
Towards Understanding Implications of
Trace Dependencies among Quality Requirements

Alexander Egyed Paul Grünbacher

Teknowledge Corporation Systems Engineering and Automation
4640 Admiralty Way, Suite 1010 Johannes Kepler University
Marina Del Rey, CA 90292, USA 4040 Linz, Austria

aegyed@acm.org gruenbacher@acm.org

Abstract

Understanding the implications of trace dependencies

among quality requirements is necessary in critical
engineering activities such as architectural risk
assessment. In this paper we will first briefly summarize
our scenario-based approach to generating trace
dependencies and then demonstrate how to “add”
meaning to the created trace dependencies in order to
understand their implications. The paper also discusses
automated support for trade-off analysis, and a brief
discussion of related work.

1. Introduction

Many critical risks in software engineering are
architectural [1] and deal with system properties like
performance, reliability, or security [11]. Architectural
risks have to be considered in particular when new
requirements have to be assessed or changes to existing
requirements are made. Assessing architectural risks
however is challenging and relies on understanding the
complex relationship between requirements, desired
system properties, and architectures during development
and maintenance [10, 12].

Requirements Traceability (RT) [9, 13] aims at under-
standing the complex relationship between different
development artifacts. However, the approach suffers
from the enormous effort and complexity of creating and
maintaining traceability information [14]. Although
numerous industrial-strength tools are available to
manage trace links, there is still a strong need to
automatically create trace links.

In our previous research we have thus been developing
techniques and tools for automating the creation of trace
dependencies between various models in the software
life-cycle [6, 7]. Using our scenario-based approach in the
context of the discussed problem to relate requirements,
architectures, and quality properties assumes that we have

(a) requirements of a system expressed in an arbitrary

notation;

(b) the architecture and implementation of a system
(c) quality attributes expressed through the requirements

and architecture (either elicited from the requirements
or reverse engineered from the architecture through
some other means); and

(d) scenarios how to validate these requirements/
architecture/quality artifacts.

As a result of our approach we get various trace

dependencies among artifacts, such as traces among
functional artifacts (requirements, architecture), traces
between functional and quality (non-functional)
requirements, as well as traces among quality
requirements.

Although the automatic creation of these dependencies
is a big advancement over traditional traceability
techniques we are still facing the challenge on how to
interpret and use the created information in real-world
engineering scenarios. We have to understand the
meaning and implications of these trace dependencies and
also need to find out how related artifacts affect one
another to identify potential conflicts and risks. For
example, requirements may be orthogonal, or they may
positively or negatively reinforce each other.

The manual investigation of all trace dependencies
however is tedious and error prone. In a real-world system
there are likely thousands of links one would have to
investigate in order to find potential conflicts. We are thus
proposing a technique that (a) defines the implication of
trace dependencies based on the meaning of the
requirements they bridge; and (b) defines the positive and
negative impact requirements changes may have.

2. Scenario-Based Trace Dependencies

2.1 Overview

Trace dependencies describe relationships between
different artifacts such as requirements, designs,
assumptions, rationale, system components, source code
etc. [13]. They help engineers in answering real-world
questions such as “Why is this requirements here?”, or
“What happens if I change this design element?”. Traces

Proceedings of the 2nd International Workshop on Traceability In Emerging Forms of Software Engineering (TEFSE),
co-located with ASE 2003, Montreal, Canada, October 2003.

are not static but living entities in an iterative modeling
process. For example, if a requirement led to the
implementation of some source code then there should
exist a trace dependency. If the requirement changes then
the source code is most likely affected and vice versa.

The Trace Analyzer [7] automatically defines trace
dependencies through shared use of source code. This
means that if two requirements depend on subsets of the
system’s source code then a trace dependency exists if
and only if those subsets overlap. The technique relies on
known or hypothesized dependencies between sets of
model elements and code where there is still uncertainty
about the correctness of these dependencies. It helps in
identifying relationships between individual model
elements and code with a higher certainty about
correctness.

2.2 Video-On-Demand System

The Trace Analyzer technique has been applied
previously to a Video-On-Demand System [5] as
described in [6]. This system allows searching for movies,
selecting, and playing movies concurrently while
downloading its data from a remote site. A shortened list
of functional and quality requirements is published in [6].
Important requirements of the system include
(requirements categories in brackets are taken from [11]):

r0: Download movie data on-demand while playing a movie

(Functionality)

r1: Play movie automatically after selection from list
(Functionality)

r2: Users should be able to display textual information about a
selected movie (Functionality)

r3: User should be able to pause a movie (Functionality)
r4: Three seconds max to load movie list (Efficiency/Time

behavior)

r5: Three seconds max to load textual information about a movie
(Efficiency/Time behavior)

r6: One second max to start playing a movie (Efficiency/Time
behavior)

r7: Novices should be able to use the major system functions
(selecting movie, playing/pausing/stopping movie) without
training (Understandability)

r8: User should be able to stop a movie (Functionality)

r9: User should be able to (re) start a movie (Functionality)

r10: Avoid image degradation caused by temporary network-load
fluctuations (Reliability/Maturity)

r11: Only authorized users should get access to movies (Security)

r12: System should automatically re-establish a link to the movie
server within 5 seconds in case of failure during streaming
(Recoverability)

Our approach requires the existence of usage scenarios
that can be tested against the code to identify trace
dependencies. Commercial tools for monitoring the
execution of a software system are readily available
which report the lines of code, methods, and classes

executed while testing a scenario. Table 1 below lists test
scenarios1 defined for this case study and shows what
requirements the test scenarios apply to. The right part of
the table shows the Java classes that get executed while
testing various usage scenarios. For brevity, single
characters are used instead of class names.

Table 1. Scenarios and Observed Footprints

Test Scenario Requirement Observed Java Classes
1. view textual movie

information
[r2] [C,E,J,N,R]

2. select/play movie [r1][r6] [A,C,D,F,G,I,J,K,N,O,T,R,U]
3. press stop button [r8] [A,C,D,F,G,I,K,O,T,U]
4. press play button [r6][r9] [A,C,D,F,G,I,K,N,O,T,R,U]
5. playing [r0][r10][r12] [A,C,D,F,G,I,K,O]
6. get textual movie

information
[r5] [N,R]

7. movie list [r4] [R]
8. VCR-like UI [r7] [A,C,D,F,G,I,K,N,O,R,T,U]
9. select movie [r11] [C,J,N,R,T,U]
10. press pause [r3] [A,C,D,F,G,I,K,O,U]

Our approach identifies trace dependencies between

arbitrary requirements based on overlaps among the lines
of code that implement those requirements. For example,
there is a trace dependency between scenario 4 (press
play button) and scenario 5 (playing) because the latter
executes a subset of the lines of code the former does.
Since both scenarios represent test cases for different
requirements (r9 and r10), we can infer a trace
dependency between these requirements.

Figure 1 shows an excerpt of the VOD system. The
figure contains links that visualize this subset/superset
relationship among executed lines of code for
requirements as discussed above. In particular, the
requirement pointed to by the arrow uses a subset of the
lines of code of the pointing requirement. For example,
Figure 1 contains an arrow from r9 to r10 because r9 uses
a subset of the lines of code that r10 does. There are also
two clusters of requirements (e.g., r1 and r6).
Requirements in these clusters executed the exact same
lines of code. Graphically this implies bi-directional trace
dependencies among the requirements within those
clusters which we simply abbreviate by forming clusters.

Figure 1 depicts some trace dependencies in green
(solid lines) and others in red (dashed lines). Green lines
imply correct trace dependencies while red lines represent
incorrect trace dependencies. The latter occur because of
two reasons: (1) sometimes the code of two requirements
is interleaved such that the execution of the one always
implies the execution of the other although both

1 Note: Test scenarios can be defined in any form the

developers desire since it is also their responsibility to test
the system against those test scenarios. Automated
techniques for capturing and testing test scenarios are
readily available and thus outside the scope of this paper.

requirements are indeed orthogonal (they to not interfere
with one another) and (2) sometimes the granularity of the
trace analysis is not fine enough. In our case, the latter is
at fault. In order to keep the presented information small
in this paper, we chose to use Java classes as the smallest
entities. This is usually problematic since different
requirements may well use the same java classes although
different methods thereof. Indeed, if we were to do the
trace analysis by comparing overlapping methods (instead
of classes) then we would not have found any red links.

Nonetheless, incorrect trace results are bound to
happen and it is important to understand the meaning of
these trace dependencies to evaluate their correctness. The
latter is important for identifying true dependencies for
risk assessment and trade-of analyses. The figure shows
that trace dependencies can get very complex even in this
simple example confirming that there is a need for
automation.

Given correct input, our approach is exhaustive in
generating explicit trace dependencies for every artifact
which results in a large number of (potentially incorrect)
trace dependencies.

This has two implications:
1) what to do with these many trace dependencies?
2) how to deal with incorrect trace dependencies?

Thus far, we used our approach on a range of

automated techniques for consistency checking and other
forms of reasoning. In that context, problems generally
arise because of the lack of information and not its
abundance. The availability of abundant trace information
provides more interconnectivity among modeling artifacts
allowing deeper manual investigation. It is generally not
necessary to “comprehend” the complete set of trace
dependencies but only subsets addressing particular
concerns.

As pointed out above, our approach also errs in
producing incorrect trace dependencies at time. Here, our
stance is that it is generally easier to dismiss incorrect
trace dependencies, when encountered, instead
discovering missing ones.

In the absence of a precise, complete, and automated
approach to generating trace dependencies, we are faced
with the decision of trading-off completeness and
correctness. We believe our approach to be complete in

r0: download movie data on demand
while playing a movie

r2: user should be able to display textual
information about a selected movie

r5: 3sec max to load movie details

r12: system should automatically re-establish a link to the movie
server within 5sec in case of failure during streaming

r4: 3sec max to load movie list

r7: novices should be able to use major system
functions without training

r10: avoid image degradation caused by
temporary network load fluctuations

r8: user should be able to
stop a movie

r3: user should be able to
pause a movie

r11: Only authorized users should
get access to movies

r1: play movie automatically after
selection from list

r9: user should be able to
(re)start a movie

r6: 1sec max to start playing a movie

Figure 1: Automatically created trace links between VOD requirements.

identifying all trace dependencies, however at the expense
of also producing some incorrect ones. We found that our
approach generally produces few incorrect trace
dependencies compared to correct ones. Our approach is
thus most useful in domains where completeness is
desired (i.e., trade-off analysis, automation).

3. Understanding Trace Dependencies

Our approach identifies simple trace dependencies that
do not convey any meaning or rationale. However, these
simple dependencies are already very useful to support
change management. For example, we know from the
example in Section 2 that requirement r9 depends on
requirement r10 and if requirement r10 changes then
requirement r9 is affected by this change. Even in cases
of incorrect trace dependencies (red link) this reasoning is
useful since the change of one requirement may
unknowingly result in the change of other, dependent
requirements. However, while this reasoning about
change management is very useful, we found that it is
superficial in that it says little about how requirements
affect one another.

3.1 Semantic Differences among Requirements

The trace dependencies derived through our approach
are “dumb” links that merely express existing
relationships. Human decision makers are thus required in
clearly identifying the true nature of that relationship.
However, upon investigating trace dependencies among
requirements, we found that the meaning of these
relationships is dependent on the types of requirements
they bridge. For example:
• Trace dependency between an efficiency requirement

and a functional requirement. The meaning of an
efficiency (time behavior) requirement is to define
some time constraint a (sub)system has to satisfy while
the meaning of the functional requirement is to define
user/customer requested functionality. If our approach
identifies a “dumb” trace dependency between an
efficiency requirement and a functional requirement
(e.g., the dependency from r6 to r1) then we may infer
that the execution of this particular function has to
satisfy the given performance constraint (e.g., the
movies needs to be played within 1 seconds after
selection from list). In doing so we thus identify an
important property of the functional requirement going
beyond mere change management.

• Trace dependency between two efficiency
requirements. If our approach identifies a “dumb”
trace dependency from an efficiency requirement (e.g.,
r6) to another efficiency requirement (e.g., r5) we may
infer that the second requirement r5 has to be at least
as efficient as the first one (e.g., loading textual
information about a movie has to be at least as fast as

starting to play the movie). The reason is that if r6
depends on r5 then r5 is executed as part of executing
r6. Thus if r6 has to finish executing with a given
efficiency condition then, obviously, r5 has to execute
within the same or even better efficiency.

Table 2 defines these and additional strong implications.

Table 2: Strong Implication Table (Examples)

Dependency Type Implication
efficiency e ? function f Function f has to satisfy

efficiency e
efficiency e1 ? efficiency
e2

e2 has to be at least as
efficient as e1

efficiency r ? security s s needs to be realizable with
efficiency r

Understandability u ?
Recoverability r

the recovering action r should
not contradict understandability

Function f ? Reliability r f needs to be realizable within
reliability r

Security s ? Function f Function f must satisfy at least
security s

Security s1 ? Security s2 s2 has to provide at least the
level of s1

While Table 2 points out trace dependencies among

requirements that have strong implications that are always
true, there are also weaker cases listed in Table 3. For
example, if a functional requirement depends on another
functional requirement then an implication may be that
the implementation of the second functionality is a pre-
requisite for the implementation of the first one. In other
words, eliminating the second requirement is useless if
the first requirement is not eliminated either. Consider for
example requirement r1 “play movies automatically after
selection from list” and, requirement r0 “download movie
data on demand from server while playing.” Clearly, the
second requirement needs to be implemented to support
the first one.

The implications in Table 3 are weaker because
functions may be orthogonal which means that two
separate functionalities are implemented “close” to one
other but in a way that their execution does not affect one
another. For example, requirement r1 “play movies
automatically after selection from list” and requirement
r13 (not listed) “log the playing of movies in a log file”.
Clearly the second requirement is executed as part of the
first requirement but the first requirement is indifferent to
the second one.

Table 3: Weak Implication Table (Examples)

Dependency Type Implication
function f1 ? function f2 Implementing function f2 might

be a pre-requisite to imple-
menting function f1

function f ? efficiency p Some/most of the function f
has to satisfy performance
constraint p

Two pre-requisites are thus required for identifying
meaningful strong and weak trace dependencies:
(1) a classification of requirements (e.g, functional,
efficiency, security), and (2) “dumb” trace dependencies
among requirements. We demonstrated in previous work
how we can identify “dumb” trace dependencies
automatically as summarized in Section 2. Manual effort
is still required for classifying requirements. As such, a
single requirement may be classified into an arbitrary
number of categories. Although a manual activity, we
found that it is typically easy to categorize requirements
this way. Indeed, looking at related work, we find that the
classification of requirements is often a byproduct of
existing requirements modeling techniques [8, 10].

3.2 Degrees of Overlaps

Our approach to finding trace dependencies relies on
finding overlaps among test scenarios that belong to
requirements (or groups of requirements). If two test
scenarios for two different requirements overlap in the
lines of code they execute (i.e., their “footprints” overlap)
then we assume a trace dependency. In terms of
identifying the implications of a trace dependency, our
approach thus has a unique advantage. Depending on the
degree of overlap in the lines of code executed we can
strengthen and weaken the implications from Table 2 and
Table 3.

Figure 2 shows how the lines of code of requirements
may overlap. If there is no overlap (case 1) we can deduce
that there is no trace dependency. In other words, if a
security requirement affects different lines of code than a
functional requirement then it is safe to say that the
security requirement does not apply to the functional
requirement. On the other extreme, if there is complete
overlap (case 4) we can deduce that the requirements
describe the same part of the system (e.g., clusters in
Figure 1). In other words, if a security requirement is
implemented by the same lines of code than a functional
requirement then it must satisfy the security exactly; and
that the security must be implemented by exactly this
functionality (and no other). Both cases 1 and 4 in Figure
2 support strong reasoning and we can create reliable
trace dependencies. However, case 4 is the least likely
case. Typically, scenarios do not overlap in the lines of
code they execute or they overlap only partially (cases 2
and 3). What does this imply?

If a requirement uses a subset of the lines of code
(case 3) of another one Table 2 and Table 3 apply, but
only in one direction. For example, if a functional
requirement uses a subset of the lines of code of a security
requirement then it must fully satisfy the latter; however,
the security requirement will only be implemented
partially by the functional requirement resulting in a
reliable trace link in one direction and a weak one in the
other direction. We found that many trace dependencies

fall under this category. In Figure 1, all (correct) trace
dependencies (green links) fall under this category.

A

B

A

B
A,B

A
B

A≠B B⊂A A≡B
1) 2) 3) 4)

B∩A

Figure 2. Types of Overlaps among

Requirements

If a requirement overlaps with another requirement but

both requirements have their unique source code (case 2)
the implications we can derive from the trace dependency
are weakened. For example, a security requirement that
partially overlaps with a functional requirement implies
that a part of the functionality has to implement the
security (which part of the functionality remains
unknown) and it implies that a part of the security is
implemented by the functionality (again the part is
unknown).

Security

Functionality

Security

Functionality
Figure 3: Partially overlapping requirements

Although this kind of dependency is weaker, it may

still produce useful insights. Depending on how large the
overlap is, we can gradually strengthen and weaken the
meaning. If the functional requirement and the security
requirement overlap 90% (almost complete overlap; left
of Figure 3) then we can say that most of the functionality
must satisfy the security constraint. Obviously, this is
better than if the overlap is less (e.g., 20%; right of
Figure 2). We can use this degree of overlap to
distinguish between more and less reliable meaning.

For example, the efficiency requirements r6 and the
functional requirement r2 partially overlap with the
efficiency requirement using most of the same Java
classes as the functional one. Due to the partial overlap,
we cannot imply a strong meaning but because of the
strong overlap, it is fair to say that most of r2 has to have
an efficiency of one second or less.

3.3 Grouping of Requirements

An interesting extension of this discussion is to
consider packages of requirements instead of individual

requirements. This is not only important for the purpose
of this paper but has relevance in real-world settings. For
example, in requirements negotiation we need to
understand the dependencies among requirements in order
to allow meaningful trade-off analyses. It typically does
not make sense to look at individual requirements – we
usually have to build packages of related requirements in
order to better handle complexity. In context of adding
meaning to trace dependencies this “grouping” of
requirements has further implications. Figure 4 shows that
both Security1 and Security2 partially overlap with
Function1. We cannot infer which part of the function has
to satisfy Security1 or Security2. But we see that a
package of both security requirements together captures
all of the functionality. Thus, we can deduce that all of
Function1 must satisfy the weaker of the two security
requirements; some of the functionality (and this part is
unknown) has to satisfy the stronger of the two security
requirements.

Security1

Security2

Function1

Response
Time1

Response
Time2

Function2

Figure 4: Grouping of Requirements

A similar example can be drafted with response time.

If response times 1 and 2 overlap with a function then we
can deduce that the response time of the functionality has
to be less than the combined response times 1 and 2. It
will be future work to investigate the effect of grouping
requirements in more detail.

4. Deriving Positive and Negative
 Implications

As mentioned in the introduction, another possible
real-world application for the approach discussed in this
paper is architectural risk assessment. We intend to
develop decision support to help engineers in identifying
possible risks of adding new requirements or changing
requirements of an existing system. The premise is that
changes to requirements cause conflicts and that it is
error-prone and expensive to investigate all trace
dependencies manually in order to identify those
conflicts. Our approach already provides strong support
for this kind of trade-off analysis. If the trace analyzer
does not find a trace dependency between two
requirements then changing one is unlikely to cause
conflicts with the other2. However, in what ways do

2 Our approach clearly ignores potential side effects of

requirement changes affect one another if there are trace
dependencies?

Based on the meaning of dependencies, it is possible to
determine a likelihood of risk. It is however incorrect to
argue that the mere existence of requirements have
negative or positive implications. For example, it seems
intuitive that a security requirement has a negative impact
on efficiency because security implies additional
functionality and efficiency goes down with additional
functionality. However, this reasoning is potentially
wrong because it does not include information about the
relative difference to some norm. For example, if the
security requirement would define a functionality to be
less than average secure then this would be good for
efficiency.

It follows that we need information about the
difference to some norm to reason about positive and
negative implications of changes among requirements. A
decision table could help us in determining these
implications. Table 4 is a first attempt in defining such a
decision support for trade-off analysis. For example, the
table shows that a change in security (row) has a reverse
effect on efficiency (column). As such, an increase in
security has a high likelihood of a negative implication
onto efficiency; and a reduction in security should have a
positive implication. Other examples are: the addition of
new functionality should also have a negative impact onto
efficiency; the increase in security should have a positive
impact onto reliability (i.e., we stipulate that a less secure
system has to be more reliable for it to be more secure); or
a change in security has an unknown impact onto
understandability.

We believe that it is not necessary to define quality in
terms of absolute numbers but only in terms of relative
differences. Table 4 thus does not show a table with
absolute rankings among qualities requirements. We
envision such a table to be useful for a first-cut, trade-off
analysis among requirements changes. As such, making a
quality requirement stronger does not require
investigating requirements without trace dependencies; it
likely does not require investigating requirements with
positive reinforcements; it likely does require
investigating requirements with indifferent/unknown
reinforcement; it certainly does require investigating
requirements with negative reinforcement. As such, we
believe that our technique can support trade-off analysis
by guiding human decision makers and prioritizing their
tasks.

5. Related Work

Different researchers have been developing approaches
for modeling dependencies among quality requirements:

data dependencies and emphasizes control dependencies
only. We have not investigated this issue yet.

Chung et al. discuss how architectural properties such as
modifiability and performance can be modeled as
“softgoals” and how different architectural designs
support these goals. Architectural decisions can be traced
back to stakeholders [2]. Franch and Maiden apply the i*
actor-based modeling approach [3] for modeling software
architectures, not in terms of connectors and pipes, but in
terms of actor dependencies to achieve goals, satisfy soft
goals, use and consume resources, and undertake
tasks [8].

Automated generation of traceability dependencies is
also gaining increasing importance. For example, Zisman
et al. present an approach for automatic generation and
maintenance of traceability relations based on traceability
rules. The artifacts as well as the rules are described in
XML and supported by a prototype tool [15]. The
approach has also been applied to organizational models
specified in i* and software systems models represented
in UML [4].

6. Conclusion

The tables presented in this paper are initial work and
certainly require more elaboration. However, we believe
that the presented work is detailed enough to demonstrate
the usefulness of defining the implications of trace
dependencies based on the meaning of requirements. To
date, we have demonstrated that we can determine trace
dependencies among requirements automatically while
observing usage scenarios. This requires either existing
code (for execution) or hypotheses on the impact of
scenarios onto code. And this requires hypotheses on the
relationship between test scenarios and requirements.

We performed an initial experiment using the VOD
system to determine how well the meaning of trace
dependencies can be determined by the meaning of

requirements. This only required the manual classification
of requirements (i.e., grouping into qualities) which we
found to be easy. As a result, we identified useful trace
dependencies among system requirements that helped in
identifying conflicts and risks. We also found that the
meaning of trace dependencies can be strengthened and
weakened depending on the degree of overlaps among
requirements.

We believe that the discussed capabilities would ease
the task of engineers in performing tasks such as
assessing the risks of new or changing requirements.

7. References

[1] Boehm, B.W., Software Risk Management: Principles and
Practices. IEEE Software, 1991. 8(1):32-41.
[2] Chung, L., Gross, D., and Yu, E., Architectural Design to
Meet Stakeholder Requirements, in Software Architecture,
Donohue, P., Editor. 1999, Kluwer Academic Publishers. p.
545-564.
[3] Chung, L., Nixon, B.A., Yu, E., and Mylopoulos, J., Non-
Functional Requirements in Software Engineering. 2000:
Kluwer.
[4] Cysneiros, F.G., Zisman, A., and Spanoudakis, G. A
Traceability Approach for i* and UML Models. In: Proceedings
of 2nd International Workshop on Software Engineering for
Large-Scale Multi-Agent Systems - ICSE 2003. 2003.
[5] Dohyung, K., Java MPEG Player.
[6] Egyed, A. and Grünbacher, P. Automating Requirements
Traceability: Beyond the Record & Replay Paradigm. In: 17th
Int'l Conf. Automated Software Engineering. 2002. Edinburgh:
IEEE CS.
[7] Egyed, A.F., A Scenario-Driven Approach to Trace
Dependency Analysis. IEEE Transactions on Software
Engineering, 2003. 29(2):116-132.
[8] Franch, X. and Maiden, N.A.M. Modeling Component
Dependencies to Inform their Selection. In: 2nd International
Conference on COTS-Based Software Systems. 2003: Springer.

Table 4: Reinforcement among different quality requirements.

Child/Parent Functionality Efficiency Understandability Reliability Security Recoverability

Functionality + -- - - - 0

Efficiency 0 ++ 0 - -- 0

Understandability - 0 ++ + 0 +

Reliability 0 - 0 ++ + +

Security 0 - 0 + ++ +

Recoverability 0 - + + + ++

Legend: ++ Strong positive reinforcement + Weak positive reinforcement 0 neutral - Weak negative reinforcement -- Strong negative reinforcement

[9] Gotel, O. and Finkelstein, A. Contribution structures. In:
Second IEEE International Symposium on Requirements
Engineering. 1995. York, England.
[10] Grünbacher, P., Egyed, A., and Medvidovic, N.
Reconciling Software Requirements and Architectures: The
CBSP Approach. to appear: Journal on Software and System
Modeling (SoSyM), Springer.
[11] ISO/IEC-9126, Information technology - Software Product
Evaluation - Quality characteristics and guidelines for their use.
1991.
[12] Pohl, K., Brandenburg, M., and Gülich, A. Integrating
Requirement and Architecture Information: A Scenario and
Meta-Model Based Approach. In: REFSQ Workshop. 2001.
[13] Ramesh, B. and Jarke, M., Toward Reference Models for
Requirements Traceability. IEEE Transactions on Software
Engineering, 2001. 27(4):58-93.
[14] Ramesh, B., Stubbs, L.C., and Edwards, M., Lessons
Learned from Implementing Requirements Traceability.
Crosstalk -- Journal of Defense Software Engineering, 1995.
8(4):11-15.
[15] Zisman, A., Spanoudakis, G., Perez-Minana, E., and
Krause, P. Tracing Software Requirements Artefacts. In: The
2003 International Conference on Software Engineering
Research and Practice (SERP'03). 2003. Las Vegas, Nevada,
USA.

