies applying search-based algorithms have appeared. The Search-based
strategy has been little explored in the area of SPLs (Lopez-Herrejon et al. 2015) and has the
potential to exploit hybrid approaches (Harman et al. 2014). Based on this, Lopez-Herrejon
et al. point out the use of search-based algorithms to address many variability management
challenges (Lopez-Herrejon et al. 2015).

4.8.5 New Measures and Metrics

Measures and metrics are fundamental to support the reengineering process. However, we
observe that more specific factors should be considered during the reengineering tasks.
Some research opportunities are presented next.

Some authors indicated as way to improve the results of the reengineering the use of new
similarity measures. Rubin et al. point out the lack of alternative methods for calculating
graph similarity to deal with model variants (Rubin and Chechik 2012a). Nöbauer et al.
mentioned the need of sophisticated similarity calculation method to identify commonalities
in existing products (Nöbauer et al. 2014b). Eyal-Salman et al. identified the opportunity of
new research on the combination of lexical similarity with structural similarity to achieve
better results on the detection phase (Eyal-Samal et al. 2013a, b, c); Niu et al. mention the
necessity of novel ways to compute requirements similarity (Niu et al. 2014).

Author's personal copy

3002 Empir Software Eng (2017) 22:2972–3016

Studies with sophisticated metrics to validate the costs and benefits of the reengineering
process should be carried out (Rubin et al. 2012). Research in this direction, mainly in real
scenarios, can help to evaluate the effort saved (Bécan et al. 2013). Besides, it is important
a more rigorous measurement and reporting for quantifying business benefits (Rubin 2014).
For example, to assess how is the evolution of the system after the reengineering (Bécan
2013). In general, the reengineering will provide benefits for the existing systems, but how
about the cost of adding new systems or new specific features?

Other possibilities for further investigation are regarding the existing relationships among
artefacts, mainly source code (e.g., method call, class inheritance, etc.) (Klatt et al. 2014;
Eyal Salman et al. 2013). This requires studies on semantic similarity measure among
elements (Nie et al. 2012). The combination of measures and metrics can minimize the influ-
ence of the input to reach good results in the reengineering of systems in different domains
(Falessi et al. 2010).

4.8.6 More Robust Empirical Evaluation

The great majority of the proposed approaches need better evaluation. In some cases a better
evaluation is required because only academic and illustrative systems were used to introduce
the approaches, however, they acknowledge the importance of using real case studies (Hei-
denreich et al. 2008; Van Der Storm 2007; Anwikar et al. 2012; Rubin and Chechik 2012b;
Araújo et al. 2013; Bécan 2013). It is also common the authors evaluate their approaches
with product variants of existing SPLs, an example is the use of ArgoUML-SPL. Using
existing SPLs in the evaluation makes possible to compare the reengineered SPL with the
original one. But they mention, as future work, empirical evaluation considering industrial
partners (Knodel et al. 2005; Noor et al. 2008; Knodel et al. 2005; Klatt et al. 2013; Abbasi
et al. 2014). Evaluation of the approaches in different domains and with complex case stud-
ies are mentioned as important future work (Ramos and Penteado 2008; Ziadi et al. 2012;
Acher et al. 2013; Shao et al. 2013; Nöbauer et al. 2014a). Other authors just mention the
need of further evaluation (Knodel et al. 2005; Alves et al. 2007; Maia et al. 2008; Breivold
et al. 2008; Trifu 2010; Ali et al. 2011; Acher et al. 2011; Seidl et al. 2012; Segura et al.
2012; Linsbauer et al. 2013; Santos et al. 2013; Passos et al. 2013; Davril et al. 2013; Lins-
bauer et al. 2014; Chen et al. 2005; Mefteh et al. 2014; Acher et al. 2012; Hariri et al. 2013;
Guzman and Maalej 2014; Eriksson et al. 2005; Mohamed et al. 2014; Kumaki et al. 2012;
2012). Besides further studies related with the better evaluation, another common issue is
the lack of a framework for comparing reengineering approaches (Yang et al. 2009; Xue
et al. 2010; Rubin and Chechik 2010; Segura et al. 2012; Nunes et al. 2012; AL-Msie’deen
et al. 2012; Lohar et al. 2013).

4.8.7 Other Issues and Challenges

In the following we describe some trends and opportunities mentioned in few papers that
can be a starting point to new studies.

New refactoring techniques should be proposed. In the results we observed a lack of
studies on the transformation phase. In two papers Rubin et al. point out the need of
sophisticated techniques for refactoring of models variants to generate an SPL (Rubin and
Chechik 2010; 2012a). Maâzoun et al. cited as future work the use of semantics in the
refactoring of SPLs (Maâzoun et al. 2014b). Moreover, together with these techniques, it
is important to devise testing tasks to check the impact on the quality of SPL refactorings
(Kolb et al. 2006).

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 3003

Some authors point out the importance of creating general guidelines covering the recent
advances of the field. Otsuka et al. (2011), Nunes et al. (2012), and Ziadi et al. (2012) argue
about the creation of guidelines to formalize the tasks of their proposed approaches. In a
similar way, other authors believe that the guidelines can lead to more automated support
(Stoermer and O’Brien 2001; Ramos and Penteado 2008; Martinez et al. 2015). Kang et al.
point out the need for guidelines for evaluating product line assets (Kang et al. 2005).

She cites the importance of future studies to cope with unsound or incomplete input
(She 2013). Both Rubin et al. (2013) and Bayer et al. (2004) presented operators to
support the reengineering of existing systems. An open research area is extending and
refining this catalogue of operators as well as dealing with incomplete or uncertain input
information.

Nunes et al. (2013) and Trifu (2010) purpose new research to better explore techniques
of seeding for mining of features in the source code. Polzer et al. point out the importance of
proposing approaches of general purpose to support the reengineering of system variants in
different domains (Polzer et al. 2012). Heidenreich et al. argue about new studies to create
more elaborated visualization tools to support feature mapping (Heidenreich et al. 2008).
Visualization is also pointed as a trend by Hariri et al. (2013) and by Guzman and Maalej
(2014). A challenge exposed by Schulze et al. is reuse of regulations of functional safety
besides the implementation artefacts (Schulze et al. 2013). Finally, the reengineering seems
to be a good context to deep analysis of the cost-benefit of the systematic reuse, i.e. it is an
opportunity for the application of Value-Based Software Engineering (Zhang et al. 2011).

5 Threats to Validity

The validity threats we faced are related to the systematic mapping process. A first threat
is concerned with the research questions. To minimize this kind of threat, we had several
discussions about the questions and goals of our search. We argue the research questions
reflect the goals of our work.

A second threat is about the terms used in the search queries. To address this threat we
composed three groups of terms that best represent our goals. Most of the terms used were
extracted from related works (Laguna and Crespo 2013; Lopez-Herrejon et al. 2015).

A third threat is concerned with the databases used. We perform the search for primary
sources on eight databases. The databases selected are well known and include the most rel-
evant ones, also we considered more databases than the related systematic mapping (Laguna
and Crespo 2013).

A fourth threat to validity is our classification scheme. We created a classification scheme
to enable answering our research questions. The steps to compose the presented classifica-
tion scheme were: (i) first we determined six dimensions related to the research questions,
(ii) then we collected and documented all relevant information from the primary sources
taking into account the dimensions and research questions, (iii) then we analysed what
of the identified information are similar or common in different studies, and finally (iv)
one category for each similar/common item was created in the correlated dimension. Other
researchers may possibly obtain another scheme.

A fifth threat to validity concerns the data extraction using the classification scheme.
During the creation of the classification scheme, the data extracted from the primary sources
was documented in a text document. This document was used to extract the information and
when necessary the studies were reread to clarify some doubt about the right category for
the paper. Also, we had many meetings and discussions about the extraction of the data.

Author's personal copy

3004 Empir Software Eng (2017) 22:2972–3016

The last threat is related to a possible incorrect identification of research gaps and limi-
tations of existing studies. To reduce this threat we collected each mentioned limitation and
described future work for each primary source. After collecting this information from all
studies, we analyzed the data in order to identify common gaps and limitations.

6 Related Work

The related study most similar to ours is the work of Laguna and Crespo (2013). They per-
formed a systematic mapping study on SPL evolution, but they also consider the refactoring
of existing SPLs, which is not our focus. In contrast from Laguna and Crespo’s mapping
study, our study has the following differences:

– Addition of a broader set of search terms : to conduct the search we considered a
broader set of terms related to reengineering and SPLs, furthermore we include a new
set of terms related to feature location (see Section 3.2);

– Inclusion of a different set of research questions: our systematic mapping has seven
research questions to shed more light in the reengineering process. Laguna and Crespo
presented four research questions covering coarse-grained aspects of the reengineering
process and SPL refactoring, on the other hand we have focus on fine-grained aspects
such as phases and techniques/methods. Besides of mapping the works regarding the
approach, techniques and challenges of the reengineering process, as done by Laguna
and Crespo, we also mapped the common phases, the artefacts considered as input and
produced as output during the obtaining of the SPLs;

– Different analysis of case studies used for evaluation: we collect in the primary sources
and presented the case studies used to validate the proposed approaches;

– Publication venues and evolution: our work also presents analysis about the common
publication venues preferred by researchers and evolution of the publications along the
years;

– Extended classification scheme: we adopt a different classification scheme using a
more fine-grained categorization regarding the reengineering phases, techniques and
methods, and the type of input and output artefacts;

– Updated primary sources: Laguna and Crespo’s mapping study considered papers pub-
lished until 2011, on the other hand our mapping includes papers published until
2015.

Fenske et al. construct a detailed taxonomy of SPL reengineering, giving different names
to distinct activities and showing their relationships (Fenske et al. 2013). In summary, they
considered migration, refactoring and mapping in the reengineering process. In contrast,
in this paper we considered the reengineering phases and strategies. Furthermore, their
effort was only concentrated on the classification of a corpus of available work, present-
ing what studies exist in SPLs reengineering without providing further details or analysis
of them. The scope of their study is smaller than ours. They considered only three dimen-
sions regarding the purpose of the reengineering, the technique used, and the number of
software systems used as input for the process. They included works that also perform the
reengineering from a single system to an SPL, which is not our focus.

Lozano presents a survey of approaches to detect variability concepts in source code
(Lozano 2011). Her focus is specifically the detection of variabilities. One of the conclusions
pointed by Lozano is that some techniques, e.g. to address architectural degradation, are
limited to address SPLs from single products. This conclusion corroborates our motivation

Author's personal copy

Empir Software Eng (2017) 22:2972–3016 3005

in performing this mapping study to map works starting from a set of products instead of a
single product. Tiarks et al. present a state-of-art of clone detection with focus on migration
(Tiarks et al. 2011). They performed an assessment of clone detection in source code. In
contrast with those studies, we focus our study on the entire reengineering process, not only
presenting the scenario of detection phase.

Two systematic literature reviews have as focus the requirements engineering for soft-
ware product lines. Alves et al. have used SPLE adoption strategies to classify the papers
(Alves et al. 2010). From the results we observed that 39 % of the papers employed an
extractive approach, on the other hand 57 % of the papers adopt a proactive approach. The
authors suggest to researchers and practitioners focus more on extractive strategy, as well
as reactive. The work of Bakar et al. presents approaches that only extract features from
natural language requirements for reuse in SPLE (Bakar et al. 2015). This study is related
to ours, however, it reports only approaches that use requirements as input. Differently, our
study also considers the other artefacts used in the reengineering.

Koziolek et al. reported an exploratory case study on experiences and lessons learned
from domain analysis in four large-scale cases on more than 20 industrial software systems
(Koziolek et al. 2015). After the domain analysis only one case study resulted in an SPL. For
the other cases stakeholders decided to use smaller integration scenarios, mainly due to high
migration costs in the industrial domain and because of the business flexibility. According
to the authors, business flexibility is often an argument against an SPL approach once some
stakeholders were afraid of tightly collaborating with other business units. This study shows
that the reengineering is not the best choice in such conditions. However, the authors point
that more studies are necessary to further support their findings.

Harman et al. present a survey with directions for future work on Search-Based Software
Engineering (SBSE) to SPLs (Harman et al. 2014). Regarding the reengineering process,
the authors present some studies on the reverse engineer of feature models from a set of
instances applying SBSE techniques. Another claim made by the authors is that the recent
advances in genetic improvement might be exploited by SPL researchers and practition-
ers. We also have presented an overview and roadmap on the use of genetic improvement
to SPLs (Lopez-Herrejon et al. 2015). Some connections are drawn between recent and
ongoing research on reverse engineering SPLs and their evolution with the GISMOE
approach.

Galster et al. performed a literature review about variability in software systems (Gal-
ster et al. 2014). As result the authors proposed an empirically grounded classification of
the dimensions of variability. They also attest lack of evidence for the validity of existing
approaches. Chen and Babar present a systematic review on the field of variability manage-
ment (Chen and Babar 2011). The authors pointed out that there is a lack of robust evaluation
for the approaches. Nevertheless, they also show that most of the studies report positive
effects of the proposed variability management approaches. About variability management,
Metzger and Pohl presented achievements and challenges of the field (Metzger and Pohl
2014). The authors identified some research challenges that existed for quite some time
are still opened. For instance, product line quality assurance techniques, scoping, domain
design, application requirements engineering, as well as application design and realiza-
tion. Despite of the three works have done an extensive survey of variability and variability
management literature, none of them discussed about reengineering of existing system.

The study of Heradio et al. reported a bibliometric analysis of research on software
product lines (Heradio et al. 2016). The goal of their paper is to cover the entire field
of SPLs. They identify the most influential publications, the most researched topics, and
how the interest in SPL topics has evolved along the time. They conclude that software

Author's personal copy

3006 Empir Software Eng (2017) 22:2972–3016

architecture was the initial motor of research in SPLs, and that feature modeling has been
the most important topic for the last fifteen years. Differently of this bibliometric analysis,
we present here a systematic mapping with focus in the sub-field of reengineering.

7 Concluding Remarks

In this paper we describe the results of a systematic mapping study on the reengineering
of existing systems to an SPL. We observed that studies in this field are presented in a
wide range of venues such as conferences, workshops, journals, technical reports, PhD and
master theses, and book chapters. The increase in the number of publications until 2013
points out a great interest in this topic. Despite of a decrease in the number of publica-
tions in 2014-2015, the topic of reenginering still has attention of the research community.
Different strategies based on existing methods present in Software Engineering are used to
support the reengineering process. Static analysis, Expert-driven, and Information Retrieval
are the most common strategies applied. Dynamic analysis has few works along the years
and the Search-based strategy has appeared recently. Artefacts of almost all software engi-
neering process are considered as input and output. Source code and Requirements are the
most common inputs. Feature discovery and Source code refactored are the most common
outputs. To evaluate the proposed approaches, several systems are used. In the category of
industrial systems we collected 50 different systems. ArgoUML and Linux Kernel are the
most common. In the category of academic systems, we collected 32 systems used in eval-
uation. MobileMedia is the most common. Regarding tools supporting the reengineering
process, we identified 15 tools in the primary sources.

During the classification and reading of the studies, we could observe the existence
of research opportunities and trends. So, eight major areas for future research are pre-
sented, namely: automation and tool support, exploiting multiple sources of information for
reengineering, feature management, hybrid approaches, refactoring techniques, need of use
guidelines, new measures and metrics, and more robust empirical evaluation.

We hope that this mapping not only motivate new research on this topic, but also encour-
ages software companies to consider the implementation of the systematic reuse of their
products. C&O is a common practice in industry, so companies have available the resources
needed for the reengineering. From the findings presented in this mapping study companies
can be aware of the reengineering process to obtain an SPL, the available tools, artifacts
commonly used and created, as well as, approaches proposed to perform the reengineering.
As a result of the systematic reuse, companies are able to maintain existing products and
evolve their portfolio of products by reusing existing artifacts in an easier way.

Acknowledgments This work was supported by the Brazilian Agencies CAPES: 007126/2014-00 and
CNPq: 453678/2014-9 and 305358/2012-0, and Austrian Science Fund (FWF): P 25289-N15.

References

Alves V, Niu N, Alves C, Valença G. (2010) Requirements engineering for software product lines: A
systematic literature review. Inf Softw Technol 52(8):806–820. doi:10.1016/j.infsof.2010.03.014

Assunção WKG, Vergilio SR (2014) Feature location for software product line migration: A mapping
study 18th Software Product Line Conference - 2nd International Workshop on REverse Variability
Engineering (REVE), pp 1–8. doi:10.1145/2647908.2655967

Author's personal copy

http://dx.doi.org/10.1016/j.infsof.2010.03.014
http://dx.doi.org/10.1145/2647908.2655967

Empir Software Eng (2017) 22:2972–3016 3007

Bachmann F, Clements P (2005) Variability in software product lines. Tech. Rep. CMU/SEI-2005-TR-012,
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

Bakar NH, Kasirun ZM, Salleh N (2015) Feature extraction approaches from natural language require-
ments for reuse in software product lines: A systematic literature review. J Syst Softw 106:132–149.
doi:10.1016/j.jss.2015.05.006

Chen L, Babar MA (2010) 14th International Conference Software Product Lines: Going Beyond
(SPLC 2010), chap. Variability Management in Software Product Lines: An Investigation
of Contemporary Industrial Challenges. Springer Berlin Heidelberg, Berlin, pp 166–180.
doi:10.1007/978-3-642-15579-6 12

Chen L, Babar MA (2011) A systematic review of evaluation of variability management
approaches in software product lines. Inf Softw Technol 53(4):344–362. doi:10.1016/j.infsof.2010.
12.006

Chikofsky E, Cross J.HI (1990) Reverse engineering and design recovery: a taxonomy. IEEE Softw 7(1):13–
17. doi:10.1109/52.43044

Clements P, Northrop L (2001) Software Product Lines: Practices and Patterns. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA

Cornelissen B, Zaidman A, van Deursen A, Moonen L, Koschke R (2009) A systematic survey
of program comprehension through dynamic analysis. IEEE Trans Softw Eng 35(5):684–702.
doi:10.1109/TSE.2009.28

Demeyer S, Ducasse S, Nierstrasz O (2009) Object-oriented reengineering patterns. Square Bracket
associates, Switzerland. Version of 2009-09-28

Dit B, Revelle M, Gethers M, Poshyvanyk D (2013) Feature location in source code: a taxonomy and survey.
Journal of Software: Evolution and Process 25(1):53–95. doi:10.1002/smr.567

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013) An exploratory study of
cloning in industrial software product lines 17th European Conference on Software Maintenance and
Reengineering (CSMR), pp 25–34. doi:10.1109/CSMR.2013.13

Faust D, Verhoef C (2003) Software product line migration and deployment. Software: Practice and
Experience 33(10):933–955

Fenske W, Thüm T, Saake G (2013) A taxonomy of software product line reengineering 8th International
Workshop on Variability Modelling of Software-Intensive Systems, VaMoS 2014, pp 1–8. ACM, New
York, NY, USA. doi:10.1145/2556624.2556643

Galster M, Weyns D, Tofan D, Michalik B, Avgeriou P (2014) Variability in software systems - systematic
literature review. IEEE Trans Softw Eng 40(3):282–306. doi:10.1109/TSE.2013.56

Harman M, Jia Y, Krinke J, Langdon WB, Petke J, Zhang Y (2014) Search based software engineer-
ing for software product line engineering: A survey and directions for future work 18th International
Software Product Line Conference - Volume 1, SPLC 2014, pp 5–18. ACM, New York, NY, USA.
doi:10.1145/2648511.2648513

Harman M, Mansouri SA, Zhang Y (2009) Search based software engineering: A comprehensive analysis
and review of trends techniques and applications. Tech. Rep. Technical Report TR-09-03, Department
of Computer Science, King’s College London

Heradio R, Perez-Morago H, Fernandez-Amoros D, Cabrerizo FJ, Herrera-Viedma E (2016) A bib-
liometric analysis of 20 years of research on software product lines. Inf Softw Technol 72:1–15.
doi:10.1016/j.infsof.2015.11.004

Kang K, Cohen S, Hess J, Novak W, Peterson A (1990) Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Tech. Rep. CMU/SEI-90-TR-21, SEI, CMU

Koziolek H, Goldschmidt T, Gooijer T, Domis D, Sehestedt S, Gamer T, Aleksy M (2015) Assessing
software product line potential: an exploratory industrial case study. doi:10.1007/s10664-014-9358-0

Krueger CW (1992) Software reuse. ACM Comput Surv (CSUR) 24(2):131–183. doi:10.1145/130844.
130856

Krueger CW (2002) Easing the transition to software mass customization Software Product-Family Engi-
neering, pp 282–293. Springer

Laguna MA, Crespo Y (2013) A systematic mapping study on software product line evolution: From
legacy system reengineering to product line refactoring. Sci Comput Program 78(8):1010–1034.
doi:10.1016/j.scico.2012.05.003

Linden FJVD, Schmid K, Rommes E (2007) Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Springer-Verlag New York, Inc., Secaucus,
NJ, USA

Lopez-Herrejon R, Linsbauer L, Assunção W. K, Fischer S, Vergilio SR, Egyed A (2015) Genetic improve-
ment for software product lines: An overview and a roadmap 2015 Annual Conference on Genetic and

Author's personal copy

http://dx.doi.org/10.1016/j.jss.2015.05.006
http://dx.doi.org/10.1007/978-3-642-15579-6_12
http://dx.doi.org/10.1016/j.infsof.2010.12.006
http://dx.doi.org/10.1016/j.infsof.2010.12.006
http://dx.doi.org/10.1109/52.43044
http://dx.doi.org/10.1109/TSE.2009.28
http://dx.doi.org/10.1002/smr.567
http://dx.doi.org/10.1109/CSMR.2013.13
http://dx.doi.org/10.1145/2556624.2556643
http://dx.doi.org/10.1109/TSE.2013.56
http://dx.doi.org/10.1145/2648511.2648513
http://dx.doi.org/10.1016/j.infsof.2015.11.004
http://dx.doi.org/10.1007/s10664-014-9358-0
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1145/130844.130856
http://dx.doi.org/10.1016/j.scico.2012.05.003

3008 Empir Software Eng (2017) 22:2972–3016

Evolutionary Computation, Genetic Improvement 2015 Workshop, GECCO, pp 823–830. ACM, New
York, NY, USA. doi:10.1145/2739482.2768422

Lopez-Herrejon R, Linsbauer L, Egyed A (2015) A systematic mapping study of search-based software
engineering for software product lines. Inf Softw Technol 61(0):33–51. doi:10.1016/j.infsof.2015.01.008

Lozano A (2011) An overview of techniques for detecting software variability concepts in source code Work-
shops - Advances in Conceptual Modeling: Recent Developments and New Directions, LNCS, vol. 6999,
pp 141–150. Springer Berlin Heidelberg. doi:10.1007/978-3-642-24574-9 19

Manning CD, Raghavan P, Schütze H., et al. (2008) Introduction to information retrieval, vol 1, Cambridge
University Press

Metzger A, Pohl K (2014) Software product line engineering and variability management: Achievements
and challenges Future of Software Engineering, FOSE 2014, pp 70–84. ACM, New York, NY, USA.
doi:10.1145/2593882.2593888

Petersen K, Feldt R, Mujtaba S, Mattsson M (2008) Systematic mapping studies in software engineering.
British Computer Society, Swinton, UK, pp 68–77

Petersen K, Vakkalanka S, Kuzniarz L (2015) Guidelines for conducting systematic mapping studies in
software engineering: An update. Inf Softw Technol 64:1–18. doi:10.1016/j.infsof.2015.03.007

Pohl K, Böckle G. (2005) Linden, F.J.v.d.: Software Product Line Engineering: Foundations, Principles and
Techniques. Springer-Verlag New York, Inc., Secaucus, NJ, USA

Riva C, Del Rosso C (2003) Experiences with software product family evolution Sixth International Work-
shop on Principles of Software Evolution (IWPSE), pp 161–169. doi:10.1109/IWPSE.2003.1231223

Rubin J, Chechik M (2013) A survey of feature location techniques. In: Reinhartz-Berger I., Sturm
A., Clark T., Cohen S., Bettin J. (eds) Domain Engineering, pp 29–58. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-36654-3 2

Svahnberg M, van Gurp J, Bosch J (2005) A taxonomy of variability realization techniques: Research articles.
Software - Practice and Experience 35(8):705–754. doi:10.1002/spe.v35:8

Tiarks R, Koschke R, Falke R (2011) An extended assessment of type-3 clones as detected by state-of-the-art
tools. Softw Qual J 19(2):295–331. doi:10.1007/s11219-010-9115-6

Wagner C (2014) Model-Driven Software Migration: A Methodology Reengineering, Recovery and Mod-
ernization of Legacy Systems, Springer Vieweg

Wichmann BA, Canning AA, Clutterbuck DL, Winsborrow LA, Ward NJ, Marsh DWR (1995) Industrial
perspective on static analysis. Softw Eng J 10(2):69–75

Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software
engineering 18th International Conference on Evaluation and Assessment in Software Engineering,
EASE’14, pp 38:1–38:10. ACM, New York, NY, USA. doi:10.1145/2601248.2601268

Primary Sources

Abbasi E, Acher M, Heymans P, Cleve A (2014) Reverse engineering web configurators IEEE Confer-
ence on software maintenance, reengineering and reverse engineering (CSMR-WCRE), pp 264–273.
doi:10.1109/CSMR-WCRE.2014.6747178

Acher M, Cleve A, Collet P, Merle P, Duchien L, Lahire P (2011) Reverse engineering architectural feature
models. In: Crnkovic I, Gruhn V, Book M (eds) Software Architecture, Lecture Notes in Computer
Science, vol. 6903, pp 220–235. Springer Berlin Heidelberg. doi:10.1007/978-3-642-23798-0 25

Acher M, Cleve A, Collet P, Merle P, Duchien L, Lahire P (2013) Extraction and evo-
lution of architectural variability models in plugin-based systems. doi:10.1007/s10270-013-
0364-2

Acher M, Cleve A, Perrouin G, Heymans P, Vanbeneden C, Collet P, Lahire P (2012) On extracting feature
models from product descriptions. In: 6th international workshop on variability modeling of software-
intensive systems, vamos. ACM, New York, pp 45–54. doi:10.1145/2110147.2110153

AL-Msie’deen R, Seriai A, Huchard M, Urtado C, Vauttier S, Salman H (2013) Feature location in a collec-
tion of software product variants using formal concept analysis. In: Favaro J, Morisio M (eds) Safe and
Secure Software Reuse, Lecture Notes in Computer Science, vol. 7925, pp 302–307. Springer Berlin
Heidelberg. doi:10.1007/978-3-642-38977-1 22

Al-msie’deen R, Seriai A, Huchard M, Urtado C, Vauttier S (2013) Mining features from the
object-oriented source code of software variants by combining lexical and structural similarity.
In: IEEE 14th international conference on information reuse and integration (IRI), pp 586–593.
doi:10.1109/IRI.2013.6642522

Author's personal copy

http://dx.doi.org/10.1145/2739482.2768422
http://dx.doi.org/10.1016/j.infsof.2015.01.008
http://dx.doi.org/10.1007/978-3-642-24574-9_19
http://dx.doi.org/10.1145/2593882.2593888
http://dx.doi.org/10.1016/j.infsof.2015.03.007
http://dx.doi.org/10.1109/IWPSE.2003.1231223
http://dx.doi.org/10.1007/978-3-642-36654-3_2
http://dx.doi.org/10.1002/spe.v35:8
http://dx.doi.org/10.1007/s11219-010-9115-6
http://dx.doi.org/10.1145/2601248.2601268
http://dx.doi.org/10.1109/CSMR-WCRE.2014.6747178
http://dx.doi.org/10.1007/978-3-642-23798-0_25
http://dx.doi.org/10.1007/s10270-013-0364-2
http://dx.doi.org/10.1007/s10270-013-0364-2
http://dx.doi.org/10.1145/2110147.2110153
http://dx.doi.org/10.1007/978-3-642-38977-1_22
http://dx.doi.org/10.1109/IRI.2013.6642522

Empir Software Eng (2017) 22:2972–3016 3009

AL-Msie’deen R, Seriai A, Huchard M, Urtado C, Vauttier S, Salman H (2012) An approach
to recover feature models from object-oriented source code. Journé,e Lignes de Produits
pp 15–26

Ali N, Wu W, Antoniol G, Di Penta M, Guéhéneuc Y, Hayes J (2011) Moms: Multi-objective miniaturization
of software. In: 27th IEEE international conference on software maintenance (ICSM), pp 153–162

Almeida E, Mascena J, Cavalcanti A, Alvaro A, Garcia V, Lemos Meira S, Lucrédio D (2006) The
domain analysis concept revisited: A practical approach. In: Morisio M (ed) Reuse of Off-the-Shelf
Components, Lecture Notes in Computer Science, vol. 4039, pp. 43–57. Springer Berlin Heidelberg.
doi:10.1007/11763864 4

Alves V, Matos Pedro J, Cole L, Vasconcelos A, Borba P, Ramalho G (2007) Extracting and evolving code
in product lines with aspect-oriented programming. In: Rashid A, Aksit M (eds) Transactions on Aspect-
Oriented Software Development IV, Lecture Notes in Computer Science, vol. 4640, pp 117–142 Springer
Berlin Heidelberg. doi:10.1007/978-3-540-77042-8 5

Alves V, Schwanninger C, Barbosa L, Rashid A, Sawyer P, Rayson P, Pohl C, Rummler A (2008) An
exploratory study of information retrieval techniques in domain analysis. In: 12th international software
product line conference, SPLC, pp 67–76. doi:10.1109/SPLC.2008.18

Anwikar V, Naik R, Contractor A, Makkapati H (2012) Domain-driven technique for functionality
identification in source code. SIGSOFT Softw Eng Notes 37(3):1–8. doi:10.1145/180921.2180923

Araújo JA, Goulão M, Moreira A, Simão I, Amaral V, Baniassad E (2013) Advanced modularity for building
SPL feature models: a model-driven approach. In: 28th symposium on applied computing, SAC. ACM,
New York, 1246–1253. doi:10.1145/2480362.2480596

Bagheri E, Ensan F, Gasevic D (2012) Decision support for the software product line domain engineering
lifecycle. Int Conf Autom Softw Eng 19(3):335–377. doi:10.1007/s10515-011-0099-7

Bayer J, Forster T, Ganesan D, Girard JF, John I, Knodel J, Kolb R, Muthig D (2004) Definition of reference
architectures based on existing systems. Tech. Rep. Report No. 034.04/E, Fraunhofer IESE-report No
034.04/E

Bécan G. (2013) Reverse engineering feature models in the real. Tech. Rep. dumas-00855005 Centre National
de la Recherche Scientifique

Bécan G, Acher M, Baudry B, Ben Nasr S (2013) Breathing ontological knowledge into feature model
management. Tech. Rep. RT-0441, INRIA - Institut National des Sciences Appliqué,es - Université de
Rennes 1

Boutkova E, Houdek F (2011) Semi-automatic identification of features in requirement specifi-
cations. In: 19th IEEE international requirements engineering conference (RE), pp 313–318.
doi:10.1109/RE.2011.6051627

Breivold H, Larsson S, Land R (2008) Migrating Industrial tab9 towards Software Product Lines: Experi-
ences and Observations through Case Studies. In: 34th euromicro conference on software engineering
and advanced applications (SEAA), pp 232–239. doi:10.1109/SEAA.2008.13

Chen K, Zhang W, Zhao H, Mei H (2005) An approach to constructing feature models based on require-
ments clustering. In: 13th IEEE international requirements engineering conference (RE), pp 31–40.
doi:10.1109/RE.2005.9

Damaṡeviċius R, Paṡkeviċius P, Karċiauskas E, Marcinkeviċius R (2012) Automatic extraction of
features and generation of feature models from java programs. Inform Technol Control 41(4):
376–384

Davril JM, Delfosse E, Hariri N, Acher M, Cleland-Huang J, Heymans P (2013) Feature model extraction
from large collections of informal product descriptions. In: 9th joint meeting on foundations of software
engineering, ESEC/FSE. ACM, New York, pp 290–300. doi:10.1145/2491411.2491455

Duszynski S, Knodel J, Becker M (2011) Analyzing the source code of multiple software variants
for reuse potential. In: 18th working conference on reverse engineering (WCRE), pp 303–307.
doi:10.1109/WCRE.2011.44

Eisenbarth T, Koschke R, Simon D (2001) Derivation of feature component maps by means of concept
analysis. In: European conference on software maintenance and reengineering (CSMR), pp 176–179.
doi:10.1109/.2001.914982

Eriksson M, Morast H, Börstler J, Borg K (2005) The pluss toolkit?: Extending telelogic doors and
ibm-rational rose to support product line use case modeling. In: 20th IEEE/ACM international confer-
ence on automated software engineering, ASE. ACM, New York, pp 300–304. doi:10.1145/1101908.
1101955

Eyal Salman H, Djamel Seriai A, Dony C, Al-Msie’Deen R (2013) Identifying traceability links between
product variants and their features. In: 1st international workshop on reverse variability engineering
(REVE). Genova, Italie, pp 17–22

Author's personal copy

http://dx.doi.org/10.1007/11763864_4
http://dx.doi.org/10.1007/978-3-540-77042-8_5
http://dx.doi.org/10.1109/SPLC.2008.18
http://dx.doi.org/10.1145/180921.2180923
http://dx.doi.org/10.1145/2480362.2480596
http://dx.doi.org/10.1007/s10515-011-0099-7
http://dx.doi.org/10.1109/RE.2011.6051627
http://dx.doi.org/10.1109/SEAA.2008.13
http://dx.doi.org/10.1109/RE.2005.9
http://dx.doi.org/10.1145/2491411.2491455
http://dx.doi.org/10.1109/WCRE.2011.44
http://dx.doi.org/10.1109/.2001.914982
http://dx.doi.org/10.1145/1101908.1101955
http://dx.doi.org/10.1145/1101908.1101955

3010 Empir Software Eng (2017) 22:2972–3016

Eyal-Salman H, Seriai A, Dony C (2014) Feature location in a collection of product variants: Combin-
ing information retrieval and hierarchical clustering. In: 26th international conference on software
engineering and knowledge engineering (SEKE)

Eyal-Salman H, Seriai A, Dony C (2013a) Feature-to-code traceability in a collection of product variants
using formal concept analysis and information retrieval. In: 39th euromicro conference on software
engineering and advanced applications (SEAA), pp 1–8

Eyal-Salman H, Seriai A, Dony C (2013b) Feature-to-code traceability in a collection of software variants:
Combining formal concept analysis and information retrieval. In: IEEE 14th international conference on
information reuse and integration (IRI), pp 209–216. doi:10.1109/IRI.2013.6642474

Eyal-Salman H, Seriai A, Dony C (2013c) Feature-to-code Traceability in Legacy Software Variants. In:
39th euromicro conference on software engineering and advanced applications (SEAA), pp 57–61.
doi:10.1109/SEAA.2013.65

Eyal-Salman H, Seriai A, Dony C, Al-msie’deen R (2012) Recovering traceability links between feature
models and source code of product variants. In: VARIability for you workshop: Variability modeling
made useful for everyone, VARY. ACM, New York, pp 21–25. doi:10.1145/2425415.2425420

Falessi D, Cantone G, Canfora G (2010) A comprehensive characterization of NLP techniques for iden-
tifying equivalent requirements. In: 2010 ACM-IEEE International symposium on empirical software
engineering and measurement, ESEM. ACM, New York, pp 1–10. doi:10.1145/1852786.1852810

Faust D, Verhoef C (2003) Software product line migration and deployment. Softw: Pract Experience
33(10):933–955

Ferrari A, Spagnolo GO, Dell’Orletta F (2013) Mining commonalities and variabilities from natural language
documents. In: 17th international software product line conference, SPLC. ACM, New York, pp 116–
120. doi:10.1145/2491627.2491634

Fischer S, Linsbauer L, Lopez-Herrejon R, Egyed A (2015) The ECCO tool: Extraction and composition
for clone-and-own. In: IEEE/ACM 37th IEEE international conference on software engineering (ICSE),
vol. 2, pp 665–668. doi:10.1109/ICSE.2015.218

Fischer S, Linsbauer L, Lopez-Herrejon R, Egyed A (2014) Enhancing clone-and-own with systematic reuse
for developing software variants. In: IEEE 30th international conference on software maintenance and
evolution, ICSME. IEEE Computer Society, Washington, DC, pp 391–400. doi:10.1109/ICSME.2014.61

Frenzel P, Koschke R, Breu A, Angstmann K (2007) Extending the reflexion method for consolidating
software variants into product lines. In: 14th working conference on reverse engineering (WCRE), pp
160–169. doi:10.1109/WCRE.2007.28

Gamez N, Fuentes L (2011) Software product line evolution with cardinality-based feature models. In:
Schmid K (ed) Top Productivity through Software Reuse, Lecture Notes in Computer Science, vol. 6727,
pp 102–118. Springer Berlin Heidelberg. doi:10.1007/978-3-642-21347-2 9

Gamez N, Fuentes L (2013) Architectural evolution of famiware using cardinality-based feature models. Inf
Softw Technol 55(3):563–580. doi:10.1016/j.infsof.2012.06.012. Special Issue on Software Reuse and
Product Lines

Gharsellaoui H, Maazoun J, Bouassida N, Ben Ahmed S, Ben-Abdallah H (2015) A real-time scheduling
of reconfigurable os tasks with a bottom-up spl design approach. In: 2015 International conference on
evaluation of novel approaches to software engineering (ENASE), pp 169176

Guzman E, Maalej W (2014) How do users like this feature? a fine grained sentiment analysis of
app reviews. In: 22nd IEEE international requirements engineering conference (RE), pp 153–162.
doi:10.1109/RE.2014.6912257

Hariri N, Castro-Herrera C, Mirakhorli M, Cleland-Huang J, Mobasher B (2013) Supporting domain anal-
ysis through mining and recommending features from online product listings. IEEE Trans Softw Eng
39(12):1736–1752. doi:10.1109/TSE.2013.39

Haslinger E, Lopez-Herrejon R, Egyed A (2011) Reverse engineering feature models from pro-
grams’ feature sets. In: 18th working conference on reverse engineering (WCRE), pp 308–312.
doi:10.1109/WCRE.2011.45

Heidenreich F, Kopcsek J, Wende C (2008) Featuremapper: Mapping features to models. Companion of the
30th international conference on software engineering, ICSE companion. ACM, New York, pp 943–944.
doi:10.1145/1370175.1370199

Kang K, Kim M, Lee J, Kim B (2005) Feature-oriented re-engineering of legacy systems into product line
assets - a case study. In: Obbink H, Pohl K (eds) Software Product Lines, Lecture Notes in Computer
Science, vol. 3714, pp 45–56. Springer Berlin Heidelberg. doi:10.1007/11554844 6

Kelly M, Alexander J, Adams B, Hassan A (2011) Recovering a balanced overview of topics in a soft-
ware domain. In: 11th IEEE international working conference on source code analysis and manipulation
(SCAM), pp 135–144. doi:10.1109/SCAM.2011.23x

Author's personal copy

http://dx.doi.org/10.1109/IRI.2013.6642474
http://dx.doi.org/10.1109/SEAA.2013.65
http://dx.doi.org/10.1145/2425415.2425420
http://dx.doi.org/10.1145/1852786.1852810
http://dx.doi.org/10.1145/2491627.2491634
http://dx.doi.org/10.1109/ICSE.2015.218
http://dx.doi.org/10.1109/ICSME.2014.61
http://dx.doi.org/10.1109/ICSME.2014.61
http://dx.doi.org/10.1109/WCRE.2007.28
http://dx.doi.org/10.1007/978-3-642-21347-2_9
http://dx.doi.org/10.1016/j.infsof.2012.06.012
http://dx.doi.org/10.1109/RE.2014.6912257
http://dx.doi.org/10.1109/TSE.2013.39
http://dx.doi.org/10.1109/WCRE.2011.45
http://dx.doi.org/10.1145/1370175.1370199
http://dx.doi.org/10.1007/11554844_6
http://dx.doi.org/10.1109/SCAM.2011.23x

Empir Software Eng (2017) 22:2972–3016 3011

Klatt B, Krogmann K, Seidl C (2014) Program dependency analysis for consolidating customized prod-
uct copies. In: 30th IEEE international conference on software maintenance and evolution (ICSME),
pp 496–500

Klatt B, Küster M, Krogmann K (2013) A graph-based analysis concept to derive a variation point design
from product copies. In: International workshop on reverse variability engineering (REVE), pp 1–8

Knodel J, Forster T, Girard JF (2005) Comparing design alternatives from field-tested systems to sup-
port product line architecture design. In: Ninth european conference on software maintenance and
reengineering (CSMR), pp 344–353. doi:10.1109/CSMR.2005.18

Knodel J, John I, Ganesan D, Pinzger M, Usero F, Arciniegas J, Riva C (2005) Asset recovery and their
incorporation into product lines. In: 12th working conference on reverse engineering (WCRE), pp 1–10.
doi:10.1109/WCRE.2005.8

Kolb R, Muthig D, Patzke T, Yamauchi K (2006) Refactoring a legacy component for reuse in a software
product line: A case study. J Softw Maint Evol Res Pract 18(2):109–132. doi:10.1002/smr.v18:2

Koziolek H, Goldschmidt T, de Gooijer T, Domis D, Sehestedt S (2013) Experiences from identifying soft-
ware reuse opportunities by domain analysis. In: 17th international software product line conference,
SPLC. ACM, New York, pp 208–217. doi:10.1145/2491627.2491641

Kulesza U, Alves V, Garcia A, Neto A, Cirilo E, Lucena C, Borba P (2007) Mapping features to aspects:
A model-based generative approach. In: Moreira A, Grundy J (eds) Early Aspects: Current Challenges
and Future Directions, Lecture Notes in Computer Science, vol. 4765, pp 155–174. Springer Berlin
Heidelberg. doi:10.1007/978-3-540-76811-1 9

Kumaki K, Tsuchiya R, Washizaki H, Fukazawa Y (2012) Supporting commonality and variability analysis
of requirements and structural models. In: 16th international software product line conference - volume
2, SPLC. ACM, New York, pp 115–118. doi:10.1145/2364412.2364431

Lago P, Vliet H (2004) Observations from the recovery of a software product family. In: Nord R (ed) Software
Product Lines, Lecture Notes in Computer Science, vol. 3154, pp 214–227. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-28630-1 13

Li S, Chen F, Liang Z, Yang H (2005) Using feature-oriented analysis to recover legacy software design
for software evolution. In: International conference on software engineering and knowledge engineering
(SEKE), pp 336–341

Li Y, Yin J, Shi D, Li Y, Dong J (2007) Software product line oriented feature map. In: Shi
Y, Albada G, Dongarra J, Sloot P (eds) International Conference on Computational Science
(ICCS), Lecture Notes in Computer Science, vol. 4488, pp 1115–1122. Springer Berlin Heidelberg.
doi:10.1007/978-3-540-72586-2 156

Linsbauer L, Angerer F, Grünbacher P, Lettner D, Prähofer H, Lopez-Herrejon R, Egyed A (2014) Recov-
ering feature-to-code mappings in mixed-variability software systems. In: IEEE 30th international
conference on software maintenance and evolution, ICSME

Linsbauer L, Lopez-Herrejon ER, Egyed A (2013) Recovering traceability between features and code in
product variants. In: 17th international software product line conference, SPLC. ACM, New York, pp
131–140. doi:10.1145/2491627.2491630

Linsbauer L, Lopez-Herrejon R, Egyed A (2014) Feature model synthesis with genetic programming.
In: Le Goues C, Yoo S (eds) 6th Symposium on Search-Based Software Engineering (SSBSE),
Lecture Notes in Computer Science, vol. 8636, pp 153–167. Springer International Publishing.
doi:10.1007/978-3-319-09940-8 11

Lohar S, Amornborvornwong S, Zisman A, Cleland-Huang J (2013) Improving trace accuracy through data-
driven configuration and composition of tracing features. In: 9th joint meeting on foundations of software
engineering, ESEC/FSE. ACM, New York, pp 378–388. doi:10.1145/2491411.2491432

Lopez-Herrejon R, Linsbauer L, Galindo JA, Parejo J, Benavides D, Segura S, Egyed A (2015) An assess-
ment of search-based techniques for reverse engineering feature models. J Syst Softw 103:353–369.
doi:10.1016/j.jss.2014.10.037

Losavio F, Ordaz O, Levy N, Baiotto A (2013) Graph modelling of a refactoring process for prod-
uct line architecture design. In: 39th latin american computing conference (CLEI), pp 1–12.
doi:10.1109/CLEI.2013.6670632

Maazoun J, Bouassida N, Ben-Abdallah H (2014) A bottom up spl design method. In: 2nd international
conference on model-driven engineering and software development (MODELSWARD), pp 309–316

Maâzoun J, Bouassida N, Ben-Abdallah H (2014) Feature model recovery from product variants based on a
cloning technique. In: 26th international conference on software engineering and knowledge engineering
(SEKE)

Maia MDA, Sobreira V, Paixão KR, Amo S, Silva IR (2008) Using a sequence alignment algorithm to
identify specific and common code from execution traces. In: 4th international workshop on program
comprehension through dynamic analysis (PCODA), pp 6–10

Author's personal copy

http://dx.doi.org/10.1109/CSMR.2005.18
http://dx.doi.org/10.1109/WCRE.2005.8
http://dx.doi.org/10.1002/smr.v18:2
http://dx.doi.org/10.1145/2491627.2491641
http://dx.doi.org/10.1007/978-3-540-76811-1_9
http://dx.doi.org/10.1145/2364412.2364431
http://dx.doi.org/10.1007/978-3-540-28630-1_13
http://dx.doi.org/10.1007/978-3-540-72586-2_156
http://dx.doi.org/10.1145/2491627.2491630
http://dx.doi.org/10.1007/978-3-319-09940-8_11
http://dx.doi.org/10.1145/2491411.2491432
http://dx.doi.org/10.1016/j.jss.2014.10.037
http://dx.doi.org/10.1109/CLEI.2013.6670632

3012 Empir Software Eng (2017) 22:2972–3016

Martinez J, Ziadi T, Bissyandé TF, Klein J, Le Traon Y (2015) Bottom-up adoption of software product lines:
a generic and extensible approach. In: 19th international conference on software product line, SPLC
ACM, New York, pp 101–110. doi:10.1145/2791060.2791086

Martinez J, Ziadi T, Klein J, le Traon Y (2014) Identifying and visualising commonality and vari-
ability in model variants. In: Cabot J, Rubin J (eds) Modelling Foundations and Applications,
Lecture Notes in Computer Science, vol. 8569, pp 117–131. Springer International Publishing.
doi:10.1007/978-3-319-09195-2 8

Mefteh M, Bouassida N, Ben-Abdallah H (2014) Feature model extraction from documented UML use case
diagrams. Ada User J 35(2):107–116

Merschen D, Polzer A, Botterweck G, Kowalewski S (2011) Experiences of applying model-based
analysis to support the development of automotive software product lines. In: 5th international work-
shop on variability modelling of software-intensive systems, vamos. ACM, New York, pp 141–150.
doi:10.1145/1944892.1944910

Mohamed F, Abu-Matar M, Mizouni R, Al-Qutayri M, Al Mahmoud Z (2014) Saas dynamic evolution based
on model-driven software product lines. In: 6th international conference on cloud computing technology
and science (cloudcom), pp 292–299. doi:10.1109/CloudCom.2014.131

Mu Y, Wang Y, Guo J (2009) Extracting software functional requirements from free text docu-
ments. In: International conference on information and multimedia technology (ICIMT), pp 194–198.
doi:10.1109/ICIMT.2009.47

Nie K, Zhang L, Geng Z (2012) Product line variability modeling based on model difference and merge.
In: IEEE 36th annual computer software and applications conference workshops (COMPSACW),
pp 509–513. doi:10.1109/COMPSACW.2012.95

Niu N, Savolainen J, Niu Z, Jin M, Cheng JR (2014) A systems approach to product line requirements reuse.
IEEE Syst J 8(3):827–836. doi:10.1109/JSYST.2013.2260092

Nöbauer M, Seyff N, Groher I (2014) Inferring variability from customized standard software products. In:
18th international software product line booktitle - volume 1, SPLC. ACM, New York, pp 284–293.
doi:10.1145/2648511.2648544

Nöbauer M, Seyff N, Groher I (2014) Similarity analysis within product line scoping: An evaluation
of a semi-automatic approach. In: Jarke M, Mylopoulos J, Quix C, Rolland C, Manolopoulos Y,
Mouratidis H, Horkoff J(eds) Advanced Information Systems Engineering, Lecture Notes in Computer
Science, vol. 8484, pp 165–179. Springer International Publishing. doi:10.1007/978-3-319-07881-
6 12

Noor M, Grünbacher P, Hoyer C (2008) A collaborative method for reuse potential assessment in
reengineering-based product line adoption. In: Meyer B, Nawrocki J, Walter B (eds) Balancing Agility
and Formalism in Software Engineering, Lecture Notes in Computer Science, vol. 5082, pp 69–83.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-85279-7 6

Nunes C, Garcia A, Lucena C, Lee J (2012) History-sensitive heuristics for recovery of features in code of
evolving program families. In: 16th international software product line conference - volume 1, SPLC.
ACM, New York, pp 136–145. doi:10.1145/2362536.2362556

Nunes C, Garcia A, Lucena C, Lee J (2013) Heuristic expansion of feature mappings in evolving program
families. Software: Practice and Experience pp 1–35. doi:10.1002/spe.2200

de Oliveira AL, Ferrari FC, Braga RT, Penteado RA, de Camargo VV (2012) Restructuring frameworks
towards framework product lines. In: Latin american workshop on aspect-oriented software development
(LA-WASP), pp 1–2

Olszak A, Jørgensen BN (2012) Remodularizing java programs for improved locality of feature
implementations in source code. Sci Comput Program 77(3):131–151. doi:10.1016/j.scico.2010.10.007

Otsuka J, Kawarabata K, Iwasaki T, Uchiba M, Nakanishi T, Hisazumi K (2011) Small inexpensive core asset
construction for large gainful product line development: Developing a communication system firmware
product line. In: 15th international software product line conference, volume 2, SPLC. ACM, New York,
pp 1–5. doi:10.1145/2019136.2019159

Passos L, Czarnecki K, Apel S, Wȧsowski A, Kästner C, Guo J (2013) Feature-oriented software evolution.
In: 7th international workshop on variability modelling of software-intensive systems, vamos. ACM,
New York, pp 1–8. doi:10.1145/2430502.2430526

Peng X, Xing Z, Tan X, Yu Y, Zhao W (2013) Improving feature location using structural similarity and
iterative graph mapping. J Syst Softw 86(3):664–676. doi:10.1016/j.jss.2012.10.270

Polzer A, Merschen D, Botterweck G, Pleuss A, Thomas J, Hedenetz B, Kowalewski S (2012) Managing
complexity and variability of a model-based embedded software product line. Innov Syst Softw Eng
8(1):35–49. doi:10.1007/s11334-011-0174-z

Ramos MA, Penteado RA (2008) Embedded software revitalization through component mining and software
product line techniques. J Universal Comput Sci 14(8):1207–1227

Author's personal copy

http://dx.doi.org/10.1145/2791060.2791086
http://dx.doi.org/10.1007/978-3-319-09195-2_8
http://dx.doi.org/10.1145/1944892.1944910
http://dx.doi.org/10.1109/CloudCom.2014.131
http://dx.doi.org/10.1109/ICIMT.2009.47
http://dx.doi.org/10.1109/COMPSACW.2012.95
http://dx.doi.org/10.1109/JSYST.2013.2260092
http://dx.doi.org/10.1145/2648511.2648544
http://dx.doi.org/10.1007/978-3-319-07881-6_12
http://dx.doi.org/10.1007/978-3-319-07881-6_12
http://dx.doi.org/10.1007/978-3-540-85279-7_6
http://dx.doi.org/10.1145/2362536.2362556
http://dx.doi.org/10.1002/spe.2200
http://dx.doi.org/10.1016/j.scico.2010.10.007
http://dx.doi.org/10.1145/2019136.2019159
http://dx.doi.org/10.1145/2430502.2430526
http://dx.doi.org/10.1016/j.jss.2012.10.270
http://dx.doi.org/10.1007/s11334-011-0174-z

Empir Software Eng (2017) 22:2972–3016 3013

Romero D, Urli S, Quinton C, Blay-Fornarino M, Collet P, Duchien L, Mosser S (2013) SPLEMMA:
A generic framework for controlled-evolution of software product lines. In: 5th international work-
shop on model-driven approaches in software product line engineering; 4th workshop on scal-
able modeling techniques for software product lines, MAPLE/SCALE. New York, pp 59–66.
doi:10.1145/2499777.2500709

Rubin J (2014) Cloned product variants: From ad-hoc to well-managed software reuse. Ph.D. thesis,
University of Toronto Graduate Department of Computer Science

Rubin J, Chechik M (2010) From products to product lines using model matching and refactoring. In: 2nd
international workshop on model-driven approaches in software product line engineering (MAPLE),
collocated with the 14th international software product line conference, pp 1–8

Rubin J, Chechik M (2012) Combining related products into product lines. In: 15th International Confer-
ence on Fundamental Approaches to Software Engineering, FASE, pp 285–300. Springer-Verlag, Berlin,
Heidelberg. doi:10.1007/978-3-642-28872-2 20

Rubin J, Chechik M (2012) Locating distinguishing features using diff sets. In: 27th IEEE/ACM
international conference on automated software engineering, ASE. ACM, New York, pp 242–245.
doi:10.1145/2351676.2351712

Rubin J, Czarnecki K, Chechik M (2013) Managing cloned variants: a framework and experience.
In: 17th international software product line conference, SPLC. ACM, New York, pp 101–110.
doi:10.1145/2491627.2491644

Rubin J, Czarnecki K, Chechik M (2015) Cloned product variants: from ad-hoc to managed software product
lines. Int J Softw Tools Technol Trans 17(5):627–646. doi:10.1007/s10009-014-0347-9

Rubin J, Kirshin A, Botterweck G, Chechik M (2012) Managing forked product variants. In: 16th
international software product line conference - volume 1, SPLC. ACM, New York, pp 156–160
doi:10.1145/2362536.2362558

Ryssel U, Ploennigs J, Kabitzsch K (2011) Extraction of feature models from formal contexts. In:
15th international software product line conference - volume 2, SPLC. ACM, New York, pp 1–8.
doi:10.1145/2019136.2019141

Sampath P (2013) An elementary theory of product-line variations. Formal Aspects of Computing pp 1–33.
doi:10.1007/s00165-013-0276-5

Santos A, Gaia F, Figueiredo E, Neto PS, Araújo JA (2013) Test-based SPL extraction: An exploratory
study. In: 28th symposium on applied computing, SAC. ACM, New York, pp 1031–1036.
doi:10.1145/2480362.2480559

Schulze M, Mauersberger J, Beuche D (2013) Functional safety and variability: Can it be brought
together? In: 17th international software product line conference, SPLC. ACM, New York, pp 236–243.
doi:10.1145/2491627.2491654

Segura S, Parejo J, Hierons RM, Benavides D, Ruiz-Cortés A, De andalucı́a EDLJ (2012) ETHOM: An
evolutionary algorithm for optimized feature models generation. Tech. Rep. ISA-2012-TR-01, Applied
Software Engineering Research Group, Department of Computing Languages and tab9 University of
Sevilla

Seidl C, Heidenreich F, Aßmann U (2012) Co-evolution of models and feature mapping in software product
lines. In: 16th international software product line conference - volume 1, SPLC. ACM, New York, pp
76–85. doi:10.1145/2362536.2362550

Shao J, Wu W, Geng P (2013) An improved approach to the recovery of traceability links between require-
ment documents and source codes based on latent semantic indexing. In: Murgante B, Misra S, Carlini
M, Torre C, Nguyen HQ, Taniar D, Apduhan B, Gervasi O (eds) Computational Science and Its Applica-
tions (ICCSA), Lecture Notes in Computer Science, vol. 7975, pp 547–557. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-39640-3 40

She S (2013) Feature model synthesis. Ph.D. thesis, University of Waterloo Electrical and Computer
Engineering Department

She S, Lotufo R, Berger T, Wȧsowski A, Czarnecki K (2011) Reverse engineering feature mod-
els. 33rd international conference on software engineering, ICSE. ACM, New York, pp 461–470.
doi:10.1145/1985793.1985856

She S, Ryssel U, Andersen N, Wȧsowski A, Czarnecki K (2014) Efficient synthesis of feature models. Inform
Softw Technol 0(0):1–22. doi:10.1016/j.infsof.2014.01.012

Stoermer C, O’Brien L (2001) MAP - Mining architectures for product line evaluations. In: Work-
ing IEEE/IFIP conference on software architecture (WICSA), pp 35–44. doi:10.1109/WICSA.2001.
948405

Stuikys V, Valincius K (2011) A domain understanding through context-based feature modelling: a research
framework. In: 17th international conference on information and software technologies (ICIST),
pp 141–148

Author's personal copy

http://dx.doi.org/10.1145/2499777.2500709
http://dx.doi.org/10.1007/978-3-642-28872-2_20
http://dx.doi.org/10.1145/2351676.2351712
http://dx.doi.org/10.1145/2491627.2491644
http://dx.doi.org/10.1007/s10009-014-0347-9
http://dx.doi.org/10.1145/2362536.2362558
http://dx.doi.org/10.1145/2019136.2019141
http://dx.doi.org/10.1007/s00165-013-0276-5
http://dx.doi.org/10.1145/2480362.2480559
http://dx.doi.org/10.1145/2491627.2491654
http://dx.doi.org/10.1145/2362536.2362550
http://dx.doi.org/10.1007/978-3-642-39640-3_40
http://dx.doi.org/10.1145/1985793.1985856
http://dx.doi.org/10.1016/j.infsof.2014.01.012
http://dx.doi.org/10.1109/WICSA.2001.948405
http://dx.doi.org/10.1109/WICSA.2001.948405

3014 Empir Software Eng (2017) 22:2972–3016

Tang Y, Leung H (2015) Top-down feature mining framework for software product line. In: 17th international
conference on enterprise information systems, pp 71–81. doi:10.5220/0005370300710081

Trifu M (2010) Tool-supported identification of functional concerns in object-oriented code. Ph.D. thesis,
Karlsruhe Institute of Technology

Valinċius K, Ṡtuikys V, Damaṡeviċius R (2013) Understanding of e-commerce is through feature models and
their metrics to support re-modularization. International Journal on Computer Science and Information
Systems (IADIS) 8(1):47–65

Van Der Storm T (2007) Generic feature-based software composition. In: 6th international conference on
software composition (SC), SC’07. Springer-Verlag, Berlin, Heidelberg, pp 66–80

Weston N, Chitchyan R, Rashid A (2009) A framework for constructing semantically composable feature
models from natural language requirements. In: 13th international software product line conference,
SPLC. Carnegie Mellon University, Pittsburgh, pp 211–220

Xue Y (2012) Reengineering legacy software products into software product line. Ph.D. thesis, National
University of Singapore Department of Computer Science

Xue Y, Xing Z, Jarzabek S (2010) Understanding feature evolution in a family of product variants. In: 17th
working conference on reverse engineering (WCRE), pp 109–118

Xue Y, Xing Z, Jarzabek S (2012) Feature location in a collection of product variants. In: 19th working
conference on reverse engineering (WCRE), pp 145–154. doi:10.1109/WCRE.2012.24

Yang Y, Peng X, Zhao W (2009) Domain feature model recovery from multiple applications using data access
semantics and formal concept analysis. In: 16th working conference on reverse engineering (WCRE),
pp 215–224. doi:10.1109/WCRE.2009.15

Yu Y, Wang H, Yin G, Liu B (2013) Mining and recommending software features across multiple web
repositories. ACM, New York, doi:10.1145/2532443.2532453

Zhang G, Shen L, Peng X, Xing Z, Zhao W (2011) Incremental and iterative reengineering towards software
product line: an industrial case study. In: 27th IEEE international conference on software maintenance
(ICSM), pp 418–427. doi:10.1109/ICSM.2011.6080809

Ziadi T, Frias L, da Silva M, Ziane M (2012) Feature identification from the source code of product vari-
ants. In: 16th european conference on software maintenance and reengineering (CSMR), pp 417–422.
doi:10.1109/CSMR.2012.52

Ziadi T, Henard C, Papadakis M, Ziane M, Le Traon Y (2014) Towards a language-independent approach
for reverse-engineering of software product lines. In: 29th Symposium On Applied Computing (SAC)
pp 1064–1071

Wesley K. G. Assunção received a bachelor’s degree in Information Systems from Faculdade Sul Brasil in
2006 and the MSc degree in 2012 from Federal University of Paraná (UFPR), Brazil. He is currently PhD
candidate at the Post-graduation Program in Informatics of Federal University of Paraná (UFPR), being a
member of Research Group on Software Engineering - GRES. His areas of interest are: Software Testing,
Software Product Lines, Search Based Software Engineering and Multi-Objective Evolutionary Algorithms.

Author's personal copy

http://dx.doi.org/10.5220/0005370300710081
http://dx.doi.org/10.1109/WCRE.2012.24
http://dx.doi.org/10.1109/WCRE.2009.15
http://dx.doi.org/10.1145/2532443.2532453
http://dx.doi.org/10.1109/ICSM.2011.6080809
http://dx.doi.org/10.1109/CSMR.2012.52

Empir Software Eng (2017) 22:2972–3016 3015

Roberto E. Lopez-Herrejon is an Associate Professor at the Department of Software Engineering and Infor-
mation Technology of the École de Technologie Supérieure of the University of Quebec in Montreal, Canada.
Prior he was a senior postdoctoral researcher at the Johannes Kepler University in Linz, Austria. He was an
Austrian Science Fund (FWF) Lise Meitner Fellow (2012–2014) at the same institution. From 2008 to 2014
he was an External Lecturer at the Software Engineering Masters Programme of the University of Oxford,
England. From 2010 to 2012 he held an FP7 Intra-European Marie Curie Fellowship sponsored by the Euro-
pean Commission. He obtained his Ph.D. from the University of Texas at Austin in 2006, funded in part by a
Fulbright Fellowship sponsored by the U.S. State Department. From 2005 to 2008, he was a Career Develop-
ment Fellow at the Software Engineering Centre of the University of Oxford sponsored by Higher Education
Founding Council of England (HEFCE). His main expertise is in software customization, software product
lines, and search based software engineering.

Lukas Linsbauer is currently a PhD student at the Institute for Software Systems Engineering at the
Johannes Kepler University (JKU) in Linz, Austria under the supervision of Prof. Alexander Egyed and Dr.
Roberto Erick Lopez-Herrejon. He received his master’s degree in computer science from the JKU after only
four years of study for each of which he received a merit scholarship. His research interests are in traceability,
software product lines, variability modeling and management, and highly variable and configurable systems.

Author's personal copy

3016 Empir Software Eng (2017) 22:2972–3016

Silvia R. Vergilio received the MS (1991) and DS (1997) degrees from University of Campinas, UNICAMP,
Brazil. She is currently at the Computer Science Department at the Federal University of Paraná, Brazil,
where she has been a faculty member since 1993. She has been involved in several projects and her research
interests are in the areas of Software Engineering, such as: software testing, software architecture, software
metrics, and search-based software engineering.

Alexander Egyed heads the Institute for Software Systems Engineering (ISSE) at the Johannes Kepler
University, Austria. He received his Doctorate from the University of Southern California, USA and previ-
ously worked many years in industry before joining academia. Dr. Egyed was recognized among the Top 10
scholars in software engineering and his work has received numerous awards.

Author's personal copy

	Reengineering legacy applications into software product lines: a systematic mapping
	Abstract
	Introduction
	Background
	Clone-and-Own
	Software Product Lines
	Reengineering of Systems

	Systematic Mapping Process
	Research Questions
	Conducting Search and Screening of Papers
	Classification Scheme and Data Extraction

	Results
	RQ1 - Phases of the Reengineering Process
	RQ2 - Strategies to Perform the Reengineering
	RQ3 - Input and Output Artefacts
	RQ4 - Systems Used for the Evaluation
	RQ5 - Tool Support for the Reengineering Process
	RQ6 - Type and Fora of the Publications
	RQ7 - Number and Frequency of Publications
	RQ8 - Trends and Research Opportunities
	Automation and Tool Support
	Exploiting Multiple Sources of Information for Reengineering
	Feature Management
	Hybrid Approaches
	New Measures and Metrics
	More Robust Empirical Evaluation
	Other Issues and Challenges

	Threats to Validity
	Related Work
	Concluding Remarks
	Acknowledgments
	References
	Primary Sources

