Information and Software Technology 61 (2015) 33-51

Contents lists available at ScienceDirect

Information and Software Technology

journal homepage: www.elsevier.com/locate/infsof

A systematic mapping study of search-based software engineering @ CroseMark
for software product lines

Roberto E. Lopez-Herrejon *, Lukas Linsbauer, Alexander Egyed

Institute for Software Systems Engineering, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria

ARTICLE INFO ABSTRACT
Am‘clﬁ history: Context: Search-Based Software Engineering (SBSE) is an emerging discipline that focuses on the
Received 28 August 2014 application of search-based optimization techniques to software engineering problems. Software Product

Received in revised form 16 January 2015
Accepted 17 January 2015
Available online 29 January 2015

Lines (SPLs) are families of related software systems whose members are distinguished by the set of
features each one provides. SPL development practices have proven benefits such as improved software
reuse, better customization, and faster time to market. A typical SPL usually involves a large number of
systems and features, a fact that makes them attractive for the application of SBSE techniques which are
able to tackle problems that involve large search spaces.
Systematic mapping study Objeqive_z: The main objec_tive of our work is to identify the quantity and the type of research on the
Search based software engineering application of SBSE techniques to SPL problems. More concretely, the SBSE techniques that have been
Evolutionary algorithm used and at what stage of the SPL life cycle, the type of case studies employed and their empirical
Metaheuristics analysis, and the fora where the research has been published.
Method: A systematic mapping study was conducted with five research questions and assessed 77
publications from 2001, when the term SBSE was coined, until 2014.
Results: The most common application of SBSE techniques found was testing followed by product
configuration, with genetic algorithms and multi-objective evolutionary algorithms being the two most
commonly used techniques. Our study identified the need to improve the robustness of the empirical
evaluation of existing research, a lack of extensive and robust tool support, and multiple avenues worthy
of further investigation.
Conclusions: Our study attested the great synergy existing between both fields, corroborated the increas-
ing and ongoing interest in research on the subject, and revealed challenging open research questions.
© 2015 Elsevier B.V. All rights reserved.

Keywords:
Software product line

Contents

B R U o e L ot o) + U OO 34
2. Systematic MapPPINg STUAY. . . . oottt ettt ettt e e e e e e e e e e e e e e e e 34
2.1. Definition of research qUESTIONS.ttt ettt ettt e e e e 35

2.2, Conduct search fOr PriMAIY SOUICES. v\ vttt ettt ettt ettt e e et e e e et e et et e e e e e et ettt e et e ettt inens 35

2.3. Screening of papers for inclusion and eXCIUSIONttt e et et ettt e e et e e 36

2.4. Keywording using abstracts—classification SChemettt et e e e e e e e 36
2.4.1. SPL life cycle stage classifiCationttt ittt et ettt et e e e e 36

2.4.2. SBSE techniques classifiCationttt et e e e e e e 37

2.4.3. Type of statistical analysis classifiCation. it i it ettt e e 37

2.4.4. Type of case studies ClassifiCation. ittt it e e e e e 38

2.4.5. Type of publication fora classification.t e e e 38

2.5. Data extraction and Mapping STUAYottt ittt e e e e e e e e e e e 38

3. RESUIES. . oot e e e e 38
3.1, Results RQT—SPL life CYCle Sa@eS . ..ttt ettt ettt e e e e e e e et et et e e e e e e e e 38

* Corresponding author. Tel.: +43 732 2468 4380.
E-mail addresses: roberto.lopez@jku.at (R.E. Lopez-Herrejon), lukas.linsbauer@jku.at (L. Linsbauer), alexander.egyed@jku.at (A. Egyed).

http://dx.doi.org/10.1016/j.infsof.2015.01.008
0950-5849/© 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.infsof.2015.01.008&domain=pdf
http://dx.doi.org/10.1016/j.infsof.2015.01.008
mailto:roberto.lopez@jku.at
mailto:lukas.linsbauer@jku.at
mailto:alexander.egyed@jku.at
http://dx.doi.org/10.1016/j.infsof.2015.01.008
http://www.sciencedirect.com/science/journal/09505849
http://www.elsevier.com/locate/infsof

34 R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

3.2. Results RQ2—SBSE techniquesused......................
3.3. Results RQ3—type of comparative analysis................
3.4. Results RQ4—evaluation case studies.
3.5. Results RQ5—publication fora...........................
4, Analysis and disCUSSIONouii i e
4.1. Predominance of SBSE for SPL testing
4.2. SBSE for product configuration.
4.3. Need to improve empirical evidence robustness.
4.4, Need of better tooling support.ccoeuieun..
4.5. SBSE for SPL maintenance and evolution.
4.6. SBSE for SPL domaindesign....................c ...
47. Genetic improvement for SPL.
5. Threatstovalidityco ittt i
Related WOTK. o
7. Conclusions and future work. oL
Acknowledgementsttt e
Primary SOUICeSvit i in et ieiieenennn
Al. References list......... ... iiuiiiiniiinnenn..
Referencesttt e

@

Appendix A.

1. Introduction

Search Based Software Engineering (SBSE) is an established yet
young discipline that focuses on the application of search-based
optimization techniques to software engineering problems [1]. In
this article, we follow Harman et al. who consider SBSE techniques
to primarily include metaheuristic search based optimization
techniques and classical operations research techniques [1,2].
Some examples of SBSE techniques are: evolutionary computation
techniques’ (e.g. genetic algorithms), basic local searches (e.g. hill
climbing, simulated annealing or random search) [4], and integer
programming [1].

Software Product Lines (SPLs) are families of related systems
whose members are distinguished by the set of features they
provide [5,6]. Variability is the capacity of software artifacts to vary
and its effective management and realization lie at the core of
successful SPL development |[7]. Feature models are tree-like
structures that establish the relations between features and have
become the de facto standard for modeling variability [8,9]. Over
the last decade, extensive research and practice both in academia
and industry attest to the substantial benefits of applying SPL
practices [6,10,11]. Among the benefits are better customization,
improved software reuse, and faster time to market.

Typical SPLs have a large number of features that are combined
in complex feature relations yielding a large number of individual
software systems that must be effectively and efficiently designed,
implemented and managed. Precisely this fact is what makes SPL-
related problems suitable for the application of SBSE techniques
which are generic, flexible, robust, and have been shown to scale
to large search spaces such as those that typically characterize SPLs
(e.g. [12]). This recent realization has sparked a surge of research
and application at the intersection of SBSE and SPLs, which has
manifested with an increasing number of articles at many of the
publication outlets of both research communities. This is precisely
what prompted us to perform a systematic mapping study to
provide an overview of the research at the intersection of these
two fields [13-15]. In contrast with a systematic literature review
whose goal is primarily to identify best practice [13,15-17], our
general goal was to identify the quantity and the type of research
and results available, and thus highlight possible open research

! Evolutionary computation is an area of computer science, artificial intelligence
more concretely, that studies algorithms that follow Darwinian principles of
evolution [3].

problems and opportunities, for both SBSE and SPL communities.
More concretely we wanted to identify at what stages of the SPL
development life cycle have SBSE techniques been used and which
ones. We also wanted to find out the provenance, number and
types of artifacts used as case studies as well as how they were
empirically analyzed. And finally, which are the fora where the
research work was published.

Our study corroborated the increasing and ongoing interest in
applying SBSE techniques in SPLs. We found that the most common
application is software testing, and the most common techniques
are genetic algorithms and multi-objective evolutionary algo-
rithms. Our study identified the need to improve the robustness
of the empirical evaluation (e.g. more adequate statistical analysis)
and the need for more extensive and robust tool support. We hope
that this mapping study not only serves to highlight the main
research topics at the intersection of SBSE and SPLs but that it also
serves to encourage researchers to pursue work at the intersection
of both areas.

The paper is structured as follows. Section 2 presents the pro-
cess we followed for our systematic mapping study. It details the
research questions addressed, how the search was performed,
the classification scheme used, and how the data was extracted
and analyzed. Section 3 presents the results we obtained for each
research question. Section 4 contains a description of the results
found along with open questions and avenues worth of further
investigation. Section 5 summarizes the threats to validity we
identified in our work and how they were addressed. Section 6
concisely describes the existing review studies and surveys of SPLs
and SBSE. Section 7 summarizes the conclusions of our study and
future work.

2. Systematic mapping study

Evidence-Based Software Engineering (EBSE) is an emerging soft-
ware engineering area whose goal is “to provide the means by which
current best evidence from research can be integrated with practical
experience and human values in the decision making process regard-
ing the development and maintenance of software” [18]. One of the
approaches advocated by EBSE is systematic mapping studies
whose goal is to provide an overview of the results available within
an area by categorizing them along criteria such as type, forum,
frequency, etc. [14]. For performing our mapping study, we fol-
lowed the protocol proposed by Petersen et al. [14], whose main
stages are shown in Fig. 1. Next we describe each of the processes

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

[

Definition of
Research Questions

Conduct Search Screening of Papers Keywording using
Abstracts

Data Extraction and
Mapping Process

]

Review
All Papers

and how they were performed for our mapping study. In Section 3
we present the results we obtained, which we analyze in Section 4.

2.1. Definition of research questions

D Process O Outcome

Fig. 1. Systematic mapping study process [14].

Relevant Classification Systematic
Papers Scheme Map

35

terms, one for SPLs and a second for SBSE. Table 1 shows the list of
all search terms we used.” In order to gather a list of SPL search

terms as comprehensive as possible, we collected the relevant search
terms of twelve systematic mapping and literature review studies in
SPLs [21-32]. We should remark that none of these studies focuses

on SBSE techniques, hence we took from them only their SPL-specific

We again reiterate that throughout this paper we follow Harman
and colleagues’ common understanding of SBSE techniques to pri-
marily include metaheuristic search based optimization techniques
and classical operations research techniques [1,2,19].

Recall that the main goal underlying our work is to provide an
overview of research that applies SBSE techniques to tackle SPL
problems. Hence our main objective is to summarize and charac-
terize the existing research evidence at the intersection of these
two fields. There are additional aspects that can also provide fur-
ther insight on the existing evidence such as types of comparison
analysis performed, number and nature of case studies, publication
fora, etc. Our mapping study then focuses on the following
research questions:

e RQ1. In what phases of the SPL life cycle have SBSE techniques
been used?
Rationale: SBSE has been applied throughout the entire life cycle
of single systems [1], so our interest is finding out if SBSE has
been applied also throughout the entire life cycle of SPLs [6].

e RQ2. What SBSE techniques have been used?
Rationale: There are a vast number of SBSE techniques available
in literature. Our goal here is cataloging their use for SPL
problems and analyze if there are common trends in their
application.

e RQ3. What type of comparative analysis is used?
Rationale: Search-based techniques commonly rely on random-
ness, so adequate statistical analysis is necessary for the results
to be useful and meaningful [20]. Here our objective is to
identify which statistical tests and measures are used to com-
pare algorithms. Further details are described in Section 2.4.3.

¢ RQ4. What evaluation case studies are used?
Rationale: Here our focus is on cataloging the type, number, and
provenance of the case studies analyzed. We believe that
identifying common case studies and their sources could lead
to establishing community-wide benchmarks for certain
problems.

e RQ5. What are the publication fora used?
Rationale: SBSE and SPL research appears in multiple outlets and
in different research communities. We believe that by identify-
ing publication fora researchers can keep abreast with research
developments as well as target future publications.

2.2. Conduct search for primary sources

In this step of the systematic mapping the strings of terms to be
used for the search are defined. In our study we selected two sets of

search terms and excluded those terms of the domains of their stud-
ies (e.g. testing, service orientation, agile methods).

For gathering the list of SBSE terms we found three studies

[1,33,34]. The terms used by these studies are SBSE algorithms. We
complemented this list by including more generic terms (e.g. muta-
tion testing or constraint handling) and new SBSE techniques to
reflect recent developments in SBSE.> In Table 1 the new terms that
our queries considered are underlined. Further details on the meaning
of these terms can be consulted in artificial intelligence, metaheuristics,
and evolutionary computation books (e.g. [36,3,4,37-39]).

To perform our search we proceeded in four stages that were

consecutively carried out. These search stages included:

e Specialized SBSE repositories. We performed searches in the
two existing specialized repositories: Search Based Software
Engineering Repository,” and the Bibliography on Genetic
Programming.’

Publishing companies and general search engines. We utilized the

search engines ScienceDirect, IEEExplore, ACM Digital Libray,

SpringerLink, and Google Scholar. These engines cover the main

publication venues of the specialized journals, conferences, and

workshops in both SPLs and SBSE as well as other publication
outlets such as technical reports and dissertations.

e Snowballing readings. Snowballing refers to analyzing the refer-
ence list or citations of identified papers to further search other
sources [15,40]. In addition, we followed the recent guidelines
advocated by Wohlin et al. that suggest considering what other
publications the identified papers are referenced by [40]|. We
manually performed this stage following the citation links pro-
vided by the publishing companies and Google Scholar.

e SPLC14 keynote readings. We also analyzed a recent survey on
SPL and SBSE as a part of a keynote presentation at the Software
Product Line Conference in 2014 [41]. We searched for any
sources our searches might have missed. Details of this survey
and a comparison with our work are presented in Section 6.

The queries we performed took all the combinations of one

term from the SPL list and one or more terms of the SBSE terms

2 Alternative term spellings or hyphenation are not shown in the table and were
found not to be relevant for our searches.

3 These techniques were proposed while preparing the early draft of this paper (see

[35]) by our colleagues Ferrer, Chicano and Alba based on their extensive experience
in SBSE.

4 http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html.
5 http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html.

http://crestweb.cs.ucl.ac.uk/resources/sbse_repository/repository.html
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html

36 R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

Table 1
Summary of SPL and SBSE search terms. Acronyms appear after their defining term.

SPL terms: application engineering, commonality, core asset, domain analysis, domain engineering, feature analysis, feature based, feature diagram, feature model,
feature modeling, feature oriented, highly-configurable system, process family, product family, product line, product line engineering, software family, software
product family, software product line, software reuse, SPL, variability, variability analysis, variability management, variability modeling, variability-intensive system,

variant, variation, variation point

SBSE terms: ant colony optimization, ACO, artificial immune systems, AIS, bee colony, constraint handling, estimation distribution algorithm, EDA, evolutionary
algorithm, evolutionary programming, evolutionary strategy, fire fly, genetic algorithm, GA, genetic programming, GP, grammatical evolution, GE, greedy
randomized adaptive search procedure, GRASP, greedy search, harmony search, hill climbing, imperial competitive algorithm, integer programming, iterative local
search, ILS, local search, memetic algorithm, metaheuristic, multiobjective optimization, multi-objective optimization, MOEA, mutation testing, optimization,
optimization algorithm, particle swarm optimization, PSO, path relinking, scattered search, search based, simulated annealing, tabu search, variable neighborhood

search

depending on the querying functionality of each search engine or
repositories. The searches included the title, abstract, and
keywords of the papers, and when supported by the search engine
also their contents. For example, the following is a fragment of a
query used in the IEEExplore engine®:

("product 1ine'") AND ('"genetic algorithm" OR "GA"
OR "genetic programming" OR "GP" OR "hill
climbing" OR "simulated annealing")

In addition, we trimmed our search to include only publications
from 2001 onwards because the publication of a seminal paper by
Harman and Jones (see [19]), that appeared that year, coined the
term SBSE and it is generally regarded as the start of this discipline.
It should be noted though that techniques such as genetic algo-
rithms had been sporadically used before in software engineering
research; however, SBSE provided a conceptual framework under
which to group this and other optimization techniques when
applied to software engineering problems [19,1].

2.3. Screening of papers for inclusion and exclusion

We looked for the search terms in the title, abstract and key-
words and whenever necessary at the introduction or at other
places of the paper. The sole criteria for inclusion in our mapping
study was that a clear application of SBSE techniques to SPLs was
described. We should also make some remarks regarding the crite-
ria for exclusion. First, there is certainly a large body of work on
product lines and search-based techniques but in other domains
such as civil engineering, marketing or operations research.
Second, there are some incipient works on applying to SPL prob-
lems techniques from artificial intelligence such as those based
on machine learning or automated planning that do not fall
directly into the techniques considered by SBSE. Third, program-
ming paradigms such as constraint programming have also been
applied to SPL problems; however, these as well do not fall directly
into the techniques employed by SBSE research. Hence, articles
that fell into these three cases were not included. The decision
on whether or not to include a paper was most of the times
straightforward, meaning that at least one SBSE term was found
and a clear connection to SPLs was easily identified.

2.4. Keywording using abstracts—classification scheme

We classified our articles into five dimensions aligned with the
five research questions that our mapping study addresses. We
deviate from the standard classification procedure whereby the

6 The search queries had to be broken down into smaller queries (as shown in the
example) because of the search limitations of some search engines. We made sure
however that we considered all possible combinations of one SPL term with one SBSE
term.

classification schemes follow from the abstract keywords because
our driving goal is slightly different. In our case, we want to bring
to the attention of researchers and practitioners of SPL and SBSE
communities the synergies of both disciplines. Hence, we decided
on using a framework and terminology that are already familiar
within these communities.

We should also remark that for the classifications based on life
cycle stage (Section 2.4.1), SBSE techniques (Section 2.4.2), and
types of case studies (Section 2.4.4) a primary source can be
classified in more than one category. For the classifications of type
of analysis (Section 2.4.3) and publication fora (Section 2.4.5) a
primary source is classified in only one category. We reiterate
and illustrate this fact in Section 3 where the results of our
mapping study are summarized.

2.4.1. SPL life cycle stage classification

For this classification we used Pohl et al’s (see [6]) SPL
engineering framework shown in Fig. 2. This is a common and
well-known framework within SPL research and has recently been
used to illustrate and highlight some of the open questions and
challenges in the field of SPLs [42]. This framework defines four
sub-processes for each of the two main SPL activities, Domain
Engineering (DE) and Application Engineering (AE) defined next.

Definition 1. Domain Engineering is the process of software
product line engineering in which the commonality and the
variability of the product line are defined and realized [6].

Definition 2. Application Engineering is the process of software
product line engineering in which the applications of the product
line are built by reusing domain artefacts and exploiting the prod-
uct line variability [6].

We regard each sub-process of DE and AE as a life cycle stage.”
In addition to the eight stages of this framework, we considered two
more classification categories: one to cover all maintenance and evo-
lution issues of SPLs, and one to contain publications that have tool-
ing support as a main contribution. In summary, our classification
terms are as follows and we will refer to them henceforth by their
shorthand names in parenthesis®:

e Domain Requirements Engineering (DRE) is the sub-process of DE
where the common and variable requirements of the product
line are defined, documented in reusable requirements artifacts,
and continuously managed.

7 Domain Engineering and Application Engineering are the two common activities
in all the SPL approaches. The clear distinction between their goals as stated in their
definitions is the underlying reason behind considering their corresponding stages as
separated classification terms.

8 Though ME and TOOL are strictly speaking not a life cycle stage, for sake of
description simplicity we overload this term to collectively refer to all our categories
in this classification dimension.

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51 37

Domain Engineering

-....g. —_ {EII‘H{I-.' — :;'::o:o.o —_—

)

L X X R)
OO LS
0.0.000.0

)

v o?,
2 ® m= et

Fig. 2. Pohl et al.’s SPL framework, Fig. 2-1 from [6].

o Domain Design (DD) is the sub-process of DE where a reference the classification effort. In addition, three more categories were
architecture for the entire software product line is developed. added: one to contain deterministic searches,” and two to distin-
Domain Realization (DR) is the sub-process of DE where the set guish between evolutionary and exact multi-objective algorithms.
of reusable components and interfaces of the product line is It should be pointed out that it is customary in SBSE articles to
developed compare against base line search techniques. For our classification,
o . . we report the main SBSE technique(s) put forward by each paper
Domain Testing (DT) is the sub-process of DE where evidence of h P hev) i learly id q.ﬁ(d).p h Sél . php
defects in domain artifacts is uncovered and where reusable w en‘lt(t ey) is(are) clearly identifie m.t € paper and omit those
test artifacts for application testing are created techniques that are used only for base line comparisons (e.g. ran-

o)))) dom search). If one category may subsume another we select the
* Application Requirements Engineering (ARE) is the sub-process of ot specific one for classification.’® Notice as well that search

AE de.aling with the elicitation Of stakeholder requirements, the terms mutation testing and constraint handling are neither metaheu-

creation of the apph;atlgn requirements specification, and the ristic nor operations research algorithms, nonetheless they are

management of application requirements. considered relevant types of techniques within the SBSE community.
e Application Design (AD) is the sub-process of AE where the

reference architecture is specialized into the application 2.4.3. Type of statistical analysis classification

architecture. As we mentioned before, search-based techniques commonly
o Application Realization (AR) is the sub-process of AE where a sin- rely on randomness, so adequate statistical analysis is necessary
gle application is realized according to the application architec- for the results to be useful and meaningful. Hence, we classified
ture by reusing domain realization artifacts. publications into four categories depending on the type of analysis

o Application Testing (AT) is the sub-process of AE where domain performed:
test artifacts are reused to uncover evidence of defects in an

application. e Undefined whenever we were not able to clearly discern what
e Maintenance and Evolution (ME) refers to the maintenance and type of analysis was performed because the authors employ
evolution of all the artifacts developed across the entire life domain-specific terminology and models whose statistical
cycle of SPLs. Reverse engineering artifacts or bug fixing are foundations (if any) we were not able to ascertain."'
examples of activities that fall in this category. e None when there was clearly no analysis presented.
e Tool support (TOOL) used to classify the publications that have e Basic when some basic statistical measures were used (i.e.
tooling support as one of their main contributions (e.g. tool median, average, standard deviation).

papers or demos).

9 This category was required to classify primary sources that used algorithms such
2.4.2. SBSE techniques classification as Breadth-First Search. These sources resulted primarily from using the term “search
e . - based” in our queries.
We considered each of the SBSE search terms shown in Fig. 1 as 10 For example, if a paper that uses an algorithm such as SPEA2 it is classified as
one category, except of course acronyms that were aggregated multi-objective evolutionary algorithm but not as a genetic algorithm.
together with their corresponding term. This decision simplified ™ For example, the cost models of S8.

38 R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

o Statistical Tests when any of the standard statistical analysis
tests was used, for example as proposed in the guidelines by
Arcuri and Briand [20].

2.4.4. Type of case studies classification

We classified publications according to the number of case
studies, the types of artifacts, and the provenance of the artifacts.
We should point out that for this classification we considered the
artifacts that contained or expressed the variability of the SPLs,
e.g. feature models or UML class diagrams.

For artifact provenance we defined the following categories:

e SPLOT'? which is a repository for feature models widely used
within the SPL research community.

e Random when the artifacts are generated randomly.

e Open source when artifacts come from projects developed as
open source, e.g. Linux kernel [43].

e Academic when the artifacts come from academia, either from
research papers or projects mainly carried out at research or
university institutions.

e Industrial when the artifacts belong to actual industrial cases.

e None when no artifacts are used for the evaluation, for instance
in TOOL papers.

2.4.5. Type of publication fora classification

The classification of publication fora is straightforward because
we used the name of the journal, conference, workshop or book
where the publication appeared. We included two additional
categories for technical reports and student dissertations.

2.5. Data extraction and mapping study

For gathering the data we proceeded with the following steps
which gave us the confidence that our data was consistently
classified:

1. We created a guideline document defining each of the classifi-
cation terms and an Excel spreadsheet to collect the classifica-
tion information. The spreadsheet contained the following
data fields: (i) SPL life cycle stage, (ii) types of artifacts
employed by SBSE technique, (iii) rationale for the categoriza-
tion if any, (iv) SBSE techniques employed, (v) analysis
performed, (vi) number of case studies evaluated, (vii) type of
artifacts used in case studies, (viii) provenance of the case
studies, and (ix) a general field for any remarks. We drew a
distinction between fields (ii) and (vii) because in some cases
papers only present a running example or do not perform a
proper evaluation involving multiple case studies, multiple
executions, etc.

2. We formed two groups to carry out the classification task
independently.

3. We held a meeting to discuss and pilot the classification terms.
For this meeting each group had independently collected, in the
data spreadsheets, the information of some selected primary
sources. The results obtained were compared and contrasted,
and all the discrepancies were analyzed and clarified. We also
relied on our previous experience with an earlier version of
our work (see [35]) to calibrate our classification.

4. The two teams performed the classification of all primary
sources independently.

5. We held a second meeting where the classification for every
single paper for each criterion was discussed until a consensus
was reached.

12 http://www.splot-research.org/.

The effort to gather the data varied significantly between
papers. For some papers it was a simple task to find all the classi-
fication data required because their overall structure, headings,
and terms adhered to standard convention. For some other papers,
more effort was necessary to dig out this information as they did
not have, for instance, a clearly labeled evaluation section. In such
cases, it was required to read almost the entire source.

3. Results

In this section we present and describe the results obtained in
our systematic mapping study. As mentioned in Sections 2.2 and
2.3, we first performed search queries in specialized repositories
and search engines. These queries were performed between 31st
July 2014 and 14th August 2014 and produced a total of 2630 hits.
As a second step we sieved the articles based on the title, abstract
and keywords, resulting in 103 papers. We should remark that the
main reason for this large difference (i.e. 2630 — 103 =2527)
comes from the fact that there is an extensive body of research
at the intersection of search-based techniques and product lines
in domains such as manufacturing or management but not for SPLs.
Another reason for the large difference is that many search string
terms such as “variability” or even the acronym “SPL” are also used
in other domains with a different meaning. For the third step, we
looked into the introduction and other relevant parts of the papers.
This resulted in the exclusion of 35 papers. Some of the reasons for
exclusion were that the focus of those papers was not on SPLs but
on standard one-off software systems (e.g. [44]), that they
employed techniques such as machine learning that are not con-
sidered within SBSE (e.g. [45]), or focused only on a project
description (e.g. [46]). For the fourth step we performed snowball-
ing readings, resulting in 3 more articles. The selection of these
readings followed the same screening process of the third step. A
recent survey on SBSE and SPL was published in association with
a keynote at the Software Product Line Conference in 2014 [41].
As a fifth step in our search process we took a detailed look at
the papers referenced in this survey. We found 6 new sources. They
either came from journal sources we did not consider in our
searches or their connection with our search terms did not appear
in the abstract or title but instead appeared at other more detailed
parts of the papers (e.g. evaluation section). The five steps and their
results are summarized in Fig. 3, and Appendix A lists the details of
the 77 articles that form the primary sources of our mapping study
presented in the order they were found.

The first interesting result of our mapping study is the growth
in number of publications as shown in Fig. 4. From 2007 to 2010
we observed a low number of publications, followed by a sharp
increase since 2011. For instance, in 2013 the number of publica-
tions almost doubled those from 2012. For 2014, we expect this
growing trend to continue and to be sustained as the publications
for the fall conferences, journals, technical reports, etc. become
available.

In the following subsections we shall present the results
obtained for each of our research questions, and in Section 4 we
provide a more detailed analysis and discussion of our findings.

3.1. Results RQ1—SPL life cycle stages

Fig. 5 shows the number of publications classified along the SPL
life cycle stages described in Section 2.4.1 and Table 2 lists the pri-
mary sources associated with each category. The first thing to
notice is that several publications were categorized in two catego-
ries, e.g. S14 categorized in DT and TOOL.

The most frequent stage where SBSE techniques are used was
DT (Domain Testing) with 28 publications. The majority of these

http://www.splot-research.org/

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51 39

Search Process Overview

2,630 hits

@ Exclusion

title, abstract,
keywords

103 articles

<DRepositories,
Search Engines

©) Detailed
Screening

68 articles

© SPLC14
Keynote Survey

@Snowballing
readings

3 articles 6 articles

77 articles

Fig. 3. Steps of search and primary sources selection.

30

254

204

15

104

0
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Fig. 4. Publications per year since 2001.

DRE; 4

TOOL;G_\

ME; 10

AT;0 DR;1
AD; 0

DT; 28
ARE; 22

Fig. 5. SPL life cycle stages and publications.

publications focus on computing test suites that cover certain
types (e.g. 2-wise or 3-wise) of feature combinations that are
derived from feature models. The second most frequent stage
was ARE (Application Requirements Engineering) with 22 publica-
tions. Many of these publications dealt with optimizing product
configurations or derivations with different characteristics and
attributes. For DD (Domain Design) and ME (Maintenance and
Evolution) we found 10 publications. In the case of DD the focus

was mainly in deriving product line architectures, whereas for
ME it was on applications for reverse-engineering and for fixing
inconsistencies, for instance in feature models. In the TOOL
category the main focus was on the analysis and generation of fea-
ture models and visualization. In the category of AR (Application
Realization) four of its five publications also are categorized in
ARE. This indicates a strong relation between both stages. We
found 4 publications for DRE (Domain Requirements Engineering)
where the main focus was on the correct definition of variability
models. We found only 1 publication for DR (Domain Realization)
which was also categorized in DD and whose focus was on the
building and selection of components for SPLs. It is also important
to highlight that for stages AD (Application Design) and AT
(Application Testing) no publications were found. In Section 4 we
provide a more detailed analysis and discussion of these findings.

3.2. Results RQ2—SBSE techniques used

Table 3 shows the SBSE techniques found by our mapping
study, the acronyms we use to refer to them, and the primary
sources for each technique. Notice again that a publication can
employ more than one SBSE technique, for instance S59 uses GA,
EA, and AVM.

Fig. 6a summarizes the number of publications for each SBSE
technique. The first thing to notice is the large and diverse set of
SBSE techniques used, making a total of 15. Not surprisingly GA
(Genetic Algorithm) and MOEA (Multi-Objective Evolutionary
Algorithms) came first with 19 publications each. We believe this
is because GA is among the most basic evolutionary algorithms
and because of the nature of many SPL problems where usually
multi-objectives are considered which makes them well-suited
for MOEA. The third most frequent technique was GRE (GREedy
algorithms) with 13 publications, follwed by SA (Simulated
Annealing), EMOA (Exact Multi-Objective Algorithm), DS
(Deterministic Search), Evolutionary Algorithm (EA), and Integer
Programming (IP). The remaining references were spread out
among the remaining 7 techniques.

Fig. 6b shows a plot of SBSE techniques and their use broken
down by SPL life cycle stages. The first thing to remark is the differ-
ence among totals per stage. For instance notice the discrepancy on
GRE. In Fig. 6a it has 13 publications associated to it, whereas in
Fig. 6b it has 14. The difference comes from the fact that a publica-
tion can be associated to more than one life cycle stage. In this con-
crete example, publication S69 is categorized in DT and TOOL (see
Table 2). Fig. 6b corroborates the fact that DT is the stage where
SBSE techniques have been used the most. This figure also shows
some revealing information. For example, MOEA has so far been
primarily used in stages such as DD and ARE and its application
remains mostly untapped for DT. Along the same lines, GP (Genetic
Programming), CH (Constraint Handling), and Ant Colony

Table 2
Primary sources and life cycle stages.

Stage Primary sources identifiers

DRE S8, S22, S38, S77

DD S2, S5, S26, S28, S44, 548, S50, S60, S66, S67

DR S50

DT S1, 89, S11, S12, S14, S15, S17, S18, S23, S24, S27, S35, S37, S39, 541,
S42, S47, S53, S54, S58, S59, S61, S62, S63, S64, S65, S69, S76

ARE S4, S6, 520, S21, S25, S28, S29, S30, S32, S33, S34, S43, S45, 546, S51,
$56, S68, S70, S72, S73, S74, S75

AD None
AR S21, S33, S51, S55, S70
AT None

ME S3, 57, 510, S16, S19, S31, S36, 549, S57, S71
TOOL S13, S14, S25, S40, S52, S69

40

Table 3
Primary sources and search based techniques.

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

Technique Acronym Primary sources identifiers

Ant colony optimization ACO S72

Alternative variable method AVM S59, S61

Constraint handling CH S35

Deterministic search DS S7, 519, S28, S33, S38

Evolutionary algorithm (1 +1) EA S41, S58, S59, S61, S64

Exact multi-objective algorithm EMOA S16, S25, S27, S45, S56, S68

Genetic algorithm GA S3, S6, S10, S13, S14, S17, S20, S21, S36, S37, S40, S43, S47, S57, S59, S61, S65, S70, S71
Genetic programming GP S57

Greedy algorithm GRE S9, S12, S15, S23, S24, S34, S42, S47, S54, S62, S69, S74, S75

Integer programming P S8, S50, S53, S55, S73

Local search LS S39, 549, S76

Multi-objective evolutionary algorithm MOEA S1, S2, S4, S5, S18, S26, S29, S30, S31, S32, S44, S45, S48, S51, S60, S63, S66, S67, S68
Mutation testing MT S52

Particle swarm optimization PSO S22, S46

Simulated annealing SA S11, S12, S20, S47, S62, S69, S77

----- e @ g
O N o o
SA;7 ® . SO S o VO O s N S N N S
PSO;2 o IS SO O, E & @]
© ' ' ' ' | ' ' ' ' '
v T R S M S S
§ mr o o e
() i i i i i i i i ' Il i i i i
MOEA; 19 /] = """ L
et D O @ (D)
153 A H S S S A T R G S A
| | | | | | | | | | | | | | |
IP;5 S § 5 8 & % & & g * 3 % 5 g 8
GRE; 13 J GP;1 SBSE Techniques

(a) SBSE Techniques and Publications

(b) References per Life Cycle Stage and SBSE Technique

Fig. 6. SBSE techniques summary.

Optimization (ACO) have been used only in one publication each.
These findings point to potential open areas for further research
about which we elaborate more in Section 4.

3.3. Results RQ3—type of comparative analysis

Table 4 shows the primary sources categorized for each type of
analysis, while Fig. 7a summarizes their distribution. The Basic type
of analysis was the most frequent with 32 publications, followed
by Statistical Tests with 20, None with 18, and Undefined with 7.
Fig. 7b shows the break down of type of analysis per SPL life cycle
stage. As before, we should point out the difference among totals
per type of analysis. For example, Undefined in Fig. 7a has a value
of 7 while in Fig. 7b it has a value of 8. In this particular example,
paper S28 appears in two stages, DD and ARE (see Table 2), there-
fore the extra count.

Fig. 7b clearly shows that DT has the majority of the Statistical
Tests analyses found and that the publications at this life cycle

Table 4
Primary sources and type of analysis.

stage at least have a Basic type of analysis. Also, this figure shows
that most TOOL publications do not provide any form of analysis,
which is also expected. In contrast, for stage ARE, the second most
common stage (see Fig. 5), the analysis is predominately of Basic
type.

As mentioned before, because of the randomness involved in
most of the SBSE techniques, using the adequate statistical analysis
is of utmost importance for the results obtained to be reliable and
meaningful. Our findings help to raise awareness of the need to
employ adequate statistical analysis so that it could be properly
addressed by the researchers and practitioners working at the
intersection of SPLs and SBSE. We elaborate further on this issue
in Section 4.

3.4. Results RQ4—evaluation case studies

Table 5 shows the primary sources categorized for each prove-
nance type and Fig. 8a depicts their number. Academic case studies

Analysis Primary sources identifiers

Undefined S8, S9, S10, S28, S29, S31, S71

None S2, S5, S14, S22, S24, S25, S26, S33, S40, S44, S46, S48, S49, S50, S55, S69, S73, S77

Basic S3, S4, S6, S7, S12, S15, S16, S19, S20, S21, S23, S27, S32, S34, S35, S36, S37, S38, S41, S51, S52, S53, S54, S56, S58, S62, S67, S68, S70, S72, S74, S76

Stat. tests

S1, S11, S13, S17, S18, S30, S39, S42, S43, S45, S47, S57, S59, S60, S61, S63, S64, S65, S66, S75

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

Undefined =-----

Undefined;
Stat. 7

Tests.; 20

Stat. Tests —----- b

Type of Analysis

Basic; 32

(a) Types of Analysis Used

41

----- e
O ey T
B O S O
--------- B e COSSORE S

i i i i i i i

& a8 & & 5 g 2

< [=] E

Life Cycle Stages

(b) Type of Analysis References per Life Cycle Stages

Fig. 7. Type of analysis summary.

Table 5
Primary sources and case study provenance.

Provenance Primary sources identifiers

SPLOT S1, S3, S4, S7, S8, S15, S16, S18, S27, S31 S32, S35, S36, S37, S39, S41, S42, S54, S58, S64, S65, S69

Random S6, S11, S13, S33, S34, S38, S41, S53, S54, S59, S61, S72

Open source S9, S10, S11, S12, S19, S23, S24, S30, S39, S41, S51, S52, S64, S65, S71, S74

Academic S2, S17, S20, S21, S23, S29, S45, S47, S48, S56, S57, S60, S62, S63, S64, S66, S67, S68, S70, S73, S74, S75, S76, S77
Industry S1, S8, S24, 549, S50, S59, S61, S76

None S5, S14, S22, S25, S26, S28, S40, S43, S44, S46, S55

A S R e) O
R S .
S 1 H : 1 H : H :
None; 11) : } 1 H : .
T e R S () SO R
3 ' ' ' ! ! : ' !
o : ' : | : : : '
Industry; 8 5 None — -~~~ ------ @ ,,,,,, @ ,,,,,,, N [S T R @....
8 : X ' : : : ' :
£ : : : : : : : :
S A R S S SO S
12 : ! : ! ! ! ! :
ACEdEmiC"”'@ ””” ””'@ ””””” J. _______ @ _____ @ """" {1} """" J. """
Academic | ; ; | ; ; ; ;
24 Ed & 8 & [5 g <3
g & = S
Life Cycle Stages

(a) Artifacts Provenance

(b) Type of Provenance References per Life Cycle Stages

Fig. 8. Evaluation artifacts summary.

were found in 24 publications, followed closely by SPLOT with 22.
Open Source case studies were with 16 publications, followed by
Random with 12, and None with 11. Last place was occupied by
Industry case studies with 8 publications. These numbers indicate
a predominance of feature models artifacts as well as a strong need
of more case studies stemming from industry, which has been par-
tially addressed through random generation or usually smaller but
yet illustrative academic examples.

Fig. 8b shows a plot of artifact provenance broken down by SPL
life cycle stages. Again, it is important to remark the difference in
the values with the previous figure. For example, for Industry this
figure shows 9 references whereas Fig. 8a shows 8. As before, this
difference is because a publication can be associated with more
than one stage. In our example, paper [S50] is assigned to DD
and DR (see Table 2). Fig. 8b highlights that stage DT has the largest
number of publications with case studies than any other stage,

being SPLOT and Open Source case studies the most frequent ones.
In contrast, stage DR has only one publication, namely [S50].

Our mapping study revealed 45 publications which used feature
models, 22 publications which used other types of artifacts, and 11
publications with no case studies. Notice here that [S75] had both
feature models and other types of artifacts. Considering the domi-
nance of feature models, we performed further analysis on their
provenance which is summarized in Fig. 9a. In total 62,607 feature
models were used as case studies, of which 61,551 were randomly
generated (a single publication [S74] generated 50,000), followed
by 917 SPLOT feature models."® Far behind were Academic feature
models with 112, Open Source with 23, and Industry with 4 feature
models. Another interesting finding was the big range of number of

13 Several SPLOT models were repeatedly used in multiple primary sources.

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

42

100000 T

10000
“
o]
o
o
= 917
o 1000
H
2
3
L;_ 112
S 100
@
'g 23
3
2

10
a
Industry ~ OpenSource Academic SPLOT Random
(a) Feature Model Provenance
Table 6

Publication fora.

@ Class Diagram @ Productline Architecture B Common VariabilityLanguage =~ EOther

Random Open Source

81

16
10 8
B Em -
e [T — _—
Academic Industry

(b) Non-Feature Model Provenance

Fig. 9. Case studies provenance summary.

Acronym Primary sources identifiers Publication name
Conference publications
ACSC S20 Australasian computer science conference
ASE S30 International conference on automated software engineering
CAISE S37 Conference on advanced information systems engineering
CEC S29, S63 IEEE congress on evolutionary computation
COMPSAC S66 International computers, software & applications conference
ECSA S70 European conference on software architecture
GECCO S1, S65 Genetic and evolutionary computation conference
HASE S35 International IEEE symposium on high-assurance systems engineering
ICSE S4, 519 International conference on software engineering
ICSM S27, S51 International conference on software maintenance
ICST $39, S53, S54 International conference on software testing, verification and validation
ISSTA S12 International symposium on software testing and analysis
jcc S44 Chilean computing conference
MODELS S24 Model driven engineering languages and systems
PIC S34 International conference on progress in informatics and computing
RE S36 International requirements engineering conference
SAC S55 Symposium on applied computing
SSBSE S2, S3, S57, S58, S59, S60 International symposium search-based software engineering
ScC S43, S46 International conference on services computing
SEAMS S21 International symposium on software engineering for adaptive and self-managing
systems
SEDM S28 International conference on software engineering and data mining
SPLC S17, 518, S22, 523, S25, S61, S62, S67, S68, S74, S75,S76,S77 International conference software product lines
Journal publications
IJITDM S8 International journal of information technology and decision making
ESE S11 Empirical software engineering
ESWA S13 Expert systems with applications
IETS S52 The institution of engineering and technology (IET) software
JSJU S72 Journal of Shanghai Jiaotong University
JsS S6, S49, S71 Journal of systems and software
Omega S50 Omega
PAIS S73 Practical applications of intelligent systems
PCS S48 Procedia computer science
TSE S9, S64 IEEE transactions on software engineering
Miscellaneous publications
BC S38 Book chapter
CMSBSE S26, S31, S32, S33 International workshop on combining modeling and search-based software engineering
CoRR S41, S42, s47 Computing research repository
DS@ICSE S5 Doctoral symposium ICSE
ICSTW S69 Workshop international conference on software testing, verification and validation
MScThesis ~ S45 MSC thesis
NFPinDSML S56 Int. workshop on nonfunctional system properties in domain specific modeling languages
SP@SSBSE S7 Short paper—fast abstract SSBSE
TOOL@SPLC S14 Tool track paper at SPLC
TR S10 Technical report
Vamos S15, S16, S40 International workshop on variability modeling of software-intensive systems

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

43

SPLC I
SBSE o

ICST . o
ISy
CoRR mm w
Vamos i «
CEC W ~
GECCO mmm ~
ICSE mm ~
ICSM
SCC mmm ~
TSE pam ~

ACSC W »
ASE W~

CAISE i ~

COMPSAC Wl ~
ECSA 1 »
HASE 1l =
ISSTA W ~

Jjcc -
MODELS i -

CMSBSE mmmam »~

Publication Fora Frequency

RE Wl »
SAC u ~

SEAMS W »
TR W »

PIC
ESE W ~

ESWA m ~
IETS W~

SEDM I =
JITDM =
JSJU m —
Omega Wl ~
PAIS Il ~

PCS I -

BC mm ~
DS@ICSE =
ICSTW Il =
MScThesis mll ~
NFPinDSML =
SP@SSBSE
TOOL@SPLC W ~

Fig. 10. Publications fora summary.

case studies used. We found as low as 2 case studies, e.g. [S4] which
used 2 feature models from SPLOT, and as high as over 50,000
random feature models in article [S74].

We also performed further analysis on the other types of
artifacts, besides feature models, used as case studies which is
summarized in Fig. 9b. Salient among them were UML class dia-
grams (CD), Product Line Architecture (PLA) models mostly based
on components, and Common Variability Language'* (CVL) which
is an ongoing OMG proposal alternative and complementary to fea-
ture models. There were also several ad hoc artifacts used by some
approaches, for instance to represent different cost models (labeled
as “other” in the figure). In this figure, this latter category accounted
for all the Random and Open Source case studies which were
predominant over Academic and Industry studies for artifacts CD,
PLA and CVL.

3.5. Results RQ5—publication fora

We divided the publications in three groups: conferences,
journals, and miscellaneous. The last group to contain book chap-
ters, workshop papers, technical reports, and dissertations. This
division was made to reflect the length (short vs large), nature
(peer-reviewed or not) and in some cases maturity of the sources
analyzed (workshops vs journals). Our study found 22 conference
fora, 10 journal fora, and 11 miscellaneous. Table 6 shows the pri-
mary sources categorized along these three groups, and Fig. 10
depicts the number of primary sources for each publication forum.

It should not come as a surprise that the most frequent venues
for publications are the most prominent conferences for SPL and
SBSE communities, respectively SPLC with 13 publications and
SSBSE with 6. These were followed with 4 publications by a
specialized workshop (CMSBSE) that aims at combining modeling
and SBSE research. Vamos (a specialized workshop on SPL) and
ICST (a specialized conference in software testing) followed with
3 publications each. Among the journal venues, JSS and TSE were
the most frequent ones with 3 and 2 publications respectively.
The remaining publications were more or less evenly spread out.

We should remark that out of the 77 primary sources found, 46
correspond to conference fora, 13 journal publications, and 18 mis-
cellaneous publications. We believe these numbers denote on one
hand a clear and increasing interest among several communities in
the research at the intersection of SBSE and SPLs, but on the other
hand they also highlight that this research area is still very young
(e.g. very few journal publications and many workshop publica-
tions). In the next section we provide an overview of the work
identified by our study and sketch some potential avenues for
further research.

14 http://www.omgwiki.org/variability/doku.php.

4. Analysis and discussion

In this section we analyze the findings revealed by our system-
atic mapping study. For each one, we present an overview of some
of the relevant primary sources followed by a concise discussion on
open questions and potential areas for further research.

4.1. Predominance of SBSE for SPL testing

Software testing is the most prevalent application realm of SBSE
techniques [47,1]. We believe this fact in addition to the recent
interest in SPL testing (e.g. [25,24]) is the underlying reason why
we found the highest number of publications in this area.

Recall from Section 2.4.1 that in SPL development the testing
activities are divided in Domain Testing (DT) and Application Test-
ing (AT). However, our mapping study found 28 publications for DT
but none for AT. The natural question is thus: Why is that the case?
Though it is not possible to satisfactorily answer this question with
the information gathered in our mapping study, we would like to
put forward two issues that might potentially serve as starting
points for further research to properly address it. The first is that
the main distinction between Domain Engineering and Application
Engineering lies at their focus; the former focuses on the entire
software family while the latter focuses on individual system
applications (i.e. members of the software family) [6]. Conse-
quently, the activities at the Domain Engineering level can in prin-
ciple benefit the most from the application of SBSE techniques
because they typically need to cope with, and hence search, prop-
erties of a large number of individual system applications. The sec-
ond is an observation made by Metzer and Pohl, who recently
pointed out [42], that in AT the research focus has mostly been
on deriving tests from reusable artifacts or minimizing the retest-
ing of parts already tested for other applications, in a similar way
to regression testing. Again, we reiterate that these issues might
serve as starting points on the quest to shed light on the reason
behind our finding.

The majority of testing publications found focus on Combinato-
rial Interaction Testing (CIT) whose goal is to compute test suites
called covering arrays such that their products contain all possible
combinations of t selected and unselected features based on the
domain constraints expressed by the SPL’s feature model. Each of
these valid combinations is called a t-wise set [S15]. The most typ-
ical case was pairwise covering arrays whose value of t is 2. These
arrays must include products that have for any two features A
and B in the feature model the valid combinations from: both
features selected, both features not selected, A selected and not
selected B, and A not selected and B selected.

We now provide a short overview of some of the publications
found by our study. Based on Fig. 6b it is clear that greedy

http://www.omgwiki.org/variability/doku.php

44 R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

algorithms are the most common SBSE technique used for DT test-
ing (e.g. [S9,512,523]). In second place is GA with 7 references. An
example in this category is the work by Ensan et al. that uses an
objective function based on cyclometric complexity metric
adapted to feature models [S37]. In third place there was a tie
between SA and EA with 5 publications. An example using SA to
compute covering arrays is the work by Garvin et al., whose tool
named CASA performs three nested search strategies aiming at
iteratively reducing the sizes of the test suites [S11]. An example
of EA is the work by Henard et al. that uses a similarity metric as
fitness function and shows how to overcome scalability issues for
generating covering arrays beyond pairwise [S41,564].

Our systematic mapping study also helped unveil interesting
research threads described next for which we sketch open issues
and avenues worthy of further investigation.

Test suite prioritization. Prioritization determines the order of
the products in a test suite according to some criteria. In this sense,
the work by Al-Hajjaji et al. propose a similarity-based prioritiza-
tion approach [S62], while Sanchez et al. compare five SPL-specific
prioritization criteria and analyze their effect in detecting faults in
order to provide faster feedback and reduce debugging efforts
[S54]. In the SPL domain, the notion of prioritization also considers
how the test suites are actually computed based on the feature
combinations expressed by feature models. For instance, Johansen
et al. propose a greedy algorithm that adds weights to products to
guide the computation of the t-wise sets [S24]. An alternative par-
allel evolutionary algorithm was proposed by Lopez-Herrejon et al.
for this scheme that can produce smaller test suites [S65].

Test suite prioritization has an extensive existing body of
research for single software systems (for an account see for
example [48]) which has not been extensively explored within
the context of SPLs. Among the salient open issues are: adequate
and adapted coverage criteria for SPLs, combination with
clustering techniques, and cost values stemming for example from
non-functional properties.

Multi-objective optimization. Quite often SPL problems
require the optimization of multiple and sometimes contradicting
objectives. The typical examples for SPL test suites are the minimi-
zation of their sizes and the maximization of their t-wise coverage.

The work by Wang et al. presents an approach to minimize test
suites using weights in the fitness function [S1], that is, it uses a
scalarizing function that transforms a multi-objective problem to
a single-objective one [49]. A similar approach was taken by
Henard et al. who also flatten many objectives using a scalarizing
function [S19]. We should point out, however, that there is an
extensive body of work on the downsides of scalarization in
multi-objective optimization (e.g. [50]). Among the shortcomings
are the fact that weights may show a preference of one objective
over the other and, most importantly, the impossibility of reaching
some parts of the Pareto front when dealing with convex fronts.

In contrast, Lopez-Herrejon et al. propose an exact algorithm
that computes the true Pareto front of feature models using SAT
solvers that presents scalability issues for larger feature models
[S27], and also make a comparison of four classical multi-objective
evolutionary algorithms (i.e. NSGA-II, PAES, MOCell, and SPEA2) for
the computation of pairwise testing and analyzed three different
seeding strategies for the initial population [S63].

There is again a wealth of research in multi-objective optimiza-
tion that remains largely untapped, for an overview see for exam-
ple [37,38]. Among the possibilities for further investigation are:
employing other multi-objective evolutionary algorithms, includ-
ing more optimization objectives that consider information such
as control-flow or non-functional properties, and extending and
adapting for the realm of SPL testing the definitions and interpre-
tations of standard quality indications such as hypervolume [51]
or generational distance [52] (e.g. what are hypervolume values

are acceptable for a concrete SPL testing task?, could they be
inferred from the feature models?, how could they be meaningfully
interpreted by the software engineer who needs to make a decision
based on them?).

Exploiting more SPL knowledge. Because of the typically large
number of individual systems of a SPL, any information that could
be exploited to reduce the search effort is worth of consideration.
For example, Haslinger et al. leverage information from feature
models to speed up the computation of covering arrays by elimi-
nating redundant t-sets [S15,542]. Some other examples are the
work by Xu et al. that exploits static analysis techniques for achiev-
ing coverage more effectively [S17], and the work by Lopez-Herre-
jon et al. that studies seeding strategies [S63]. In this area, there is
a recent surge of software analysis approaches specially developed
for SPLs, surveyed in [53], that could also be leveraged for this
purpose.

Need of community-wide testing benchmarks. Apart from
randomly generated artifacts, our systematic mapping study found
that feature models from the SPLOT repository were the most com-
mon type of artifacts and were predominantly used for testing. In
total, we accounted for 917 SPLOT feature models. The SPLOT
repository contained 538 feature models at the time of writing.!®
Hence several SPLOT feature models have been repeatedly used
across some of the papers we found. However, the selection of which
feature models to analyze in each paper seemed to be arbitrary, at
worst, or partially-justified, at best. Despite incipient attempts to
compare between testing approaches [54], there is a strong need
for a community-wide testing benchmark that could effectively help
to fairly analyze all the different proposals. A first step towards such
a benchmark is advocated in [S47].

4.2. SBSE for product configuration

Recall that Application Requirements Engineering (ARE) deals
with the creation and management of the requirements of the
individual systems that are part of a SPL [6]. One of the most
prominent tasks in ARE is product configuration whereby engineers
or users select the requirements or features desired for their
systems based on multiple and sometimes conflicting preferences
that come from the distinct stakeholders involved throughout the
entire development process. Product configuration naturally lends
itself to the application of SBSE techniques because of the vast
number of combinations SPL requirements can typically have.
Hence ARE is one of the stages with some of the first applications
of SBSE techniques to SPLs. For instance, Guo et al. employ a
genetic algorithm that considers resource constraints such as cost
or memory [S6], and Shi et al. use a greedy search to find optimal
feature selections [S34].

Pascual et al. also employ a genetic algorithm but apply it to the
runtime configuration and adaptation of mobile applications
[S21,S70]. A similar goal is pursued by Sanchez et al. but instead
they use feature model metrics to optimize the configurations
[S33]. Considering that usually many objectives should be simulta-
neously optimized, there has been significant work on using
multi-objective approaches. Among them, Cruz et al. employ the
multi-objective algorithm NSGA-II to create and manage product
portfolios based on customer satisfaction and costs [S29]. Sayyad
et al. perform a more exhaustive application and analysis of
multi-objective evolutionary algorithms for configuration tasks
[S4,S30,S32]. Similarly, the work of Olaechea et al. proposes an
exact method to compute Pareto fronts showing their capability
to handle small and medium size problems and provide guidelines
for choosing either exact or evolutionary approaches [S56,545,568].

15 Consulted on August 21th, 2014.

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51 45

Configuration is also performed in more specialized artifacts such
as business process families [S43], in other development para-
digms such as SPLs based on service orientation [S46], or to minia-
turize software so that it fits into different resource-constrained
hardware platforms [S51].

In contrast with ARE, the Application Realization (AR) stage
focuses on the actual realization of those individual systems based
on the configured or selected requirements [6]. Thus, it is not sur-
prising that almost all the primary resources categorized into the
AR stage were also categorized into ARE (see Table 2). We believe
that this is because once a product is configured, a natural follow-
ing step is to realize it using assets developed during the Domain
Engineering activities. The only exception we found was S55 that
deals with the realization of SPLs with service orientation.

The most pressing need in this area is the availability of more
extensive and robust tool support, as our mapping study found
only one such tool in the work by Murashkin et al. [S25]. Require-
ments for adequate tool support for configuration in SPLs have
been collected by Rabiser et al. [22].

4.3. Need to improve empirical evidence robustness

Our systematic mapping study also revealed an undesirable
finding, the lack of thorough empirical analysis with an emphasis
on using adequate statistical tests. This is specially critical because
many of the SBSE techniques rely on randomness. Another exam-
ple is the use of a small number of feature models, as low as one
or two, from which general conclusions cannot confidently be
drawn. Except for the publications whose main purpose was either
presenting a tool or for short papers that describe on-going work,
this should not be an acceptable practice. This lack of proper
empirical analysis has also been observed across multiple areas
of Software Engineering and SBSE and guidelines have been
proposed to address this issue (see [20,16]).

Fig. 11 shows the type of analysis by year. Relevant in this figure
is the number of articles classified under the category of Statistical
Tests. We should point out that the first guideline paper for SBSE
techniques authored by Arcuri and Briand appeared in mid 2011
[55]. Out of the 20 papers under this category, 12 refer to either
this guideline or its journal version [20], 2 use other guidelines,
and 6 do not make reference to any concrete guideline article. This
finding shows the positive impact that guidelines can have, for
instance, for improving the quality of some aspects of the empirical
analysis. Another striking find was the low number of industrial
and open source case studies. Increasing their number can only
help to strengthen the empirical robustness of this area of research.

4.4. Need of better tooling support

Adoption of new ideas and techniques can either be helped or
hampered by the underlying tool support. Our systematic mapping

Type of Analysis

! ! ! 1 ! 1 1 1
2007 2008 2009 2010 2011 2012 2013 2014
Years

Fig. 11. Type of analysis articles per year.

study found only six publications whose main contribution was
providing tool support. Work by Segura and colleagues presents
a tool for the generation of hard feature models to test feature
model analysis tools [S13,540,S52]. Henard et al. present a tool
called PLEDGE that provides a product line editor and a generator
of t-wise covering arrays [S14]. A similar tool, CITLab is presented
by Calvagna et al. whose main goal is integrating multiple CIT
approaches for SPLs [S69]. Murashkin et al. present a tool for the
visualization and exploration of variants in a multi-dimensional
space [S25].

We need to say that several publications do make their source
code and related artifacts openly available. However, for our study
we only considered those that, by being presented as tool papers
(e.g. in tool tracks at conferences), were considered, by their own
authors, to be mature enough to be used by a wider community.
A detailed comparison of tool availability is outside the scope of
our mapping study, but nonetheless a worthy item for future work.

4.5. SBSE for SPL maintenance and evolution

SPLs, as any software system, need to be maintained and
evolved in order to keep up with market, societal, and technologi-
cal changes. SPL maintenance and evolution pose an interesting
and unique set of challenges, an overview of them is presented
by Laguna and Crespo [28].

Lopez-Herrejon et al. proposed a genetic algorithm to reverse
engineer feature models from sets of valid feature combinations
[S3]. This work has been further extended to use genetic program-
ming [S57]. The work by Yi et al. has a similar goal while focusing
on mining binary cross-tree constraints [S36]. Lopez-Herrejon and
Egyed used a deterministic search to assess the complexity of
fixing model inconsistencies [S7,S16]. A similar goal is presented
in the work by Henard et al. whose approach aims to test and fix
feature models [S19]. Ullah and colleagues present COPE+, an
approach for creating product portfolios from single products by
taking into account the customer preferences [S10,571]. Karimpour
and Ruhe propose a bi-objective approach for adding and selecting
new features in existing SPLs [S31]. Del Rosso presents an approach
for tuning performance based on product family architectures
particularly in the domain of embedded systems [S49].

Salient among the open questions in this area is the study of
reverse engineering tasks that simultaneously involve several
artifacts. For example, reverse engineering feature models and
architectural models such that the set of combinations denoted
by the feature models can actually be realized by the architectural
components. Application of co-evolutionary (see [56]) approaches
might prove useful to address this question.

Another interesting avenue is exploring further into the wealth
of results in the area of the Next Release Problem'® (e.g. [58,59]) in
combination with recent work on SPL economics (e.g. [60,61]),
which may help to address the most common development scenario
of SPLs whereby multiple existing variants that must be consolidated
into a SPL infrastructure to effectively address their maintenance
problems [62].

4.6. SBSE for SPL domain design

Recall that Domain Design (DD) is the sub-process of Domain
Engineering where a Product Line Architecture (PLA) is developed
[6]. Few works rely on specialized models for this task. For exam-
ple, integrated decision models [S28], combinations of models such

16 This problem consist of determining which features—in the general sense of
software development and not in relation to SPLs—should be added to the next
software release of existing systems based on user requirements while meeting
resource constraints [57].

46 R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

as Petri Nets and process models [S48], and cost-based models
[S50]. However, most of the work has focused on UML-based class
and component diagrams. The work by Colanzi and colleagues has
focused on obtaining Product Line Architectures using novel
cohesion measures tailored to SPLs [S2,S5]. They also performed
a study of different SBSE representations used for software
architectures identifying their drawbacks, and proposed a repre-
sentation based on a PLA metamodel for which they define a set
of search operators [S26]. Their group has also applied design
patterns as mutation operators [S44,S60], and a specialized
feature-driven crossover operator [S66].

Some of the open issues in this area are: (i) studying the
advantages and disadvantages of genetic programming for the
representation of PLA metamodels (e.g. along the lines suggested
in [S57]), (ii) using SPL specific refactorings beyond the GoF
patterns (e.g. [63,64]) and recent advances in search-based refac-
toring (e.g. [65]), (iii) exploring and adapting results from software
module clustering (e.g. [66,67]), and (iv) performing empirical user
studies to compare against manually produced PLAs (e.g. [68]).

4.7. Genetic improvement for SPL

Genetic Programming (GP) is a form of evolutionary computation
that employs tree-based representation of computer programs
whose fitness is determined on how well the encoded programs
solve a computational problem [69]. Despite the extensive
research on GP, our study only found one article that applies GP
for SPLs [S57]. Within SBSE, GP has been turned into a technique
referred to as Genetic Improvement (GI) whose aim is improving
existing programs rather than evolving them from scratch as pro-
posed by GP [41]. GI has been successfully used, for instance, to
specialize boolean satisfiability (SAT) programs written in C++ for
concrete tasks such as combinatorial interaction testing [70],
repair broken functionality [71], or add new functionality [72].

In their keynote paper, Harman and colleagues advocate the
potential use of GI for SPL development [41]. For instance, to
generate a Pareto surface of programs that exhibit the same func-
tionality but with different quality attributes such as performance.
Another possibility they propose is actually growing new function-
ality, hence creating a new branch or variant product of a SPL.
Crystallizing these visions would require extensive research that
exploits current results of variability mining [73] and SPL evolution
[28], for instance in migrating product variants to SPLs [74,75];
studying the different approaches employed for this task can shed
light on how they could be automated by means of GI.

5. Threats to validity

We faced similar validity threats as any other systematic
mapping study. A threat to validity is the selection of the search
queries. We addressed this threat with a carefully chosen selection
of search terms based on previous studies on the core research
areas of our systematic mapping study, SPLs and SBSE. The SPL
search terms were collected and aggregated from 12 systematic
mapping studies and literature reviews. The SBSE search terms
were based on three studies which we extensively complemented
with terms from recent developments. The selection of SBSE terms
may appear to lack other classical operations research algorithms
that in principle could be applicable to SPLs. Similarly, the selection
of generic search terms such as “search based” relies on our subjec-
tive experience with the SBSE literature. However, we would argue
that our familiarity with the publication fora and the consistency
between our results and Harman et al’s survey (see [41] and
Section 6) give us confidence that we did not miss, incorrectly
classify or mistakenly include primary sources.

A second threat to validity comes from how the search for
primary sources was carried out. We searched two specialized
community repositories and employed five standard bibliography
search engines. We consider that these sources cover all possible
publicly available publication venues within both SPL and SBSE
communities.

A third threat to validity is the selection of criteria for inclusion
and exclusion. In order to get a better and more comprehensive
picture of the state of the research at the intersection of SPL and
SBSE we included all types of publications, i.e. from non-
peer-reviewed to journal publications, provided that they clearly
apply at least one SBSE technique to a SPL problem.

A fourth threat to validity is our classification scheme. We
addressed this threat for the life cycle stages classification by
selecting stage terms and definitions based on a well-known
framework within the SPL community. We added new terms to
our classification to include maintenance, evolution, and tooling
issues not explicitly considered as a stage by this framework. To
classify the level of analysis we defined our terms based on the
guidelines proposed by Arcuri and Briand [20]. For the classification
of case studies we considered the most common sources of both
provenance and artifact types used within the SPL community.

A fifth threat to validity refers to the way the data was extracted
for creating the mapping study. We took the following steps to
address this threat. First, we created a guideline document defining
each of the classification terms and an spreadsheet to collect the
classification information. Second, we formed two groups for the
classification task. Third, we held a meeting to discuss and pilot
the classification terms prior to performing the classification. At
this meeting, the criteria were tested and calibrated using some
actual papers that had been collected. Fourth, the two teams per-
formed the classification independently. Fifth, we held a second
meeting where the classification for every single paper for each
criterion was discussed until a consensus was reached. These steps
gave us the confidence that our data was consistently classified.

In addition, we further performed many manual and automated
checks and verifications to revalidate the consistency and accuracy
of our data while we were aggregating the information and prepar-
ing the graphs and figures presented in this work.

6. Related work

In this section we briefly summarize the surveys and studies
carried out in either SPLs or in SBSE.

SBSE surveys. The survey by Harman et al. presents a general
overview of SBSE techniques and the areas where it has been
employed [1]. Freitas et al. performed a bibliometric analysis of
SBSE [47]. Their goal was to identify trends in the number of pub-
lications, the publication fora, the authorship and collaborations
among members of the SBSE community. In contrast with our
work, they have a different focus, namely general software engi-
neering and not SPLs. Ali et al. performed a systematic review of
empirical investigation of search-based test case generation tech-
niques [34]. Similar to ours their review assessed how the found
techniques were empirically evaluated, but in contrast their work
focused exclusively on testing and for non-SPL software systems.
Similarly, the work by Afzal et al. performed a systematic study
on testing of non-functional search based testing [33], that is, for
properties such as safety, usuability, or quality of service.

Mark Harman and his colleagues carried out a survey on SBSE
and SPL for a keynote talk at the Software Product Line Conference
2014. In sharp contrast with our work, their goal was to provide a
bird’s-eye view at the intersection of both fields and not to perform
a detailed systematic mapping study as in our case. Hence their
work does not provide a detailed classification or analysis along

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51 47

30
25

20

26
0
18

14
15 12 13
10 8 8
5 2 3 343

1 1 1 1 1

5 Lol - Bl

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

M Mapping Study B Keynote

Fig. 12. Publications per year comparison.

research questions as our study does. Fig. 12 contrasts the number
of publications found by their survey in comparison with our
study. Overall their results are consistent with our findings and
indicate an increasing interest in the area.'’

The results presented in this paper are a substantial extension
of an earlier draft [35]. The earlier version helped us pilot the
research questions, fine tune the search terms for our queries,
and provided insight into the classification scheme. The results
between both works are completely consistent, for instance the
first 42 primary sources were already identified in the earlier draft.

SPL surveys. There has been many recent systematic mapping
studies and systematic literature reviews in this area. Here we
summarize the studied areas.

Bastos et al. perfomed a mapping study SPL adoption [23]. Their
work identified four adoption strategies and 23 barriers that can
hinder SPL adoption in industrial projects.

Another mapping study has been done by da Silva on agile
methods and SPL. et [26]. Their study found that most of the appli-
cations of agile methods follow XP or Scrum and identified SPL
practices that can be exploited by Agile techniques.

A systematic literature review on requirements engineering and
SPL was performed by Alves et al. [21]. Their work indicates that
the application of requirements engineering techniques for SPL
was still not mature as most of the case studies used were indeed
toy examples. Thus they advocate that more empirical studies
should be performed to address this serious limitation and hence
improve the rigor, credibility, and validity of the proposed
approaches.

Mohabbati et al. performed a mapping study on service orienta-
tion and SPLs. [29]. They conclude that despite the increasing inter-
est in combining both areas there are still a lot of ground to
explore. Mahdavi-Hezavehi et al. performed a more focused study
on service orientation and variability in quality attributes [30].
They found that most of the current works focus on performance
and availability whereas other attributes are mostly disregarded
and are not in industrial settings.

Recently two systematic mapping studies in SPL testing have
appeared [25,24], both of which attest that the application of SBSE
techniques for SPL testing is an area ripe for research that needs to
be further explored. The respective authors further compared the
results against each other yielding interesting conclusions on the
reliability of mapping studies [76]. A recent literature review
categorized SPL testing strategies into two fundamental aspects:
the selection of the products to test, and the actual testing of the
products [31]. Despite the extensive work carried out on both of
these aspects, the authors found that there is still a great lack of
empirical industrial applications.

17 Their survey does not always distinguish supporting references and works at the
intersection of SPLs and SBSE, so we cannot accurately know which of their references
were counted for each year. This explains the minor discrepancies in years 2001 and
2009.

Laguna et al. performed a systematic mapping study on SPL evo-
lution [28], where they made an assessment of the maturity level
of techniques to migrate individual systems or groups of software
variants into SPLs.

Chen et al. performed a systematic review of variability man-
agement [77]. Their findings indicate that a large majority of the
reported approaches have not been sufficiently evaluated using
scientifically rigorous methods (e.g. empirical studies [16]), overall
the available evidence is quite sparse and its quality quite low.
Similarly, Galster et al. performed a thorough systematic literature
review of variability in software systems [32]. Among their salient
findings, they identified that software quality attributes have not
received much attention and that testing is under-represented. In
addition, they put forward a set of dimensions to unify and
integrate the otherwise disperse research on variability in software
systems.

Rabiser et al. performed a systematic review of requirements for
supporting product configuration [22], whereas Holl et al. carried
out a systematic review of the capabilities to support multi product
lines [27]. In contrast with all these SPLs studies our work has a
novel and distinct focus.

7. Conclusions and future work

In this paper we present the results of the first systematic
mapping study on the application of SBSE techniques to SPL prob-
lems. Our study corroborates the increasing interest in applying
this type of techniques as shown by the number of recent publica-
tions. The most common application is for testing at the Domain
Engineering level, for example in computing test suites in
Combinatorial Interaction Testing. The most common techniques
used are genetic algorithms and multi-objective evolutionary
algorithms. Our work identified a need to improve evaluations
with a more adequate empirical methodology and adequate statis-
tical analysis.

Our work also revealed research areas and possible opportuni-
ties. For example, developing adequate community-wide testing
benchmarks, exploiting more SPL knowledge to reduce the search
effort, the strong need to provide robust tooling support, etc. We
also inadvertently found that there is a wealth of research litera-
ture on product line scoping and design in the area of manufactur-
ing and marketing that relies on SBSE techniques. This begs the
question if any of the research done in those areas can be applica-
ble to SPLs. We hope that this mapping study not only serves to
highlight the main research topics at the intersection of SBSE and
SPLs but that it also serves to entice both researchers and practitio-
ners to explore the great synergy potential that these two research
areas can offer to the Software Engineering community at large.

Acknowledgements

This research is partially funded by the Austrian Science Fund
(FWF) Projects P25289-N15, P25513-N15, and Lise Meitner Fellow-
ship M1421-N15. We thank Javier Ferrer, Francisco Chicano, and
Enrique Alba for their help with the earlier versions of this work.

Appendix A. Primary sources
A.1. References list

[S1] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. Minimizing
test suites in software product lines using weight-based
genetic algorithms. In GECCO, pages 1493-1500, 2013.

[S2] Thelma E. Colanzi and Silvia R. Vergilio. Applying search
based optimization to software product line architectures:
Lessons learned. In Proceedings of SSBSE, volume 7515 of
LNCS, pages 259-266, 2012.

48 R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

[S3] Roberto Erick Lopez-Herrejon, José A. Galindo, David Bena-
vides, Sergio Segura, and Alexander Egyed. Reverse engi-
neering feature models with evolutionary algorithms: An
exploratory study. In Proceedings of SSBSE, volume 7515 of
LNCS, pages 168-182, 2012.

[S4] Abdel Salam Sayyad, Tim Menzies, and Hany Ammar. On the
value of user preferences in search-based software engineer-
ing: a case study in software product lines. In Proceedings of
ICSE, pages 492-501, 2013.

[S5] Thelma E. Colanzi. Search based design of software product
lines architectures. In ICSE, pages 1507-1510, 2012.

[S6] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and
Yinglin Wang. A genetic algorithm for optimized feature
selection with resource constraints in software product
lines. Journal of Systems and Software, 84(12):2208-2221,
2011.

[S7] Roberto E. Lopez-Herrejon and Alexander Egyed. Searching
the variability space to fix model inconsistencies: A preli-
minary assessment. In SSBSE 2011, 2011.

[S8] Zhigiao Wu, Jiafu Tang, C.K. Kwong, and Ching-Yuen Chan.
An optimization model for reuse scenario selection consider-
ing reliability and cost in software product line develop-
ment. Intl. Jnl. of Inform. Tech. and Decision Making,
10(5):811-841, 2011.

[S9] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi.
Constructing interaction test suites for highly-configurable
systems in the presence of constraints: A greedy approach.
IEEE Trans. Software Eng., 34(5):633-650, 2008.

[S10] Muhammad Irfan Ullah. Cope+: A method for design and
evaluation of product variants. Technical Report SERG-
2009-03, August 2009.

[S11] Brady J. Garvin, Myra B. Cohen, and Matthew B. Dwyer.
Evaluating improvements to a meta-heuristic search for
constrained interaction testing. Empirical Software
Engineering, 16(1):61-102, 2011.

[S12] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interac-
tion testing of highly-configurable systems in the presence
of constraints. In ISSTA, pages 129-139, 2007.

[S13] Sergio Segura, José Antonio Parejo, Robert M. Hierons, David
Benavides, and Antonio Ruiz Cortés. Automated generation
of computationally hard feature models using evolutionary
algorithms. Expert Syst. Appl., 41(8):3975-3992, 2014.

[S14] Christopher Henard, Mike Papadakis, Gilles Perrouin,
Jacques Klein, and Yves Le Traon. Pledge: a product line
editor and test generation tool. In SPLC Workshops, pages
126-129, 2013.

[S15] Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and
Alexander Egyed. Using feature model knowledge to speed
up the generation of covering arrays. In VaMoS, page 16,
2013.

[S16] Roberto E. Lopez-Herrejon and Alexander Egyed. Towards
fixing inconsistencies in models with variability. In Proceed-
ings of VaMoS, pages 93-100, 2012.

[S17] Zhihong Xu, Myra B. Cohen, Wayne Motycka, and Gregg
Rothermel. Continuous test suite augmentation in software
product lines. In Proceedings SPLC, pages 52-61, 2013.

[S18] Christopher Henard, Mike Papadakis, Gilles Perrouin,
Jacques Klein, and Yves Le Traon. Multi-objective test
generation for software product lines. In Proceedings of
SPLC, pages 62-71, 2013.

[S19] Christopher Henard, Mike Papadakis, Gilles Perrouin,
Jacques Klein, and Yves Le Traon. Towards automated testing
and fixing of re-engineered feature models. In Proceedings of
ICSE, pages 1245-1248, 2013.

[S20] Lei Tan, Yuqing Lin, Huilin Ye, and Guoheng Zhang. Improv-
ing product configuration in software product line engineer-
ing. In 36th Australasian Computer Science Conference,
ACSC '13, pages 125-133, 2013.

[S21] Gustavo G. Pascual, Moénica Pinto, and Lidia Fuentes.
Run-time adaptation of mobile applications using genetic
algorithms. In SEAMS, pages 73-82, 2013.

[S22] Hadi Serajzadeh and Fereidoon Shams. The application of
swarm intelligence in service-oriented product lines. In SPLC
Workshops, page 12, 2011.

[S23] Martin Fagereng Johansen, @ystein Haugen, and Franck
Fleurey. An algorithm for generating t-wise covering arrays
from large feature models. In SPLC (1), pages 46-55, 2012.

[S24] Martin Fagereng Johansen, @ystein Haugen, Franck Fleurey,
Anne Grete Eldegard, and Torbjern Syversen. Generating
better partial covering arrays by modeling weights on
sub-product lines. In MoDELS, pages 269-284, 2012.

[S25] Alexandr Murashkin, Michal Antkiewicz, Derek Rayside, and
Krzysztof Czarnecki. Visualization and exploration of opti-
mal variants in product line engineering. In Proceedings of
SPLC, pages 111-115, 2013.

[S26] Thelma E. Colanzi and Silvia R. Vergilio. Representation of
software product line architectures for search-based design.
In Proceedings of CMSBSE@ICSE, pages 28-33, 2013.

[S27] Roberto E. Lopez-Herrejon, Francisco Chicano, Javier Ferrer,
Alexander Egyed, and Enrique Alba. Multi-objective optimal
test suite computation for software product line pairwise
testing. In ICSM, pages 404-407. IEEE, 2013.

[S28] Zhigiao Wu, Jiafu Tang, and Xiaoging Wang. Integrated
design of production strategy and reuse scenario for product
line development. In SEDM, pages 69-74, June 2010.

[S29] Jonathas Cruz, Pedro Santos Neto, Ricardo Britto, Ricardo
Rabelo, Werney Ayala, Thiago Soares, and M. Mota. Toward
a hybrid approach to generate software product line
portfolios. In IEEE Congress on Evolutionary Computation,
pages 2229-2236, 2013.

[S30] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany
Ammar. Scalable product line configuration: A straw to
break the camel’s back. In ASE, pages 465-474. IEEE, 2013.

[S31] Reza Karimpour and Giinther Ruhe. Bi-criteria genetic search
for adding new features into an existing product line. In
Proceedings of CMSBSE®@ICSE, pages 34-38, 2013.

[S32] Abdel Salam Sayyad, Joseph Ingram, Tim Menzies, and Hany
Ammar. Optimum feature selection in software product
lines: Let your model and values guide your search. In
Proceedings of CMSBSE@ICSE, pages 22-27, 2013.

[S33] Luis Emiliano Sanchez, Sabine Moisan, and Jean-Paul Rigault.
Metrics on feature models to optimize configuration
adaptation at run time. In Proceedings of CMSBSE@ICSE,
pages 39-44, 2013.

[S34] Runyu Shi, Jianmei Guo, and Yinglin Wang. A preliminary
experimental study on optimal feature selection for product
derivation using knapsack approximation. In PIC, pages
665-669, 2010.

[S35] Linbin Yu, Feng Duan, Yu Lei, Raghu Kacker, and D. Richard
Kuhn. Combinatorial test generation for software product
lines using minimum invalid tuples. In HASE, pages 65-72.
IEEE Computer Society, 2014.

[S36] Li Yi, Wei Zhang, Haiyan Zhao, Zhi Jin, and Hong Mei. Mining
binary constraints in the construction of feature models. In
RE, pages 141-150, 2012.

[S37] Faezeh Ensan, Ebrahim Bagheri, and Dragan Gasevic. Evolu-
tionary search-based test generation for software product
line feature models. In CAISE, pages 613-628, 2012.

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51 49

[S38] Wei Zhang, Haiyan Zhao, and Hong Mei. Binary-search based
verification of feature models. In Top Productivity through
Software Reuse, volume 6727 of LNCS, pages 4-19. 2011.

[S39] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques
Klein, and Yves Le Traon. Assessing software product line test-
ing via model-based mutation: An application to similarity
testing. In ICST Workshops, pages 188-197, 2013.

[S40] Sergio Segura, José A. Galindo, David Benavides, José Antonio
Parejo, and Antonio Ruiz Cortés. BeTTy: benchmarking and
testing on the automated analysis of feature models. In Pro-
ceedings of VaMoS, pages 63-71, 2012.

[S41] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques
Klein, Patrick Heymans, and Yves Le Traon. Bypassing the com-
binatorial explosion: Using similarity to generate and prioritize
t-wise test suites for large software product lines. CoRR, abs/
1211.5451, 2012.

[S42] Evelyn Nicole Haslinger, Roberto E. Lopez-Herrejon, and
Alexander Egyed. Improving casa runtime performance by
exploiting basic feature model analysis. CoRR, abs/1311.7313,
2013.

[S43] Ivana Ognjanovic, Bardia Mohabbati, Dragan Gasevic, Ebra-
him Bagheri, and Marko Boskovic. A metaheuristic approach
for the configuration of business process families. In Louise
E. Moser, Manish Parashar, and Patrick C.K. Hung, editors,
IEEE SCC, pages 25-32. IEEE, 2012.

[S44] Giovani Guizzo, Thelma Elita Colanzi, and Silvia Regina
Vergilio. Applying design patterns in product line search-
based design: Feasibility analysis and implementation
aspects. In Proceedings of the Chilean Computing Conference
(JCC '13), Temuco, Chile, 11-15 November 2013.

[S45] Rafael Ernesto Olaechea Velazco. Comparison of exact and
approximate multi-objective optimization for software
product lines. Master’s thesis, University of Waterloo,
Waterloo, Ontario, Canada, 2013.

[S46] Hongxia Zhang, Rongheng Lin, Hua Zou, Fangchun Yang, and
Yao Zhao. The collaborative configuration of service-ori-
ented product lines based on evolutionary approach. In IEEE
SCC, pages 751-752. IEEE, 2013.

[S47] Roberto E. Lopez-Herrejon, Javier Ferrer, Francisco Chicano,
Evelyn Nicole Haslinger, Alexander Egyed, and Enrique Alba.
Towards a benchmark and a comparison framework for
combinatorial interaction testing of software product lines.
CoRR, abs/1401.5367, 2014.

[S48] Renzhong Wang and Cihan H. Dagli. Computational system
architecture development using a holistic modeling
approach. Procedia Computer Science, 12(0):13 - 20, 2012.
Complex Adaptive Systems 2012.

[S49] Christian Del Rosso. Software performance tuning of soft-
ware product family architectures: Two case studies in the
real-time embedded systems domain. Journal of Systems
and Software, 81(1):1-19, 2008.

[S50] Jiafu Tang, Wu Zhiqgiao, C.K. Kwong, and Xinggang Luo. Inte-
grated production strategy and reuse scenario: A cofaq
model and case study of mail server system development.
Omega, 41(3):536 - 552, 2013.

[S51] Nasir Ali, Wei Wu, Giuliano Antoniol, Massimiliano Di Penta,
Yann-Gaél Guéhéneuc, and Jane Huffman Hayes. Moms:
Multi-objective miniaturization of software. In ICSM, pages
153-162. IEEE, 2011.

[S52] Sergio Segura, David Benavides, and Antonio Ruiz Cortés.
Functional testing of feature model analysis tools: a test
suite. IET Software, 5(1):70-82, 2011.

[S53] Hauke Baller, Sascha Lity, Malte Lochau, and Ina Schaefer.
Multi-objective test suite optimization for incremental
product family testing. In ICST, pages 303-312, 2014.

[S54] Ana B. Sanchez, Sergio Segura, and Antonio Ruiz Cortés. A
comparison of test case prioritization criteria for software
product lines. In ICST, pages 41-50, 2014.

[S55] Bardia Mohabbati, Marek Hatala, Dragan Gasevic, Mohsen
Asadi, and Marko Boskovic. Development and configuration
of service-oriented systems families. In William C. Chu, W.
Eric Wong, Mathew]. Palakal, and Chih-Cheng Hung, editors,
SAC, pages 1606-1613. ACM, 2011.

[S56] Rafael Olaechea, Steven Stewart, Krzysztof Czarnecki, and
Derek Rayside. Modeling and multi-objective optimization
of quality attributes in variability-rich software. In Proceed-
ings of the Fourth International Workshop on Nonfunctional
System Properties in Domain Specific Modeling Languages,
NFPinDSML '12, pages 2:1-2:6, New York, NY, USA, 2012.
ACM.

[S57] Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexan-
der Egyed. Feature model synthesis with genetic program-
ming. In SSBSE, pages 153-167, 2014.

[S58] Christopher Henard, Mike Papadakis, and Yves Le Traon.
Mutation-based generation of software product line test
configurations. In SSBSE, pages 92-106, 2014.

[S59] Shuai Wang, Shaukat Ali, and Arnaud Gotlieb. Random-
weighted search-based multi-objective optimization revis-
ited. In SSBSE, pages 199-214, 2014.

[S60] Giovani Guizzo, Thelma Elita Colanzi, and Silvia Regina
Vergilio. A pattern-driven mutation operator for search-
based product line architecture design. In SSBSE, pages 77-
91, 2014.

[S61] Shuai Wang, David Buchmann, Shaukat Ali, Arnaud Gotlieb,
Dipesh Pradhan, and Marius Liaaen. Multi-objective test pri-
oritization in software product line testing: An industrial
case study. In SPLC, 2014.

[S62] Mustafa Al-Hajjaji, Thomas Thum, Jens Meinicke, Malte
Lochau, and Gunter Saake. Similarity-based prioritization
in software product-line testing. In SPLC 14, 2014.

[S63] Roberto E. Lopez-Herrejon, Javier Ferrer, J. Francisco Chicano,
Alexander Egyed, and Enrique Alba. Comparative analysis of
classical multi-objective evolutionary algorithms and seed-
ing strategies for pairwise testing of software product lines.
In CEC, 2014.

[S64] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jac-
ques Klein, Patrick Heymans, and Yves Le Traon. Bypassing
the combinatorial explosion: Using similarity to generate
and prioritize t-wise test configurations for software product
lines. IEEE Trans. Software Eng., 40(7):650-670, 2014.

[S65] Roberto Erick Lopez-Herrejon, Javier Ferrer, Francisco Chi-
cano, Evelyn Nicole Haslinger, Alexander Egyed, and Enrique
Alba. A parallel evolutionary algorithm for prioritized pair-
wise testing of software product lines. In Dirk V. Arnold, edi-
tor, GECCO, pages 1255-1262. ACM, 2014.

[S66] Thelma Elita Colanzi and Silvia Regina Vergilio. A feature-
driven crossover operator for product line architecture
design optimization. In COMPSAC 14, 2014.

[S67] Thelma Elita Colanzi, Silvia Regina Vergilio, Itana M.S. Gim-
enes, and Willian Nalepa Oizumi. A search-based approach
for software product line design. In SPLC 14, 2014.

[S68] Rafael Olaechea, Derek Rayside, Jianmei Guo, and Krzysztof
Czarnecki. Comparison of exact and approximate multi-
objective optimization for software product lines. In SPLC
14, 2014.

[S69] Andrea Calvagna, Angelo Gargantini, and Paolo Vavassori.
Combinatorial testing for feature models using citlab. In ICST
Workshops, pages 338-347, 2013.

[S70] Gustavo G. Pascual, Ménica Pinto, and Lidia Fuentes. Run-
time support to manage architectural variability specified

50 R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51

with CVL. In Khalil Drira, editor, ECSA, volume 7957 of Lec-
ture Notes in Computer Science, pages 282-298. Springer,
2013.

[S71] Muhammad Irfan Ullah, Giinther Ruhe, and Vahid Garousi.
Decision support for moving from a single product to a prod-
uct portfolio in evolving software systems. Journal of Sys-
tems and Software, 83(12):2496-2512, 2010.

[S72] Ying-lin Wang and Jin-wei Pang. Ant colony optimization for
feature selection in software product lines. Journal of Shang-
hai Jiaotong University (Science), 19(1):50-58, 2014.

[S73] Jian Li, Xijuan Liu, Yinglin Wang, and Jianmei Guo. Formaliz-
ing feature selection problem in software product lines using
0-1 programming. In Yinglin Wang and Tianrui Li, editors,
Practical Applications of Intelligent Systems, volume 124 of
Advances in Intelligent and Soft Computing, pages 459-
465. Springer Berlin Heidelberg, 2012.

[S74] Sheng Chen and Martin Erwig. Optimizing the product deri-
vation process. In Software Product Lines - 15th Interna-
tional Conference, SPLC 2011, Munich, Germany, August
22-26, 2011, pages 35-44, 2011.

[S75] Alexander Nohrer and Alexander Egyed. Optimizing user
guidance during decision-making. In Software Product Lines
- 15th International Conference, SPLC 2011, Munich, Ger-
many, August 22-26, 2011, pages 25-34, 2011.

[S76] Jodo Bosco Ferreira Filho, Olivier Barais, Mathieu Acher,
Benoit Baudry, and Jérome Le Noir. Generating counterex-
amples of model-based software product lines: an explor-
atory study. In Tomoji Kishi, Stan Jarzabek, and Stefania
Gnesi, editors, 17th International Software Product Line Con-
ference, SPLC 2013, Tokyo, Japan - August 26-30, 2013,
pages 72-81. ACM, 2013.

[S77] Johannes Miiller. Value-based portfolio optimization for
software product lines. In Software Product Lines - 15th
International Conference, SPLC 2011, Munich, Germany,
August 22-26, 2011, pages 15-24, 2011.

References

[1] M. Harman, S.A. Mansouri, Y. Zhang, Search-based software engineering:
trends, techniques and applications, ACM Comput. Surv. 45 (1) (2012) 11.

[2] J.A. Clark, JJ. Dolado, M. Harman, R.M. Hierons, B.F. Jones, M. Lumkin, B.S.
Mitchell, S. Mancoridis, K. Rees, M. Roper, M.]. Shepperd, Formulating software
engineering as a search problem, IEE Proc. - Softw. 150 (3) (2003) 161-175.

[3] A. Eiben, J. Smith, Introduction to Evolutionary Computing, Springer-Verlag,
2003.

[4] S. Luke, Essentials of Metaheuristics, Lulu, 2009 <http://cs.gmu.edu/~sean/
book/metaheuristics/>.

[5] D.S. Batory, J.N. Sarvela, A. Rauschmayer, Scaling step-wise refinement, IEEE
Trans. Softw. Eng. 30 (6) (2004) 355-371.

[6] K. Pohl, G. Bockle, FJ. van der Linden, Software Product Line Engineering:
Foundations, Principles and Techniques, Springer, 2005.

[7] M. Svahnberg, J. van Gurp, J. Bosch, A taxonomy of variability realization
techniques, Softw. Pract. Exper. 35 (8) (2005) 705-754.

[8] K. Kang, S. Cohen,]. Hess, W. Novak, A. Peterson, Feature-Oriented Domain
Analysis (FODA) Feasibility Study, Tech. Rep. CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, 1990.

[9] D. Benavides, S. Segura, A.R. Cortés, Automated analysis of feature models 20
years later: a literature review, Inf. Syst. 35 (6) (2010) 615-636.

[10] FJ. van d Linden, K. Schmid, E. Rommes, Software Product Lines in Action: The
Best Industrial Practice in Product Line Engineering, Springer, 2007.

[11] T. Kikold,].C. Duefias (Eds.), Software Product Lines - Research Issues in
Engineering and Management, Springer, 2006.

[12] S. Yoo, M. Harman, S. Ur, GPGPU test suite minimisation: search based
software engineering performance improvement using graphics cards, Emp.
Softw. Eng. 18 (3) (2013) 550-593, http://dx.doi.org/10.1007/s10664-013-
9247-y. http://dx.doi.org/10.1007/s10664-013-9247-y.

[13] B. Kitchenham, S. Charters, Guidelines for performing systematic literature
reviews in software engineering. version 2.3., EBSE Technical Report EBSE-
2007-01, Software Engineering Group, School of Computer Science and
Mathematics, Keele University, UK and Department of Computer Science,
University of Durham, UK, 2007 <http://cdn.elsevier.com/promis_misc/
525444systematicreviewsguide.pdf>.

[14] K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson, Systematic mapping studies in
software engineering, in: EASE, British Computer Society, 2008, pp. 68-77
<http://dl.acm.org/citation.cfm?id=2227115.2227123>.

[15] D. Budgen, M. Turner, P. Brereton, B. Kitchenham, Using mapping studies in
software engineering, in: Proceedings of PPIG 2008, Lancaster University,
2008, pp. 195-204.

[16] C. Wohlin, P. Runeson, M. Host, M.C. Ohlsson, B. Regnell, Experimentation in
Software Engineering, Springer, 2012.

[17] B.A. Kitchenham, D. Budgen, O.P. Brereton, Using mapping studies as the basis
for further research - a participant-observer case study, Inform. Softw.
Technol. 53 (6) (2011) 638-651.

[18] B. Kitchenham, T. Dybaa, M. Jorgensen, Evidence-based software engineering,
in: ICSE, IEEE CS Press, 2004, pp. 273-281.

[19] M. Harman, B.F. Jones, Search-based software engineering, Inform. Softw. Tech.
43 (14) (2001) 833-839.

[20] A. Arcuri, L.C. Briand, A hitchhiker’s guide to statistical tests for assessing
randomized algorithms in software engineering, Softw. Test. Verif. Reliab. 24
(3) (2014) 219-250, http://dx.doi.org/10.1002/stvr.1486. http://dx.doi.org/10.
1002/stvr.1486.

[21] V. Alves, N. Niu, C.F. Alves, G. Valenga, Requirements engineering for software
product lines: a systematic literature review, Inform. Softw. Technol. 52 (8)
(2010) 806-820.

[22] R. Rabiser, P. Griinbacher, D. Dhungana, Requirements for product derivation
support: results from a systematic literature review and an expert survey,
Inform. Softw. Technol. 52 (3) (2010) 324-346.

[23]]. Ferreira Bastos, P. Anselmo da Mota Silveira Neto, E. Santana de Almeida, S.
Romero de Lemos Meira, Adopting software product lines: a systematic
mapping study, in: 15th Annual Conference on Evaluation Assessment in
Software Engineering (EASE 2011), 2011, pp. 11-20, http://dx.doi.org/10.1049/
ic.2011.0002.

[24] P.A. da Mota Silveira Neto, I. do Carmo Machado, J.D. McGregor, E.S. de
Almeida, S.R. de Lemos Meira, A systematic mapping study of software product
lines testing, Inform. Softw. Technol. 53 (5) (2011) 407-423.

[25] E. Engstrom, P. Runeson, Software product line testing - a systematic mapping
study, Inform. Softw. Technol. 53 (1) (2011) 2-13.

[26] LF. da Silva, P.A. da Mota Silveira Neto, P. O’Leary, E.S. de Almeida, S.R. de
Lemos Meira, Agile software product lines: a systematic mapping study, Softw.
Pract. Exper. 41 (8) (2011) 899-920.

[27] G. Holl, P. Griinbacher, R. Rabiser, A systematic review and an expert survey on
capabilities supporting multi product lines, Inform. Softw. Technol. 54 (8)
(2012) 828-852.

[28] M.A. Laguna, Y. Crespo, A systematic mapping study on software product line
evolution: from legacy system reengineering to product line refactoring, Sci.
Comput. Program. 78 (8) (2013) 1010-1034.

[29] B. Mohabbati, M. Asadi, D. Gasevic, M. Hatala, H.A. Miiller, Combining service-
orientation and software product line engineering: a systematic mapping
study, Inform. Softw. Technol. 55 (11) (2013) 1845-1859.

[30] S. Mahdavi-Hezavehi, M. Galster, P. Avgeriou, Variability in quality attributes
of service-based software systems: a systematic literature review, Inform.
Softw. Technol. 55 (2) (2013) 320-343.

[31] I. do Carmo Machado, J.D. McGregor, Y.C. Cavalcanti, E.S. de Almeida, On
strategies for testing software product lines: a systematic literature review,
Inform. Softw. Technol. 56 (10) (2014) 1183-1199, http://dx.doi.org/10.1016/
j.infsof.2014.04.002. <http://www.sciencedirect.com/science/article/pii/
S0950584914000834>.

[32] M. Galster, D. Weyns, D. Tofan, B. Michalik, P. Avgeriou, Variability in software
systems - a systematic literature review, IEEE Trans. Softw. Eng. 40 (3) (2014)
282-306.

[33] W. Afzal, R. Torkar, R. Feldt, A systematic mapping study on non-functional
search-based software testing, in: Proceedings of the Twentieth International
Conference on Software Engineering & Knowledge Engineering (SEKE'2008),
San Francisco, CA, USA, July 1-3, 2008, Knowledge Systems Institute Graduate
School, 2008, pp. 488-493.

[34] S. Ali, L.C. Briand, H. Hemmati, R.K. Panesar-Walawege, A systematic review of
the application and empirical investigation of search-based test case
generation, IEEE Trans. Soft. Eng. 36 (6) (2010) 742-762.

[35] REE. Lopez-Herrejon,]. Ferrer, F. Chicano, L. Linsbauer, A. Egyed, E. Alba, A
hitchhiker’s guide to search-based software engineering for software product
lines, CoRR abs/1406.2823.

[36] S.J. Russell, P. Norvig, Artificial Intelligence - A Modern Approach (3. internat.
ed.), Pearson Education, 2010.

[37] C.C. Coello, G.B. Lamont, D.A. Veldhuizen, Evolutionary Algorithms for Solving
Multi-Objective Problems, Genetic and Evolutionary Computation, second ed.,
Springer, 2007.

[38] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms, first ed.,
Wiley, 2001.

[39] G. Rozenberg, T. Bdck, J.N. Kok (Eds.), Handbook of Natural Computing,
Springer, 2012.

[40] C. Wohlin, Guidelines for snowballing in systematic literature studies and a
replication in software engineering, in: M.J. Shepperd, T. Hall, I. Myrtveit
(Eds.), EASE, ACM, 2014, p. 38.

[41] M. Harman, Y. Jia, J. Krinke, W.B. Langdon,]J. Petke, Y. Zhang, Search based
software engineering for software product line engineering: a survey and
directions for future work, in: S. Gnesi, A. Fantechi, P. Heymans, J. Rubin, K.
Czarnecki (Eds.), 18th International Software Product Line Conference, SPLC
'14, Florence, Italy, September 15-19, 2014, ACM, 2014, pp. 5-18. http://doi.

http://refhub.elsevier.com/S0950-5849(15)00016-6/h0005
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0005
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0010
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0010
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0010
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0015
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0015
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0015
http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/
http://cs.gmu.edu/~sean/book/metaheuristics/
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0025
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0025
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0030
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0030
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0030
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0035
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0035
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0045
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0045
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0050
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0050
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0050
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0055
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0055
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0055
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0055
http://dx.doi.org/10.1007/s10664-013-9247-y
http://dx.doi.org/10.1007/s10664-013-9247-y
http://dx.doi.org/10.1007/s10664-013-9247-y
http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
http://cdn.elsevier.com/promis_misc/525444systematicreviewsguide.pdf
http://dl.acm.org/citation.cfm?id=2227115.2227123
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0080
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0080
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0080
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0085
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0085
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0085
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0090
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0090
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0090
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0095
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0095
http://dx.doi.org/10.1002/stvr.1486
http://dx.doi.org/10.1002/stvr.1486
http://dx.doi.org/10.1002/stvr.1486
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0105
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0105
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0105
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0110
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0110
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0110
http://dx.doi.org/10.1049/ic.2011.0002
http://dx.doi.org/10.1049/ic.2011.0002
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0120
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0120
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0120
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0125
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0125
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0130
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0130
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0130
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0135
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0135
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0135
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0140
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0140
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0140
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0145
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0145
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0145
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0150
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0150
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0150
http://dx.doi.org/10.1016/j.infsof.2014.04.002
http://dx.doi.org/10.1016/j.infsof.2014.04.002
http://www.sciencedirect.com/science/article/pii/S0950584914000834
http://www.sciencedirect.com/science/article/pii/S0950584914000834
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0160
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0160
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0160
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0170
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0170
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0170
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0185
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0185
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0185
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0185
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0190
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0190
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0190
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0195
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0195
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0195
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0195
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0195
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0200
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0200
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0200
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0200
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0200
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0200
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0200
http://doi.acm.org/10.1145/2648511.2648513

R.E. Lopez-Herrejon et al./Information and Software Technology 61 (2015) 33-51 51

acm.org/10.1145/2648511.2648513,
2648513.

[42] A. Metzger, K. Pohl, Software product line engineering and variability
management: achievements and challenges, in:].D. Herbsleb, M.B. Dwyer
(Eds.), FOSE, ACM, 2014, pp. 70-84.

[43] T. Berger, S. She, R. Lotufo, A. Wasowski, K. Czarnecki, Variability modeling in
the real: a perspective from the operating systems domain, in: C. Pecheur, J.
Andrews, E.D. Nitto (Eds.), ASE, ACM, 2010, pp. 73-82.

[44] W.K.G. Assungdo, S.R. Vergilio, A multi-objective solution for retrieving class
diagrams, in: BRACIS, IEEE, 2013, pp. 249-255.

[45] J. Guo, K. Czarnecki, S. Apel, N. Siegmund, A. Wasowski, Variability-aware
performance prediction: a statistical learning approach, in: E. Denney, T.
Bultan, A. Zeller (Eds.), ASE, IEEE, 2013, pp. 301-311.

[46] R.E.Lopez-Herrejon, A. Egyed, Sbse4vm: Search based software engineering for
variability management, in: Cleve et al. [78], pp. 441-444 <http://ieeexplore.
ieee.org/xpl/mostRecentlssue.jsp?punumber=6498212>.

[47] F.G. de Freitas,].T. de Souza, Ten years of search based software engineering: a
bibliometric analysis, in: SSBSE, 2011, pp. 18-32.

[48] S. Yoo, M. Harman, Regression testing minimization, selection and
prioritization: a survey, Softw. Test. Verif. Reliab. 22 (2) (2012) 67-120.

[49] E. Zitzler, Evolutionary multiobjective optimization, in: Rozenberg et al. [39],
pp. 871-904.

[50] R. Marler, J. Arora, Survey of multi-objective optimization methods for
engineering, Struct. Multidisc. Optim. 26 (6) (2004) 369-395, http://
dx.doi.org/10.1007/s00158-003-0368-6. http://dx.doi.org/10.1007/s00158-
003-0368-6.

[51] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: a comparative case
study and the strength pareto approach, IEEE Trans. Evol. Comp. 3 (4) (1999)
257-271.

[52] D.A. Van Veldhuizen, Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations, Ph.D. thesis, Air Force Institute of Technology,
USA, aAl19928483, 1999.

[53] T. Thim, S. Apel, C. Kastner, I. Schaefer, G. Saake, A classification and survey of
analysis strategies for software product lines, ACM Comput. Surv. 47 (1) (2014)
6.

[54] G. Perrouin, S. Oster, S. Sen,]. Klein, B. Baudry, Y.L. Traon, Pairwise testing for
software product lines: comparison of two approaches, Softw. Qual. J. 20 (3-4)
(2012) 605-643.

[55] A. Arcuri, L.C. Briand, A practical guide for using statistical tests to assess
randomized algorithms in software engineering, in: R.N. Taylor, H. Gall, N.
Medvidovic (Eds.), Proceedings of the 33rd International Conference on
Software Engineering, ICSE 2011, Waikiki, Honolulu, HI, USA, May 21-28,
2011, ACM, 2011, pp. 1-10. http://doi.acm.org/10.1145/1985793.1985795,
http://dx.doi.org/10.1145/1985793.1985795..

[56] E. Popovici, A. Bucci, R.P. Wiegand, E.D. de Jong, Coevolutionary principles, in:
Rozenberg et al. [39], pp. 987-1033, http://dx.doi.org/10.1007/978-3-540-
92910-9_31.

[57] AJ. Bagnall, V.J. Rayward-Smith, I. Whittley, The next release problem, Inform.
Softw. Technol. 43 (14) (2001) 883-890.

[58] Y. Zhang, M. Harman, S.A. Mansouri, The multi-objective next release problem,
in: H. Lipson (Ed.), GECCO, ACM, 2007, pp. 1129-1137.

[59] M. Harman, J. Krinke, I. Medina-Bulo, F. Palomo-Lozano, J. Ren, S. Yoo, Exact
scalable sensitivity analysis for the next release problem, ACM Trans. Softw.
Eng. Methodol. 23 (2) (2014) 19.

[60] R. Heradio, D. Ferndndez-Amords, J.A. Cerrada, I. Abad, A literature review on
feature diagram product counting and its usage in software product line
economic models, Int. J. Softw. Eng. Knowl. Eng. 23 (8) (2013) 1177.

[61] R. Heradio, D. Fernindez-Amorés, L. Torre-Cubillo, A.P. Garcia-Plaza,
Improving the accuracy of coplimo to estimate the payoff of a software
product line, Expert Syst. Appl. 39 (9) (2012) 7919-7928.

[62] Y. Dubinsky,]. Rubin, T. Berger, S. Duszynski, M. Becker, K. Czarnecki, An
exploratory study of cloning in industrial software product lines, in: Cleve

http://dx.doi.org/10.1145/2648511.

et al. [78], pp. 25-34, http://dx.doi.org/10.1109/CSMR.2013.13, http://dx.doi.
org/10.1109/CSMR.2013.13.

[63] R.E. Lopez-Herrejon, L. Montalvillo-Mendizabal, A. Egyed, From requirements
to features: an exploratory study of feature-oriented refactoring, in: E.S. de
Almeida, T. Kishi, C. Schwanninger, I. John, K. Schmid (Eds.), SPLC, IEEE
Computer Society, Los Alamitos, CA, USA, 2011, pp. 181-190. http://dx.doi.org/
10.1109/SPLC.2011.52.

[64] S. Schulze, M. Lochau, S. Brunswig, Implementing refactorings for FOP: lessons
learned and challenges ahead, in: A. Classen, N. Siegmund (Eds.), FOSD@GPCE,
ACM, 2013, pp. 33-40.

[65] M.W. Mkaouer, M. Kessentini, S. Bechikh, M. O. Cinnéide, A robust multi-
objective approach for software refactoring under uncertainty, in: Goues and
Yoo [79], pp. 168-183.

[66] K. Praditwong, M. Harman, X. Yao, Software module clustering as a multi-
objective search problem, IEEE Trans. Softw. Eng. 37 (2) (2011) 264-282.

[67] S.S. Islam,]. Krinke, D. Binkley, M. Harman, Coherent clusters in source code,
J. Syst. Softw. 88 (2014) 1-24.

[68] O. Rdihd, H. Kundi, K. Koskimies, E. Mdkinen, Synthesizing architecture from
requirements: a genetic approach, in: P. Avgeriou, J. Grundy, J.G. Hall, P. Lago,
I. Mistrik (Eds.), Relating Software Requirements and Architectures, Springer,
2011, pp. 307-331.

[69] R. Poli, W.B. Langdon, N.F. McPhee, A Field Guide to Genetic Programming,
Lulu, 2008.

[70]]J. Petke, M. Harman, W.B. Langdon, W. Weimer, Using genetic improvement
and code transplants to specialise a C++ program to a problem class, in: M.
Nicolau, K. Krawiec, M.I. Heywood, M. Castelli, P. Garcia-Sanchez,].J. Merelo,
V.M.R. Santos, K. Sim (Eds.), Genetic Programming - 17th European
Conference, EuroGP 2014, Granada, Spain, April 23-25, 2014, Revised
Selected Papers, Lecture Notes in Computer Science, vol. 8599, Springer,
2014, pp. 137-149. http://dx.doi.org/10.1007/978-3-662-44303-3.

[71] C.L. Goues, S. Forrest, W. Weimer, Current challenges in automatic software
repair, Softw. Qual. J. 21 (3) (2013) 421-443, http://dx.doi.org/10.1007/
511219-013-9208-0. http://dx.doi.org/10.1007/s11219-013-9208-0.

[72] M. Harman, Y. Jia, W.B. Langdon, Babel pidgin: SBSE can grow and graft
entirely new functionality into a real world system, in: Goues and Yoo [79], pp.
247-252.

[73] C. Kastner, A. Dreiling, K. Ostermann, Variability mining: consistent semi-
automatic detection of product-line features, IEEE Trans. Softw. Eng. 40 (1)
(2014) 67-82, http://dx.doi.org/10.1109/TSE.2013.45. http://doi.ieeecomputer
society.org/10.1109/TSE.2013.45.

[74]]. Rubin, K. Czarnecki, M. Chechik, Managing cloned variants: a framework and
experience, in: T. Kishi, S. Jarzabek, S. Gnesi (Eds.), 17th International Software
Product Line Conference, SPLC 2013, Tokyo, Japan - August 26-30, 2013, ACM,
2013, pp. 101-110. http://doi.acm.org/10.1145/2491627.2491644, http://dx.
doi.org/10.1145/2491627.2491644.

[75] S. Fischer, L. Linsbauer, R.E. Lopez-Herrejon, A. Egyed, Enhancing clone-and-
own with systematic reuse for developing software variants, in: 30th
International Conference on Software Maintenance and Evolution, 2014, pp.
391-400.

[76] C. Wohlin, P. Runeson, P.A. da Mota Silveira Neto, E. Engstrom, 1. do Carmo
Machado, E.S. de Almeida, On the reliability of mapping studies in software
engineering, J. Syst. Softw. 86 (10) (2013) 2594-2610.

[77] L. Chen, M.A. Babar, A systematic review of evaluation of variability
management approaches in software product lines, Inform. Softw. Tech. 53
(4) (2011) 344-362.

[78] A. Cleve, F. Ricca, M. Cerioli (Eds.), 17th European Conference on Software
Maintenance and Reengineering, CSMR 2013, Genova, Italy, March 5-8, 2013,
IEEE Computer Society, 2013. <http://ieeexplore.ieee.org/xpl/mostRecent
Issue.jsp?punumber=6498212>.

[79] C.L Goues, S. Yoo (Eds.), Proceedings of the Search-Based Software Engineering —
6th International Symposium, SSBSE 2014, Fortaleza, Brazil, August 26-29, 2014,
Lecture Notes in Computer Science, vol. 8636, Springer, 2014.

http://doi.acm.org/10.1145/2648511.2648513
http://dx.doi.org/10.1145/2648511.2648513
http://dx.doi.org/10.1145/2648511.2648513
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0210
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0210
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0210
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0210
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0210
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0210
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0215
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0215
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0215
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0215
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0215
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0215
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0215
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0220
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0220
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0220
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0225
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0225
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0225
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0225
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0225
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0225
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0225
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6498212
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6498212
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0240
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0240
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://dx.doi.org/10.1007/s00158-003-0368-6
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0255
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0255
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0255
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0265
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0265
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0265
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0270
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0270
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0270
http://doi.acm.org/10.1145/1985793.1985795
http://dx.doi.org/10.1145/1985793.1985795
http://dx.doi.org/10.1007/978-3-540-92910-9_31
http://dx.doi.org/10.1007/978-3-540-92910-9_31
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0285
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0285
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0290
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0290
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0290
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0290
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0295
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0295
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0295
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0300
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0300
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0300
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0305
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0305
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0305
http://dx.doi.org/10.1109/CSMR.2013.13
http://dx.doi.org/10.1109/CSMR.2013.13
http://dx.doi.org/10.1109/CSMR.2013.13
http://dx.doi.org/10.1109/SPLC.2011.52
http://dx.doi.org/10.1109/SPLC.2011.52
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0320
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0320
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0320
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0320
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0320
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0320
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0330
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0330
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0335
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0335
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0340
http://dx.doi.org/10.1007/978-3-662-44303-3
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1007/s11219-013-9208-0
http://dx.doi.org/10.1109/TSE.2013.45
http://doi.ieeecomputersociety.org/10.1109/TSE.2013.45
http://doi.ieeecomputersociety.org/10.1109/TSE.2013.45
http://doi.acm.org/10.1145/2491627.2491644
http://dx.doi.org/10.1145/2491627.2491644
http://dx.doi.org/10.1145/2491627.2491644
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0380
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0380
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0380
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0385
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0385
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0385
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6498212
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6498212
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0395
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0395
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0395
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0395
http://refhub.elsevier.com/S0950-5849(15)00016-6/h0395

	A systematic mapping study of search-based software engineering for software product lines
	1 Introduction
	2 Systematic mapping study
	2.1 Definition of research questions
	2.2 Conduct search for primary sources
	2.3 Screening of papers for inclusion and exclusion
	2.4 Keywording using abstracts—classification scheme
	2.4.1 SPL life cycle stage classification
	2.4.2 SBSE techniques classification
	2.4.3 Type of statistical analysis classification
	2.4.4 Type of case studies classification
	2.4.5 Type of publication fora classification

	2.5 Data extraction and mapping study

	3 Results
	3.1 Results RQ1—SPL life cycle stages
	3.2 Results RQ2—SBSE techniques used
	3.3 Results RQ3—type of comparative analysis
	3.4 Results RQ4—evaluation case studies
	3.5 Results RQ5—publication fora

	4 Analysis and discussion
	4.1 Predominance of SBSE for SPL testing
	4.2 SBSE for product configuration
	4.3 Need to improve empirical evidence robustness
	4.4 Need of better tooling support
	4.5 SBSE for SPL maintenance and evolution
	4.6 SBSE for SPL domain design
	4.7 Genetic improvement for SPL

	5 Threats to validity
	6 Related work
	7 Conclusions and future work
	Acknowledgements
	Appendix A Primary sources
	A.1 References list

	References

