
Flexible and Scalable Consistency Checking
on Product Line Variability Models

Michael Vierhauser
Christian Doppler Lab for

Autom. Softw. Eng.
Linz, Austria

vierhauser@ase.jku.at

Paul Grünbacher
Systems Eng. and Automation

Johannes Kepler University
Linz, Austria

paul.gruenbacher@jku.at

Alexander Egyed
Systems Eng. and Automation

Johannes Kepler University
Linz, Austria

alexander.egyed@jku.at
Rick Rabiser

Christian Doppler Lab for
Autom. Softw. Eng.

Linz, Austria
rabiser@ase.jku.at

Wolfgang Heider
Christian Doppler Lab for

Autom. Softw. Eng.
Linz, Austria

heider@ase.jku.at

ABSTRACT
The complexity of product line variability models makes it hard
to maintain their consistency over time regardless of the model-
ing approach used. Engineers thus need support for detecting and
resolving inconsistencies. We describe experiences of applying a
tool-supported approach for incremental consistency checking on
variability models. Our approach significantly improves the over-
all performance and scalability compared to batch-oriented tech-
niques and allows providing immediate feedback to modelers. It is
extensible as new consistency constraints can easily be added. Fur-
thermore, the approach is flexible as it is not limited to variability
models and it also checks the consistency of the models with the
underlying code base of the product line. We report the results of
a thorough evaluation based on real-world product line models and
discuss lessons learned.

Categories and Subject Descriptors
D.2.13 [Software Engineering]: Reusable Software—Domain en-
gineering, Reuse models; D.2.4 [Software Engineering]: Soft-
ware/Program Verification; D.2.6 [Software Engineering]: Pro-
gramming Environments; D.2.8 [Software Engineering]: Metrics—
Performance measures

General Terms
Experimentation, Measurement, Performance, Verification.

Keywords
Software product lines, variability models, model consistency, in-
cremental consistency checking, performance, memory consump-
tion, lessons learned.

published at
ASE’10, September 20–24, 2010, Antwerp, Belgium.

1. INTRODUCTION
Product line variability models are inherently complex. Regard-

less of whether feature-oriented [25], decision-oriented [10], or or-
thogonal [2] variability models are used, their size represents a ma-
jor challenge in real-world product lines as they can easily contain
thousands of elements with diverse and often complex dependen-
cies. In the collaboration with our industry partner Siemens VAI
– the world’s leading company in engineering and plant-building
for the iron, steel, and aluminum industries – we learned that engi-
neers in practice face big challenges when maintaining the consis-
tency of variability models. The models are subject to continuous
evolution [16] and need to co-evolve with the actual system they
represent to maintain consistency. The consistency of the models
is also essential for deriving correct products. In product line engi-
neering consistency constraints range from simple rules and well-
formedness criteria (e.g., there must be no cycles in model element
dependencies) to more sophisticated checks (e.g., each component
in the variability model must exist in the product line code base and
vice versa). Engineers need support for detecting and keeping track
of such inconsistencies when modifying the product line’s models
or code base. More specifically, there are several challenges for
consistency checking in model-based product lines:

C1. Dealing with variability and multiple levels of abstraction.
Consistency needs to be checked within and between different spa-
ces and various types of inconsistencies need to be considered. For
instance, consistency checking needs to address the problem space
describing variability using concepts from the problem domain, the
solution space representing the variable system from a technical
point of view, and the code base of the product line. While prob-
lem and solution space are typically represented by models, check-
ing the code base requires different mechanisms. However, exist-
ing checkers are often limited to either models or to code and do
not check across boundaries. Also, contrary to models describing
single systems there can be optional or alternative model elements
in product lines. Additional inconsistencies can occur when an el-
ement is optional or alternative.

C2. Addressing the scale and complexity of product lines. Sev-
eral consistency checking mechanisms have been reported in the
literature and have been applied to various types of models [7, 12,
34]. They are typically only capable of checking the consistency
of entire models in a batch-oriented manner meaning that the rel-
evant consistency constraints can be evaluated at certain points in
time only (e.g., when saving a model) due to the complexity of

63

the models. For example, when using a batch-oriented approach in
our DOPLER product line tools [18] we ran into significant perfor-
mance problems when working with real-world variability models
of our industry partner which contain thousands of model elements
with non-trivial dependencies and mappings. The bad performance
meant that feedback could not be provided to modelers immedi-
ately as launching the batch checker after each change to the model
turned out to be infeasible. Special emphasis is thus necessary to
design consistency checking algorithms such that immediate user
feedback is possible.

C3. Providing support for domain-specific checks. Another draw-
back of many available consistency checkers is their lack of ex-
tensibility. It is complicated for modelers to add new consistency
constraints and to remove or modify existing ones. We also faced
this challenge with our batch-oriented checker as the various con-
sistency checks were hard to identify and separate in the code.

To address these challenges, we started exploring the use of an
existing incremental consistency checker [19] for product line vari-
ability modeling. Our goals were to extend the scope of consis-
tency checking to model-to-code consistency and to improve per-
formance to allow immediate feedback to modelers. We also aimed
at checking whether the approach scales to industrial models of dif-
ferent sizes without performance and memory consumption prob-
lems. Another goal was to improve the extensibility by making it
easy to add, remove, or modify consistency constraints.

In this experience paper we report results and lessons learned
when applying existing consistency checking methods to a prod-
uct line setting. The tool features we developed as part of this
research are briefly summarized in a short workshop paper [35].
Here, we give an overview about the technical approach, discuss
lessons learned during its implementation and report results of a
thorough evaluation. We first introduce different types of possi-
ble inconsistencies on and among different layers of product line
models. To illustrate the practical challenges, we describe consis-
tency constraints we developed for the component-based product
line of our industry partner. We then present our solution to incre-
mental consistency checking on variability models and describe its
integration in an existing product line engineering tool suite. We
provide an evaluation with regard to performance and scalability
and discuss lessons learned of applying the approach to product
line models of our industry partner. We discuss related work and
conclude the paper with an outlook on future work.

2. CONSISTENCY CHECKING IN
MODEL-BASED PRODUCT LINES

Product line models cover both the problem space and the so-
lution space [30] as shown in Figure 1. A problem space model
describes the variability of a system using concepts from the prob-
lem domain, e.g., in the language of the users in a specific domain.
A solution space model provides a representation of the variable
system from a technical point of view, e.g., it describes optional or
alternative artifacts and their dependencies [13]. Consistency needs
to be maintained between these modeling spaces but also within
each space. However, in order to be useful, product line models
also need to be consistent with the actual code base (cf. challenge
C1). Checking and maintaining consistency with the code base is
particularly challenging as it largely depends on the implementa-
tion technology used. Furthermore, the code base is in practice
often changed by developers outside the product line modeling en-
vironment.

Existing variability modeling approaches cover the upper two
levels in Figure 1. Feature models, decision models, or orthogo-

Figure 1: Modeling levels in product lines with types of intra-
and inter-level inconsistencies.

nal models have been proposed for modeling the problem space
[25, 10, 2]. Architecture description languages or general purpose
languages like the UML can be used to define the solution space.
There are also approaches such as DOPLER [17] or Clafer [3] that
provide modeling support for both levels and mappings between
them. Figure 1 shows the three modeling spaces together with five
different types of consistency checks:

PP inconsistencies can exist within the problem space model.
For instance, in a decision model cycles caused by decision depen-
dencies need to be detected and prevented.

PS inconsistencies can occur between the problem space model
and the solution space model. For instance, a component in the
solution space model can have dependencies to two contradicting
decisions. This can result in an inconsistency if it is impossible to
resolve both decisions during product derivation.

SS inconsistencies can exist within the solution space model such
as contradicting dependencies between components. One compo-
nent might require two other components which in turn exclude
each other.

SC inconsistencies can appear between the solution space model
and the code base it represents. Such inconsistencies can for exam-
ple occur whenever an asset (or its dependencies or attributes) are
changed in the solution space model but not in the code base.

CC inconsistencies can exist within the code base. They are how-
ever typically addressed by integrated development environments
and are thus not further investigated in this paper.

The section on related work will discuss existing research for de-
tecting and fixing specific types of inconsistencies. However, the
major practical challenge lies in providing an integrated environ-
ment capable of dealing with all these types in a holistic manner.

2.1 Modeling a Component-based
Product Line with DOPLER

In cooperation with our industry partner Siemens VAI, we have
been creating variability models for the CC-L2 software product
line controlling continuous casting machines in steel plants. The
(simplified) meta-model for modeling the problem space, the so-
lution space and the code base is shown in Figure 2. The product
line has been modeled using the DOPLER approach which uses
decision models to define the problem space, asset models defin-
ing reusable elements of different types and their dependencies for
the solution space, as well as mappings among decisions and assets
[17, 22].

In DOPLER variation points are represented using Decisions
which have a unique name and a question that is asked to a user

64

Figure 2: Partial Siemens VAI meta model with model elements
for the problem space and solution space. The code base level
defines additional elements for representing the component-
based implementation of the product line.

during product derivation. Answering a question sets the value of
a decision. Possible answers depend on the type of the decision
(Boolean, enumeration, string, or number). The range of allowed
values can be further restricted by validity conditions. Decisions
can depend on each other hierarchically (if a decision needs to be
taken before another decision becomes "visible") or logically (if
taking a decision changes the value of another decision). Deal-
ing with variability represents a specific challenge for consistency
checking, as consistency constraints need to consider such depen-
dencies (cf. challenge C1 and Table 1).

Assets represent the solution space in the product line (e.g., soft-
ware components). Assets can depend on each other function-
ally (e.g., one component requires or excludes another component)
or structurally (e.g., a component is part of a sub-system). DO-
PLER allows modeling assets at arbitrary granularity and with user-
defined attributes and dependencies (based on a given set of basic
types). Users can create domain-specific meta-models to define the
types of assets, their attributes, and dependencies. In the Siemens
VAI product line the asset types in the DOPLER variability models
are components representing Spring XML component descriptions
which in turn represent Java Beans and properties (key-value pairs).
Diverse domain-specific dependencies have been defined. For ex-
ample, a component can require another component or a property
(cf. Figure 2). Dependencies between assets and decisions are ex-
plicitly modeled via inclusion conditions that define for an asset
when it will be part of a derived product. Due to asset depen-
dencies, not every asset needs to be related with a decision to be
included in a derived product. For example, when an asset is in-
cluded because of a decision, its requires dependencies might lead
to the inclusion of other assets as well.

We decided to create a model image of the code base and to apply
incremental transformation to synchronize it with the code. This al-
lowed us to use the same checking mechanism for all different types

of artifacts. For that reason the meta-model was extended with a
code base level containing the Spring files (c_springfile), the con-
tained Java Beans (c_javabean) and their properties (c_property),
as well as defines and requires relations among these elements (cf.
Figure 2). Traceability to the solution space model is established
by the implements relationship as we will show later.

2.2 Examples of Consistency Constraints
Figure 1 shows generic types of constraints (PP, PS, SS, SC, CC)

in product line engineering. Here we describe a number of specific
constraints based on these types needed in the component-based
product line of our industry partner. Examples of the constraints
are shown in Table 1. To allow arbitrary checks and freedom for
the developer, the constraints are defined in the Java programming
language. There are, however, no language restrictions and any
constraint language could be used instead.

The problem space and problem to solution space constraints (PP
and PS) are relevant in any DOPLER variability model. There are
simple constraints that check whether decisions of type enumer-
ation have at least two possible values (PP1) and that values for
model elements with mandatory attributes have been defined (PP2).
It is also essential to detect cycles in the decision model stemming
from hierarchical and logical dependencies (PP3–5). PS1 is an ex-
ample of a problem-to-solution space inconsistency. The constraint
detects whether inclusion conditions exist in the solution space (as-
sets) that never can evaluate to true because they refer to contradic-
tory decisions in the problem space (cf. challenge C1).

Further constraints depend on the domain-specific meta-model
for Siemens VAI (cf. Figure 2) and address intra-solution-space
and model-to-code consistency. SS1 checks that each component
modeled in the solution space (representing a Java Bean described
in a Spring XML file) requires at least one property defining ini-
tialization parameters for that component. The most basic model
to code constraint SC1 assures that each component modeled in the
variability model exists in the code base of the product line. This
constraint assures for example, that outdated components that are
no longer available in the workspace are marked to be purged in
the variability model as well. The constraints SC2 and SC3 cover
the relations between components in the model, and the relations
between Spring XML files in the file system (which in fact depend
on relations between the Java Beans described in that Spring files).
Both constraints assure that there are no unnecessary relations be-
tween components and that no relations are missing in the vari-
ability model. Constraints SC4-6 assure the consistency of variant
type components which represent a particular characteristic of the
Siemens VAI models. Variant types are used to group identical
components implemented in different Spring XML files.

We discuss constraint SC2 in detail to illustrate its high-level op-
eration sequence: SC2 checks the requires relations between com-
ponents. As illustrated in Figure 3 a requires relation between two
components in the model is only needed if it is based on an exist-
ing dependency in the product line code base. Each component is
defined by a spring file which in turn is realized by one or more
Java Beans. If at least one Java Bean contained in the Spring file
(Deburrer.xml) requires a Bean defined in the second Spring file
(Caster.xml) then the relation is needed on component level. Other-
wise the consistency check will reveal an obsolete relation between
the two components. Although SC2 is fairly simple it is impor-
tant to note that such constraints have to be evaluated many times
in complex models. For example, SC2 needs to be evaluated for
each requires relationship among two components (and there are
thousands of such relationships in our models).

We developed a batch-oriented checker that worked well with

65

Table 1: Examples of constraints in component-based product lines.

Constraint Description

PP1: Enumeration decision An enumeration decision must have at least two options to choose from.
PP2: Mandatory attribute Mandatory attributes of model elements must not be empty.
PP3: Decision effect cycle There must be no cycles caused by logical decision dependencies.
PP4: Visibility condition
cycle

There must be no cycles caused by hierarchical decision dependencies (visibility).

PP5: Visibility condition self
reference

A Visibility Condition must not contain a reference to itself.

PS1: Inclusion condition
exclusion

An Inclusion Condition must not contain two contradictory decisions (to avoid assets that will never be
included in a derived product).

SS1: Component properties Each component (representing a Java Bean) requires at least one property defining initialization
parameters for the Bean.

SC1: Component matching Each component in the variability model must exist in the product line code base.
SC2: Component relation Relations between components in the variability model must also exist in the product line code base.
SC3: Java Bean relation A relation between Java Beans must be represented in the variability model as a component relation.
SC4: Variant type relation Variant types must not have requires relations.
SC5: Variant type occurrence If two or more components are identical all of them must contribute to the same variant type component.
SC6: Variant type consistency Only identical components must contribute to a single variant type component.

Figure 3: Schematic view of Constraint SC2.

small variability models and a limited number of constraints in ear-
lier research. However, this approach did not scale well enough
for larger models and high number of required consistency con-
straints that we encountered in industrial practice (cf. challenge
C2). In particular, modelers requested immediate feedback regard-
ing consistency after changes to the model. While technically it
would have been possible to realize immediate feedback with a
batch checker, the computational cost made it impractical to report
inconsistencies after each change. Previously, our approach thus
only reported inconsistencies after a user invoked the checker when
saving the model in the tool. Typically many changes were made
by modelers between two invocations of the checker and multiple
new errors were reported at once. This made it difficult for mod-
elers to relate the errors to the changes they made to the model or
in the code base – changes that were made minutes or even hours
earlier. Also, our batch-oriented checker was difficult to extend
or adapt because the consistency constraints were woven together

into a long and complex algorithm. This was a big obstacle to the
practical use of consistency checking because new constraints were
increasingly hard to integrate in the existing algorithm.

3. INCREMENTAL CONSISTENCY
CHECKING ON VARIABILITY MODELS

We thus pursued an incremental strategy to consistency checking
to help modelers with detecting and tracking inconsistencies cor-
rectly and quickly after every change. We adapted an existing incre-
mental checker [19] to support the fast checking of model changes.
The checker identifies all model elements that affect the truth value
of any given consistency constraint. A consistency constraint needs
to be re-evaluated if one of these model elements changes. We refer
to this set of affected model elements as the scope of a consistency
constraint. The elements contained in the scope are stored in the
scope database. Our incremental checker computes the change im-
pact scope of a constraint instance automatically by observing the
run-time behavior of consistency constraints during their evalua-
tion. To this end, we developed the equivalent of a profiler for con-
sistency checking. The profiling data is used to establish a corre-
lation between model elements and consistency constraints. Based
on this correlation, it then decides when to re-evaluate consistency
constraints and when to display inconsistencies – thus allowing an
engineer to quickly identify all inconsistencies that pertain to any
part of the model of interest at any time.

However, thus far the checker had only been used and evalu-
ated for UML models. Although our models might seem similar to
UML on the surface, they exhibit quite a range of differences which
required significant extensions we will describe in Section 4. For
example, as discussed in Section 2 and shown in Table 1 many
of our consistency constraints go beyond the checking of models
and also include source code and other artifacts. Since the exist-
ing approach was limited to checking models, we had to incre-
mentally transform code fragments into model fragments to enable
their checking. Thus, our extended approach combines incremental
transformation with incremental consistency checking.

66

Figure 4: Incremental Evaluation of SC1 and SC2.

We illustrate the incremental consistency checker using consis-
tency constraint SC1 (cf. Table 1) evaluating whether a modeled
component is implemented in the source code. Figure 4 depicts
a (simplified) excerpt of one model with three components in the
top and a range of code-level constructs at the bottom. Consistency
constraint SC1 is written from the perspective of a component – i.e.,
a given component is considered consistent if it is implemented by a
code-level XML file. Since there are three components in Figure 4,
each component has to be evaluated with regard to SC1. Our ap-
proach thus instantiates the consistency constraint SC1 three times,
once for each component (ci1, ci2, ci3). We do this because incre-
mental consistency checking needs to react to model changes and
each instance of the consistency constraint is affected differently
by model changes. This means that we need to compute how each
consistency constraint or instance thereof is affected by a model
change. For this purpose, we need to know the complete change
impact scope for every constraint instance. Figure 4 indicates that
the three SC1 instances ci1, ci2, and ci3 access distinct model ele-
ments when they are evaluated.

For example, the first instance ci1 starts its evaluation at compo-
nent Deburrer, then navigates along the implements relationship,
and finally accesses Deburrer.xml. The constraint instance is sat-
isfied because the component does have an associated code-level
XML file. Our approach recognizes that from the entire model only
these accessed model elements were needed to evaluate instance
ci1. This instance must be re-evaluated only if one of those ele-
ments changes. Our approach thus maintains a table of instances
of consistency constraints and the model elements they accessed
during their evaluation to understand which instances must be re-
evaluated when the model changes. It is also important to note that
a model element may be accessed by multiple instances of one or
more consistency constraints. For example, constraint SC2 evalu-
ates a component with regard to the requires relationship. It makes
sure that a component-level requires relationship is matched by a
code-level requires relationship. Figure 4 depicts a requires rela-
tionship from Deburrer to Caster and during evaluation an instance
of SC2 will access the components, their code-level XML files De-
burrer.xml and Caster.xml and some of the defines and requires re-
lationships underneath. The change impact scope of this instance
of SC2 is also automatically observable through the model profiler.
This scope is also larger than the scope of SC2 and encompasses

many of the model elements underneath Deburrer and Caster but
not NozzleCheck. Some model elements, such as Deburrer.xml thus
affect multiple instances of consistency constraints. Only these re-
lated instances must be re-evaluated if Deburrer.xml changes.

4. USING THE INCREMENTAL CHECKER
IN THE DOPLER TOOL SUITE

A major goal when developing our incremental checker was to
increase usability by providing immediate feedback to modelers
about the detected inconsistencies (cf. challenge C1) as part of a
development environment. We thus decided to seamlessly integrate
the incremental consistency checker in the Eclipse-based DOPLER
tool suite [18] which supports product line variability modeling and
product derivation. In particular, we integrated the checker with
DOPLER’s modeling tool that allows defining decision and asset
models as discussed in Section 2.

A modeler can define assets in the Variability Model Editor as
shown in Figure 5. The Asset Overview shows an outline of al-
ready available software components. This view allows adding or
removing components. Selected components can be modified in the
Asset Detail View which provides information about its attributes
and relations to other components. The modeler can simply add or
remove relations to other components via drag and drop in the de-
tail view. Manipulating components in the editor has an immediate
effect. For instance, after adding a relation to another component
all involved constraints (and only those!) are re-evaluated. Feed-
back about detected errors is provided within milliseconds after the
user action leading to an inconsistency. The Error View provides
information about all inconsistencies found in the model. The Error
View also provides details about the source model elements caus-
ing the problem. This helps the modeler to resolve the problem, for
instance, by removing an unneeded relation between two compo-
nents from the model.

We illustrate our tool architecture by discussing the chain of
events and data flow (cf. Figure 6). The incremental consistency
checker relies on tracking changes in the Eclipse workspace. For
that purpose, our Eclipse Change Tracker [24] observes arbitrary
changes to the variability model and the Eclipse workspace. For
instance, it listens to the "delete component" change to the vari-
ability model after the modeler deletes a component in the editor
and propagates the change to the Constraint Manager which is re-
sponsible for initializing, managing, and storing constraints. Using
the Scope Database the Constraint Manager determines the con-
straint instances to be re-evaluated after the deletion of a certain
component. Our architecture makes use of the Eclipse extension
point mechanism to allow adding new constraints flexibly and easy
for new domains. Constraint definitions can easily be added or re-
moved from the evaluation process by simply activating or deacti-
vating plugins. The list of constraint instances is used by the Incre-
mental Consistency Checker which applies incremental checking
to variability models by controlling the execution of all affected
constraint instances. The constraint instances do not directly ac-
cess and query the Variability Model. Instead, they use the Model
Access Tracker – a model adapter component which monitors and
records all read access events to model elements for each single
constraint instance that is evaluated. This fine-grained "model pro-
filing" helps improving performance, because with each level of
detail fewer constraint instances need to be evaluated eventually.
The Model Access Tracker also builds the Scope Database ensur-
ing that only necessary constraints are re-evaluated after changes
to the model (not shown in Figure 6). The incremental consistency
checker sends all newly found inconsistencies to the Error Man-

67

Figure 5: The DOPLER Variability Model Editor. The In-
cremental Consistency Checker identifies errors and displays
them in an Error View.

ager which manages a list of errors for the user. It translates ab-
stract constraint evaluation results into error messages meaningful
for a modeler and performs basic filtering functions to avoid in-
formation overload. Finally, the Error Viewer (see also Figure 5)
displays the detected inconsistencies for the evaluated constraint.
We use the Eclipse marker mechanism for the easy management of
errors and their presentation in a viewer.

5. EVALUATION
We define our evaluation goal using the Goal-Question-Metric

(GQM) approach [5]. A goal in GQM consists of a purpose de-
scribing the actual aim of the evaluation, the issue of interest, a spe-
cific object to be measured and the viewpoint which describes the
stakeholder perspective from which the goal is defined. Goals are
refined using questions targeting explicit problems of interest. Fi-
nally, metrics are defined to obtain data addressing those questions.
Our evaluation goal is to assess (purpose) the performance (issue)
of incremental consistency checking (object) from the viewpoint of
the modeler (viewpoint). We explore three questions regarding per-
formance, memory usage, and scalability of the approach (cf. chal-
lenge C2.)

Question 1.1 "What is the impact of the incremental consistency
checker on the start-up performance?" is further refined using two

Figure 6: The Incremental Consistency Checker re-evaluates
constraint instances after changes to the model.

metrics: M 1.1.1 is the time needed to initialize the incremental
consistency checker (measured in milliseconds). It measures the
overall start-up time when opening a variability model and includes
library initializations as well as the creation of the scope database.
The startup time is critical as engineers frequently open models in
the DOPLER tools. M 1.1.2 measures the initial memory footprint
of the incremental consistency checker after its start-up expressed
by the number of objects created (i.e., constraint instances, scope
elements). Understanding memory consumption is important as
developers modeling real-world product lines have to work with
very large models containing thousands of model elements.

Question 1.2 "What are the specific performance characteristics
of the incremental consistency checker during modeling?" is further
defined with metric M 1.2.1 measuring the time needed (in mil-
liseconds) for consistency checking of key atomic modeling tasks
such as adding, modifying, or deleting model elements. This met-
ric is important as it shows the feasibility of the approach during
everyday modeling activities. In particular, it shows whether the
approach can provide "immediate feedback" to modelers.

Question 1.3 "How well does the approach scale?" investigates
performance and memory consumption of our approach when ap-
plied to industrial models of different sizes. We compute the met-
rics M 1.1.1., M 1.1.2, and M 1.2.1 for real-world models of differ-
ent sizes to address this question. In addition we use another metric
to investigate this question. M 1.2.2 measures the number of con-
straint instances that need to be evaluated for the atomic modeling
actions. This metric checks whether the approach scales regardless
of the specific modeling actions performed by the user.

5.1 Evaluation Setup
We used variability models of the Siemens VAI CC-L2 product

line to perform our evaluation. Regarding question 1.3 we evaluate
the incremental checker with different model sizes. We thus created
models of different sizes by incrementally merging the available
variability models using the merging approach described in [16].
The smallest variability model I represents a single subsystem and
consists of 57 components. We use two other models II and III for
evaluation with 200 and 401 components. The largest model IV
consists of 768 components. The underlying code base used for

68

Table 2: Siemens VAI solution space models used for evalua-
tion.

Included subsystems #
C’s

#
CI’s

#
SE’s

I Cutting 57 1,044 2,084
II Model I subsystems + Caster, Heating 200 1,902 3,385
III Model II subsystems + Optimizer,

JAMP, Simulator
401 3,108 5,180

IV Model III subsystems + Analysis,
DefectTracking, VAIQfeeder,
Warmstart

768 5,310 8,175

evaluation contains 1,956 code model elements (702 XML spring
files and 1,254 Java Beans) and is used in all four models I-IV.

Table 2 provides a detailed overview of the four models regard-
ing the number of components (# C’s), number of instantiated con-
straints (# CI’s), and the total number of instantiated scope elements
(# SE’s) at startup. A constraint is instantiated for each model ele-
ment only if needed as explained in Section 3. The scope database
contains all scope elements defining the constraint instances that
need to be re-evaluated after a change. The actual number of model
elements is much higher in these models as we only show assets of
type of Component in the table and do not consider the number of
relations and model element attributes in Table 2.

5.2 Evaluation Results
We present the results gained by comparing the four different

models in terms of startup and runtime performance when applying
the incremental consistency checker.

The mechanism for incremental consistency checking relies on a
complete execution of all constraints during startup to initialize the
constraint instances and the scope database (scope elements need
to be created). Figure 7 provides an overview of the initializa-
tion costs of the incremental checker for the four different models
(lower solid line). The additional time needed to open a variability
model lies between 2.5 seconds for a model with about 200 assets,
and 5 seconds for a model with 400 assets. We used a PC with
a Intel Pentium Dual Core 1.8 Ghz processor and 3 GB of main
memory for the evaluation. This time is clearly acceptable for typi-
cal model sizes at our industry partner (100 to 400 components per
single model). Also, this task is performed as a background thread
when opening a model and does not block the modeler (even in the
case of model IV where the initialization takes about 14 seconds).

The lower solid line is essential for the evaluation of the incre-
mental checker. However, we made an additional interesting obser-
vation. Re-structuring the constraints already implemented in our
legacy batch checker into the new format required by the incremen-
tal checker already had a significant impact on performance. We
compared the complete time of executing all constraint instances
with the initialization time of our legacy batch-checking approach.
The dashed line demonstrates the scalability issues we had expe-
rienced with the batch-checking approach. Please note, however,
that the legacy checker is not fully comparable in terms of the con-
straints it checks. However, the results show the order of magnitude
of improvement gained by using the incremental checker.

Besides the initialization time, we also took a closer look at the
memory costs (M 1.1.2). Memory consumption depends on the
number and type of constraints and the number of model elements.
The maximum number of constraint instances is created if every
constraint is instantiated once for every asset in the model and every
asset in the code base (this is only a theoretical case). Instead,
constraints are typically instantiated for selected types of asset only

Figure 7: Metric M 1.1.1. Initialization time of the new incre-
mental checker and evaluation time of legacy batch checker for
models I-IV.

(e.g., components) and the real number of constraint instances per
model is therefore much lower than the theoretical maximum.

The maximum number of scope elements can be calculated as
the number of assets times the number of attributes per asset. Scope
elements are created only once, but can be used in multiple con-
straint instances. Figure 8 shows the linear increase of scope ele-
ments and constraint instances for the four variability models de-
monstrating the scalability of our approach.

Figure 8: Metric M1.1.2. Number of constraint instances and
scope elements after startup (models I-IV).

In Section 4.1 we described a number of basic tasks when work-
ing with the DOPLER variability modeling tool. We use these typ-
ical actions on variability models to gain data concerning the time
needed to evaluate model changes at runtime. We simulate creat-
ing and deleting assets, as well as adding and removing relations
for our live evaluation (metric M 1.2.1) and the analysis of affected
constraints during one evaluation cycle (metric M 1.2.2).

For live evaluation analysis each single task has been performed
100 times to outweigh effects such as unpredictable background
tasks. The mean values gained are shown in Figure 9. The costs
for adding assets, as well as adding and removing relations to/from
an asset remains constant in terms of model size. A single action
performed on a variability model took only about 5 to 10 ms which

69

Figure 9: Metric M 1.2.1. Performance of basic modeling ac-
tions for models I-IV.

demonstrates that our approach indeed provides immediate feed-
back.

Only the task of deleting an asset from a model increases linearly.
This is because constraints that were instantiated for the asset to
be deleted, need to be found and removed from the consistency
checking instance. We expect however that this problem can be
easily fixed by using a different data structure.

While constraint instances and scope elements in total increase
depending on model size (as shown in Figure 8), the number of
constraint instances that need to be re-evaluated during live eval-
uation stays constant. Depending on the type of change very few
constraints need to be evaluated (see Figure 10). The number of
constraints that need to be evaluated remains constant when adding
assets in models of different size. Adding and deleting relations as
well as deleting component moves between 2.5 and 3.2 constraints
evaluated per change event, again tested on 100 change samples.

Figure 10: Metric M 1.2.2. Number of constraint instances af-
fected by a change for models I-IV.

5.3 Lessons Learned
We derive the following lessons from our experiences:
Support different types of concistency checks. Our aim was to de-

velop a holistic approach capable of checking various consistency
constraints within and among differerent levels. In this paper we
distinguished five different types of inconsistencies depending on
the modeling level (problem space vs. solution space vs. code
base; cf. challenge C1) and presented both generic constraints
(applicable to variability modeling with DOPLER) and domain-
specific constraints (applicable to the specific technical platform of
Siemens VAI). Domain-specific constraints (which depend on the
technology used; mainly SS and SC types) can greatly complicate
consistency checking but are very important for the usefulness and
acceptance of the checker in practice (cf. challenge C3).

Use a model-based representation to check consistency. Existing
consistency checking mechanisms either work on model level or on
code level but not on both and among them (cf. challenge C1). We
learned that the benefits of an explicit representation of the code in
models outweighs the overhead of increased memory consumption
and slightly increased startup time. However, allowing the checker
to operate only on the level of models makes the implementation
more elegant and easier to understand. This solution has the advan-
tage that the checker is more resilient to technical changes as only
the transformation algorithm has to be updated, for example, if the
component technology language is replaced.

Decide whether to allow inconsistencies or to avoid them in the
first place. An interesting issue is that while it is important to know
about inconsistencies it is often too distracting to resolve them right
away. The notion of "living with inconsistencies" [4] advocates that
there is a benefit in temporarily allowing inconsistencies in design
models. While our approach provides inconsistencies instantly, it
does not require the engineer to fix them instantly. Our approach
tracks all presently-known inconsistencies and lets the engineer ex-
plore inconsistencies according to his/her interests in the model.
However, there are situations where it is beneficial to avoid incon-
sistencies in the first place. When developing constraints for the
different types we noticed that the number of generic constraints
(mainly PP and PS types) can be kept small by doing trivial plausi-
bility checks (on all levels from PP to CC) in the variability model-
ing tool. This lesson is related with challenges C1 and C2 defined
in the introduction.

Go for incremental checking. While our incremental consistency
checking support for product line models has some disadvantages
(initialization time, memory consumption, redundant representa-
tion of code in models and the required transformation) the benefits
outweigh these drawbacks as shown in our evaluation. In particular,
we have learned that the run-time performance enabling immediate
user feedback greatly contributes to the usefulness and acceptance
in practical settings (cf. challenge C2).

Support the evolution of constraints. Constraints evolve over
time based on experiences made as well as due to changing and
evolving technology. Both product line tools as well as the prod-
uct lines they describe can evolve. In our case, the product line
tools were under constant development during the early phases of
the project and the product line of Siemens VAI was refactored and
evolved in parallel. This is why we developed an extensible ar-
chitecture for our consistency checker to allow adding rules incre-
mentally and to allow easily replacing and modifying existing rules.
Our batch-oriented checker was difficult to extend or adapt because
the consistency constraints were woven together into a large and
complex algorithm. This was a big obstacle to the practical use
of consistency checking because new constraints were increasingly
hard to integrate in the existing algorithm. Thus, the extensible ar-

70

chitecture turned out to be very important due to this continuous
evolution (cf. challenge C3).

6. RELATED WORK
We structure our discussion of related work according to the

types of inconsistencies defined in Section 2.
PP. Batory [6] describes an approach combining feature models,

grammars, and propositional formulas to allow arbitrary proposi-
tional constraints to be defined among features and checked us-
ing satisfiability solvers. Other authors have addressed the auto-
matic analysis of feature models [8]. For example, the FaMa ap-
proach [33] allows using different solvers in the back-end to per-
form analysis operations on feature models.

PS. Heidenreich [23] explores possibilities for checking the well-
formedness of models describing features in the problem space and
their realizations in the solution space to ensure their correctness.
Several authors have presented work on type systems to guaran-
tee that only well-typed programs are generated: Apel et al. have
developed such a type system on the basis of a formal model of a
feature-oriented Java-like language [26, 1]. Similarly, Delaware et
al. [14] present an extension to Lightweight Java with support for
features together with a constraint-based type system.

SS. Several approaches are based on identifying inconsistencies
between different design models by direct comparison. Some of
these approaches also perform incremental consistency checking.
xLinkIt [29] allows evaluating the consistency of XML-based doc-
uments. The approach can check the consistency of entire UML
models but can also handle incremental consistency checking by
only evaluating changes to versions of a document. ArgoUML [31]
detects inconsistencies in UML models based on annotated consis-
tency rules that also enable incremental consistency checking. The
approach implements two consistency checking mechanisms: con-
sistency rules without annotations are placed into the queue which
is continuously evaluated in the background using a batch-checker
at 20% CPU time. Consistency rules with annotations are evalu-
ated using an incremental checker. It has been demonstrated that
ArgoUML’s type-based consistency checking produces good per-
formance but it is not able to keep up with an engineer’s rate of
model changes in very large models [21]. Similar to our approach
Blanc et al. [9] address the issue of incremental consistency check-
ing from the perspective of model changes. However, their consis-
tency rules need to be defined explicitly in terms of their impact on
changes. If done correctly this leads to good performance. How-
ever, since writing these annotations may easily cause errors, they
are no longer able to guarantee the correctness of incremental con-
sistency checking. While researchers generally agree on the impor-
tance of consistency checking, the methods on how to detect them
vary widely. For example, Tsiolakis and Ehrig [34] present an ap-
proach for checking the consistency between class and sequence
diagrams based on a common graph structure. Van der Straeten et
al. [32] use description logic to detect inconsistencies between se-
quence and state chart diagrams. Campbell et al. [11] use a model
checker to evaluate inconsistencies within and across UML dia-
grams. Zisman and Kozlenkov [36] use a knowledge base and ex-
press consistency rules using patterns and axioms.

SC. Several papers address the issue of consistency between mod-
els and code in evolving product lines. Murta et al. [28] present an
approach for ensuring consistency of architectural models to im-
plementation during evolution. Their approach support arbitrary
evolution policies and is based on recording changes in a config-
uration management system. Product line evolution support be-
comes critical in model-based approaches to ensure consistency af-
ter changes to meta-models, models, and actual development arti-

facts. Mende et al. [27] describe tool support for the evolution of
software product lines based on the "grow-and-prune" model. They
support identifying and refactoring code that has been created by
copy & paste and which might be moved from product to product
line level. Deng et al. [15] describe a model-driven product line
approach that addresses the issue of domain evolution in product
line architectures with model transformations.

7. CONCLUSIONS AND FUTURE WORK
We presented experiences, lessons learned, and evaluation re-

sults of applying an incremental consistency checker on product
line variability models. The incremental consistency checker works
on and across different levels of variability models and also checks
consistency between variability models and source code. The in-
cremental consistency checker is independent from the domain-
specific DOPLER meta-model and can be easily used with arbitrary
meta-models. As our event tracking mechanism allows to identify
changes down to the level of model element attributes only few con-
straints need to be evaluated during incremental consistency check-
ing. Our evaluation with large-scale models demonstrates the per-
formance and scalability of the approach. It is fast enough to pro-
vide immediate feedback to users and identifies errors within 5 to
10 ms for typical modeling actions. Furthermore, our approach al-
lows adding new constraints in a flexible manner via Eclipse exten-
sion points. Constraints can be activated and deactivated as needed
in certain domains.

While this paper focused on the practical experiences and lessons
learned we plan to report on the technical details of our approach
in a further paper. In particular, we will describe the incremen-
tal code-to-model transformation approach we developed as part of
this work. We will also experiment with more and other types of
constraints and plan to investigate how dependencies among con-
straints can be exploited during constraint evaluation. Finally, we
will extend our tools to support fixing identified inconsistencies as
already demonstrated in [20].

Acknowledgements
This work has been supported by Siemens VAI Metals Technolo-
gies, the Christian Doppler Forschungsgesellschaft, and the Aus-
trian FWF grant P21321-N15. We are also grateful to Martin Leho-
fer and Deepak Dhungana for their support.

8. REFERENCES
[1] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer. Type

safety for feature-oriented product lines. Automated Software
Engineering – An International Journal, 17:251–300, 2010.

[2] F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl,
B. Ramesh, and A. Vilbig. A meta-model for representing
variability in product family development. In F. van der
Linden, editor, 5th Int’l WS on Sw. Product-Family
Engineering, volume LNCS 3014, pages 66–80, Siena, Italy,
2003. Springer.

[3] K. Bak, K. Czarnecki, and A. Wasowski. Feature and class
models in Clafer: Mixed, specialized, and coupled. Technical
report, University of Waterloo, 2010.

[4] R. Balzer. Tolerating inconsistency. In Int’l Conf. on
Software Engineering (ICSE), pages 158–165, 1991.

[5] V. Basili, G. Caldiera, and D. Rombach.
Goal/question/metric paradigm. In J. Marciniak, editor,
Encyclopedia of Sw. Eng., pages 528–532, New York, 1994.
John Wiley and Sons.

71

[6] D. S. Batory. Feature models, grammars, and propositional
formulas. In Proc. Int’l Conf. Sw. Product Lines, pages 7–20,
2005.

[7] B. Belkhouche and C. L. Olalde. Multiple view analysis of
designs. In Proc. of the 2nd Int’l Software Architecture WS
(ISAW-2) and Int’l WS on Multiple Perspectives in Software
Development on SIGSOFT ’96 WSs, pages 159–161, New
York, NY, USA, 1996. ACM.

[8] D. Benavides, S. Segura, and A. Ruiz-Cortes. Automated
analysis of feature models 20 years later: a literature review.
Information Systems (in Press), 2010.

[9] X. Blanc, I. Mounier, A. Mougenot, and T. Mens. Detecting
model inconsistency through operation-based model
construction. In Proc. ICSE Conf., pages 511–520, 2008.

[10] G. H. Campbell, S. R. Faulk, and D. M. Weiss. Introduction
to Synthesis. Technical report, Software Productivity
Consortium, Herndon, VA, USA, 1990.

[11] L. A. Campbell, B. H. C. Cheng, W. E. McUmber, and
K. Stirewalt. Automatically detecting and visualising errors
in UML diagrams. Requir. Eng., 7(4):264–287, 2002.

[12] B. H. C. Cheng, E. Y. Wang, and R. H. Bourdeau. A
graphical environment for formally developing
object-oriented software. In ICTAI, pages 26–32, 1994.

[13] K. Czarnecki. Variability modeling: State of the art and
future directions (keynote presentation). In Proc. 4th Int’l
WS on Variability Modelling of Software-intensive Systems
(VaMoS 2010), page 11, Linz, Austria, 2010. ICB-Research
Report 37, Univ. of Duisburg Essen.

[14] B. Delaware, W. R. Cook, and D. S. Batory. Fitting the
pieces together: a machine-checked model of safe
composition. In Proc. ESEC/FSE Conf., 2009, Amsterdam,
pages 243–252, 2009.

[15] G. Deng, J. Gray, D. Schmidt, Y. Lin, A. Gokhale, and
G. Lenz. Evolution in model-driven software product-line
architectures. In P. Tiako, editor, Designing
software-intensive systems, pages 1280–1312. Idea Group
Inc (IGI), 2008.

[16] D. Dhungana, P. Grünbacher, R. Rabiser, and T. Neumayer.
Structuring the modeling space and supporting evolution in
software product line engineering. Journal of Systems and
Software, 83(7):1197–1122, 2010.

[17] D. Dhungana, P. Heymans, and R. Rabiser. A formal
semantics for decision-oriented variability modeling with
DOPLER. In Proc. 4th Int’l WS on Variability Modelling of
Software-intensive Systems (VaMoS 2010), pages 29–35,
Linz, Austria, 2010. ICB-Research Report 37, Univ. of
Duisburg Essen.

[18] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer.
Integrated tool support for software product line engineering.
In Proc. ASE Conf., pages 533–534, Atlanta, Georgia, USA,
2007. ACM.

[19] A. Egyed. Instant consistency checking for the UML. In 28th
Int’l Conf. on Software Engineering, pages 381–390, New
York, NY, 2006. ACM.

[20] A. Egyed, E. Letier, and A. Finkelstein. Generating and
evaluating choices for fixing inconsistencies in UML design
models. In Proc. of the 2008 23rd IEEE/ACM Int’l Conf. on
Automated Sw. Eng., pages 99–108, Washington, DC, USA,
2008. IEEE Computer Society.

[21] A. Egyed and D. S. Wile. Support for managing design-time
decisions. IEEE TSE, 32(5):299–314, 2006.

[22] P. Grünbacher, R. Rabiser, D. Dhungana, and M. Lehofer.
Model-based customization and deployment of
Eclipse-based tools: Industrial experiences. In Proc. ASE
Conf., pages 247–256, 2009.

[23] F. Heidenreich. Towards systematic ensuring
well-formedness of software product lines. In FOSD ’09:
Proc. of the First Int’l WS on Feature-Oriented Software
Development, pages 69–74, New York, NY, USA, 2009.
ACM.

[24] W. Heider, R. Rabiser, D. Dhungana, and P. Grünbacher.
Tracking evolution in model-based product lines. In 1st Int’l
WS on Model-driven Approaches in Software Product Line
Engineering (MAPLE 2009), Proc. (vol 2) of the 13th Int’l
Software Product Line Conf. (SPLC 2009), pages 59–63, San
Francisco, CA, USA, 2009. SEI CMU.

[25] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson.
Feature-oriented domain analysis (FODA) feasibility study.
Technical report, SEI-CMU, USA, 1990.

[26] C. Kästner and S. Apel. Type-checking software product
lines – a formal approach. In 23rd IEEE/ACM ASE Conf.,
L’Aquila, Italy, pages 258–267, 2008.

[27] T. Mende, F. Beckwermert, R. Koschke, and G. Meier.
Supporting the grow-and-prune model in software product
lines evolution using clone detection. In 12th European Conf.
on Sw. Maintenance and Reengineering, pages 163–172,
Washington, DC, USA, 2008. IEEE CS.

[28] L. G. P. Murta, A. van der Hoek, and C. M. L. Werner.
ArchTrace: Policy-based support for managing evolving
architecture-to-implementation traceability links. In Proc.
ASE Conf., pages 135–144, 2006.

[29] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: a consistency checking and smart link generation
service. ACM Trans. Internet Techn., 2(2):151–185, 2002.

[30] K. Pohl, G. Böckle, and F. van der Linden. Software Product
Line Engineering: Foundations, Principles, and Techniques.
Springer, 2005.

[31] J. Robins et al. ArgoUml, http://argouml.tigris.org/.
Technical report.

[32] R. V. D. Straeten, T. Mens, J. Simmonds, and V. Jonckers.
Using description logic to maintain consistency between
UML models. In Proc. 6th Int’l UML Conf., San Francisco,
CA, USA, pages 326–340, 2003.

[33] P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and
A.Jimenez. FaMa framework. In Proc. Sw. Product Lines
Conf., page 359, 2008.

[34] A. Tsiolakis and H. Ehrig. Consistency analysis of UML
class and sequence diagrams using attributed graph
grammars. In Proc. of the Graph Transformation and Graph
Grammars (GRATA), Berlin, Germany, pages 77–86, 2000.

[35] M. Vierhauser, D. Dhungana, W. Heider, R. Rabiser, and
A. Egyed. Tool support for incremental consistency checking
on variability models. In Proc. 4th Int’l WS on Variability
Modelling of Software-intensive Systems (VaMoS 2010),
pages 171–174, Linz, Austria, 2010. ICB-Research Report
37, Univ. of Duisburg Essen.

[36] A. Zisman and A. Kozlenkov. Knowledge base approach to
consistency management of UML specification. In Prof. ASE
Conf., pages 359–363, 2001.

72

