Proceedings of the 2™ International Workshop on Living with Inconsistencies (IWLW!), co-located with ICSE 2001,
Toronto, Canada, May 2001.

Transformation, Ambiguity, and Trivialization

Alexander Egyed
Teknowledge Corporation
4640 Admiralty Way, Suite 231
Marina Del Rey, CA 90292, USA
+1 310 578 5350

aegyed@acm.org

1. INTRODUCTION

We have developed a consistency checking approach that
combines consistent transformation and consistency comparison.
Consistent transformation ensures consistency via well-defined
transformation steps where source models are transformed into
target models in a manner that guarantees consistency.
Consistency comparison, on the other hand, detects
inconsistencies via well-defined comparison steps where source
models are compared to target models to identify inconsistencies.
By combining consistent transformation and consistency
comparison we found that their respective disadvantages can be
leveraged. Whereas consistent transformation enables automated
continuity of modeling information (thus avoids error-prone,
manual, and repetitive activities in re-capturing model
information) it nevertheless comes at the expense of evolutionary
freedom in that either source and target models cannot be
modified after transformation since re-transformation may
potentially overwrite those modifications. The dternative,
consistency comparison, allows inconsistencies to be detected
“after the fact” (thus also avoids error-prone, manual, and
repetitive activities in comparing models) and has the advantage
that models can be evolved separately with the potential of
exposing them to inconsistencies (a form of living with
inconsistencies) due to their separate evolution. Consistency
comparison however comes at the expense of model continuity in
that inconsistency detection is not equivalent to inconsistency
resolution.

We have developed a hybrid consistency checking approach that
combines the active nature of consistent transformation with the
passive nature of consistency comparison; complementing model
continuity with evolutionary consistency. We refer to our
transformation-based consistency checking approach as IVIiTA.
(Inter-Vlew Transformation and Analysis). Note that our
approach is conceptually similar to consistency checking
approaches like Visual Specs [1] or JViews [6], both of which use
transformation to convert graphical models into either a formal
language (VisualSpecs) or a data repository (JViews) in which
they perform consistency analyses. There is, however, one major
distinguishing factor in that we do not belief that either a single
forma language or a single metamodel can be found that
represents the vast variety of modeling languages available today.
Even in cases like the Unified Modeling Language (UML), where
a single meta-model is available, comparing model elements in
that language is still non-trivial and can often not be done in a
one-to-one manner (i.e., between low-level and high-level class).

Our approach does not invent new intermediate languages (i.e., as
in MViews) and our approach does not use transformation to
convert model elements into a “comparison language’ (i.e,
Visua Specs) but instead we use transformation to convert source

models into the types of target models we wish to compare to. For
instance, if we would like to compare a class diagram with a
corresponding source code, our approach would either reverse
engineer the source code to yield an “interpreted” class diagram
followed by comparing the interpreted class diagram with the
existing one; or our approach would generate a source code
interpretation out of the class diagram followed by a comparison
of both versions of the source code. Thus there is no need for new
model languages athough there are cases where we can envision
advantages in having them. It is thus not our emphasis to bring
models closer to comparison languages but instead to bring
models closer to one another. And there is increasing support for
that: Koskimies et al. [8] created a sequence to statechart
transformation methods that use groups of sequence diagrams
(like test cases showing order of method calls among multiple
objects) to generate statechart diagrams (depicting life cycles of
software components); Ehrig et a. [5] came up with another
model transformation method that consolidates collections of
object diagrams to reason about their differences. They then map
those differences to method calls (as described in class diagrams)
to reason about the impact those methods have onto objects; and
Egyed-Kruchten [4] developed an abstraction method on how to
eiminate low-level classesto yield high-level abstractions.

Our approach uses those kinds of transformation methods to
convert model elements into intermediate models (called
interpretations) in such a manner that they (or pieces of them) can
be compared to other model(s). Generaly, transformation allows
conceptually different models to be compared directly. Thus, we
am at creating an environment where two originaly different
types of models can then be compared in context of one of their
types (i.e., convert the sequence diagrams to statechart diagrams
to simplify its comparison with other statechart diagrams). Our
comparison language is thus dependent on the types of models we
wish to compare.

2. TRIVIALIZATION AVOIDANCE

Although transformation-based consistency checking can combine
the advantages of consistent transformation and consistency
comparison, it cannot necessarily eliminate al their flaws. In the
past three years, we have inspected a large number of third-party
software models and we have observed that there are numerous
situations where modeling is impaired by ambiguities. We found
that ambiguities can be encountered during consistent
transformation and consistency comparison because of missing
trace dependencies and indeterminant model transformations. In
[3], we argue that in both cases ambiguities manifest themselves
in complex many-to-many mappings which need to be dealt with
during consistency checking.

In investigating the issue of trivialization in context of IViTA, we
found that the foundation for trivialization is aready laid during



transformation. Hunter and Nuseibeh [7] argue that triviaization
is the result of an inconsistency during comparison introducing a
negation that potentially makes everything true (A A —A). During
transformation, however, we found that indeterminant situations
may result in ambiguities that may lead to an increased likelihood
of trividizations. We encountered this case when a transformation
method is indecisive as to what the correct transformation result
for a given source model is. For instance, if during transformation
it is found that a model element might be either “A” or “B” (A v
B) then during comparison (consistency checking) we might
encounter the situation —A A (A v B). Although the ambiguity (A
v B) has a 50% change of being B, the expression —A A (A v B)
will always result in trivialization.

It is our belief that ambiguity increases the likelihood of
trivialization —ambiguity thus amplifies trivialization. We argue
that in minimizing ambiguity problems we aso minimize
triviaization problems. In [3], we present rules for ambiguous
reasoning that are tied to a maximum bi-partite matching
algorithm that guarantees minimal ambiguity.

3. TRIVIALIZATION CONTAINMENT
Although, we found that every step should be taken to reduce the
trivialization problem much like every step should be taken to
reduce the ambiguity problem, minimizing ambiguities is not
equal to eliminating ambiguities. Thus once trividization is
encountered, we are faced with the problem on how to deal with
it. Naturally, we could employ techniques like quasi-classical
logic [7] but, in context of IVITA, we aso found our
transformation framework to enable the containment of
trivialization.

In our investigation of UML diagrams, we have identified three
major transformational axes (see Figure 1). Views can be seen as
high-level or low-level, generic or specific, and behavioral or
structural [2]. The high-level/low-level dimension denoted
differences between model elements of different levels of
abstraction. For instance, low-level class diagrams realize high-
level class diagrams through refinement. The generic-specific
dimension denotes the generality of modeling information. For
instance, a class diagram naturaly describes a relationship
between classes that must always hold, whereas an object diagram

structure

behavior

sequence | Structuralization .
instance

low-level

Generalization Generalization

statechart |\ Structuralization

type

Abstraction

object
view

sequence
view

Structuralization

high-level

Abstractiol

Generalization ~Abstraction Generalization
A 4 A 4

statechart | Structuralization

Figure 1. Transformation Framework to Contain Trivialization

describes a specific scenario (a subset). Finaly, the behavior-
structure dimension takes information about a system’s behavior
to infer its structure. For instance, test scenarios (which are
behavioral) depict interactions between objects (structural) and
may thus be used to infer structure.

We wuse the transformation infrastructure to optimize
transformations in IViTA. For instance, if we would like to
compare a low-level sequence diagram with a high-level class
diagram, we could structuralize the sequence diagram to an object
diagram, abstract the (still low-level) object diagram to a high-
level object diagram, and finally generalize from the object
diagram to the class diagram. Our transformation framework takes
advantage of similar transformation properties among the three
defined transformation axes, however, more significantly for
trividization; our transformation framework restricts needed
comparisons. For instance, if we compare a low-level object
diagram with its low-level class diagram and that low-level class
diagram with a high-level class diagram then thereislittle value in
also comparing the low-level object diagram with the high-level
class diagram (the likelihood of same of similar inconsistencies
encountered is much greater). Thus, if the comparison of the
object diagram with the low-level class diagrams induces a
trivialization then it does not affect the subsequent comparison of
the low-level class diagram with the high-level class diagram.

4. CONCLUSIONS

This paper presented a tool-supported, transformation-based
consistency checking approach and discussed how it can be used
minimize trivialization and how to contain it. Although the
proposed solutions do not eliminate the trivialization problem,
they nevertheless ease it. Future work is to complement our
approach with a technique on how to resolve trivialization
problems.

[1] Cheng, B. H. C., Wang, E. Y., and Bourdeau, R. H., "A Graphical
Environment for Formally Developing Object-Oriented Software,”
Proceedings of International Conference on Tools with Al, Nov. 1994.

[2] Egyed, A., Heterogeneous View Integration and its Automation 2000.
University of Southern California.

[3] Egyed, A., "Taming Ambiguity to Overcome the Model Consistency
Barrier," submitted to European Conference on Software Engineering
and Foundations of Software Engineering (ESEC/FSE), Sept. 2001.

[4] Egyed, A. and Kruchten, P., "Rose/Architect: a tool to visuaize
architecture," Proceedings of the 32nd Hawaii International Conference
on System Sciences, Jan. 1999.

[5] Ehrig, H., Heckel, R., Taentzer, G., and Engds, G., A Combined
Reference Model- and View-Based Approach to System Specification
Journal of Software Engineering and Knowledge Engineering, vol. 7,
pp. 457-477, 1997.

[6] Grundy, J., Hosking, J, and Mugridge, R., Inconsistency
Management for Multiple-View Software Development Environments
|EEE Trans. Soft. Eng., vol. 24, Nov, 1998.

[7] Hunter, A. and Nuseibeh, B., Managing Inconsistent Specifications:
Reasoning, Analysis, and Action, Trans. Soft.Eng. and Methodology, vol.
7, pp. 335-367, Oct, 1998.

[8] Koskimies, K., Systd, T., Tuomi, J., and Mannist, T., Automated
Support for Modelling OO Software, IEEE Software, vol. pp. 87-94, Jan,
1998.



