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Abstract 

 
Understanding the implications of trace dependencies 

among quality requirements is necessary in critical 
engineering activities such as architectural risk 
assessment. In this paper we will first briefly summarize 
our scenario-based approach to generating trace 
dependencies and then demonstrate how to “add” 
meaning to the created trace dependencies in order to 
understand their implications. The paper also discusses 
automated support for trade-off analysis, and a brief 
discussion of related work. 

 

1. Introduction 

Many critical risks in software engineering are 
architectural [1] and deal with system properties like 
performance, reliability, or security [11]. Architectural 
risks have to be considered in particular when new 
requirements have to be assessed or changes to existing 
requirements are made. Assessing architectural risks 
however is challenging and relies on understanding the 
complex relationship between requirements, desired 
system properties, and architectures during development 
and maintenance [10, 12]. 

Requirements Traceability (RT) [9, 13] aims at under-
standing the complex relationship between different 
development artifacts. However, the approach suffers 
from the enormous effort and complexity of creating and 
maintaining traceability information [14]. Although 
numerous industrial-strength tools are available to 
manage trace links, there is still a strong need to 
automatically create trace links.  

In our previous research we have thus been developing 
techniques and tools for automating the creation of trace 
dependencies between various models in the software 
life-cycle [6, 7]. Using our scenario-based approach in the 
context of the discussed problem to relate requirements, 
architectures, and quality properties assumes that we have  

 
(a) requirements of a system expressed in an arbitrary 

notation; 

(b) the architecture and implementation of a system 
(c) quality attributes expressed through the requirements 

and architecture (either elicited from the requirements 
or reverse engineered from the architecture through 
some other means); and 

(d) scenarios how to validate these requirements/ 
architecture/quality artifacts. 

 
As a result of our approach we get various trace 

dependencies among artifacts, such as traces among 
functional artifacts (requirements, architecture), traces 
between functional and quality (non-functional) 
requirements, as well as traces among quality 
requirements. 

Although the automatic creation of these dependencies 
is a big advancement over traditional traceability 
techniques we are still facing the challenge on how to 
interpret and use the created information in real-world 
engineering scenarios. We have to understand the 
meaning and implications of these trace dependencies and 
also need to find out how related artifacts affect one 
another to identify potential conflicts and risks. For 
example, requirements may be orthogonal, or they may 
positively or negatively reinforce each other. 

The manual investigation of all trace dependencies 
however is tedious and error prone. In a real-world system 
there are likely thousands of links one would have to 
investigate in order to find potential conflicts. We are thus 
proposing a technique that (a) defines the implication of 
trace dependencies based on the meaning of the 
requirements they bridge; and (b) defines the positive and 
negative impact requirements changes may have. 

2. Scenario-Based Trace Dependencies 

2.1 Overview 

Trace dependencies describe relationships between 
different artifacts such as requirements, designs, 
assumptions, rationale, system components, source code 
etc. [13]. They help engineers in answering real-world 
questions such as “Why is this requirements here?”, or 
“What happens if I change this design element?”. Traces 
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are not static but living entities in an iterative modeling 
process. For example, if a requirement led to the 
implementation of some source code then there should 
exist a trace dependency. If the requirement changes then 
the source code is most likely affected and vice versa.  

The Trace Analyzer [7] automatically defines trace 
dependencies through shared use of source code. This 
means that if two requirements depend on subsets of the 
system’s source code then a trace dependency exists if 
and only if those subsets overlap. The technique relies on 
known or hypothesized dependencies between sets of 
model elements and code where there is still uncertainty 
about the correctness of these dependencies. It helps in 
identifying relationships between individual model 
elements and code with a higher certainty about 
correctness. 

2.2 Video-On-Demand System 

The Trace Analyzer technique has been applied 
previously to a Video-On-Demand System [5] as 
described in [6]. This system allows searching for movies, 
selecting, and playing movies concurrently while 
downloading its data from a remote site. A shortened list 
of functional and quality requirements is published in [6]. 
Important requirements of the system include 
(requirements categories in brackets are taken from [11]): 

 
r0: Download movie data on-demand while playing a movie 

(Functionality) 

r1: Play movie automatically after selection from list 
(Functionality) 

r2: Users should be able to display textual information about a 
selected movie (Functionality) 

r3: User should be able to pause a movie (Functionality) 
r4: Three seconds max to load movie list (Efficiency/Time 

behavior) 

r5: Three seconds max to load textual information about a movie 
(Efficiency/Time behavior) 

r6: One second max to start playing a movie (Efficiency/Time 
behavior) 

r7: Novices should be able to use the major system functions 
(selecting movie, playing/pausing/stopping movie) without 
training (Understandability) 

r8: User should be able to stop a movie (Functionality) 

r9: User should be able to (re) start a movie (Functionality) 

r10: Avoid image degradation caused by temporary network-load 
fluctuations (Reliability/Maturity) 

r11: Only authorized users should get access to movies (Security) 

r12: System should automatically re-establish a link to the movie 
server within 5 seconds in case of failure during streaming 
(Recoverability) 

Our approach requires the existence of usage scenarios 
that can be tested against the code to identify trace 
dependencies. Commercial tools for monitoring the 
execution of a software system are readily available 
which report the lines of code, methods, and classes 

executed while testing a scenario. Table 1 below lists test 
scenarios1 defined for this case study and shows what 
requirements the test scenarios apply to. The right part of 
the table shows the Java classes that get executed while 
testing various usage scenarios. For brevity, single 
characters are used instead of class names.  

 
Table 1. Scenarios and Observed Footprints 
 

Test Scenario Requirement Observed Java Classes 
1. view textual movie 

information 
[r2] [C,E,J,N,R] 

2. select/play movie [r1][r6] [A,C,D,F,G,I,J,K,N,O,T,R,U] 
3. press stop button [r8] [A,C,D,F,G,I,K,O,T,U] 
4. press play button [r6][r9] [A,C,D,F,G,I,K,N,O,T,R,U] 
5. playing [r0][r10][r12] [A,C,D,F,G,I,K,O] 
6. get textual movie 

information  
[r5] [N,R] 

7. movie list [r4] [R] 
8. VCR-like UI [r7] [A,C,D,F,G,I,K,N,O,R,T,U] 
9. select movie [r11] [C,J,N,R,T,U] 
10. press pause  [r3] [A,C,D,F,G,I,K,O,U] 

 
Our approach identifies trace dependencies between 

arbitrary requirements based on overlaps among the lines 
of code that implement those requirements. For example, 
there is a trace dependency between scenario 4 (press 
play button) and scenario 5 (playing) because the latter 
executes a subset of the lines of code the former does. 
Since both scenarios represent test cases for different 
requirements (r9 and r10), we can infer a trace 
dependency between these requirements.  

Figure 1 shows an excerpt of the VOD system. The 
figure contains links that visualize this subset/superset 
relationship among executed lines of code for 
requirements as discussed above. In particular, the 
requirement pointed to by the arrow uses a subset of the 
lines of code of the pointing requirement. For example, 
Figure 1 contains an arrow from r9 to r10 because r9 uses 
a subset of the lines of code that r10 does. There are also 
two clusters of requirements (e.g., r1 and r6). 
Requirements in these clusters executed the exact same 
lines of code. Graphically this implies bi-directional trace 
dependencies among the requirements within those 
clusters which we simply abbreviate by forming clusters. 

Figure 1 depicts some trace dependencies in green 
(solid lines) and others in red (dashed lines). Green lines 
imply correct trace dependencies while red lines represent 
incorrect trace dependencies. The latter occur because of 
two reasons: (1) sometimes the code of two requirements 
is interleaved such that the execution of the one always 
implies the execution of the other although both 

                                                           
1 Note: Test scenarios can be defined in any form the 

developers desire since it is also their responsibility to test 
the system against those test scenarios. Automated 
techniques for capturing and testing test scenarios are 
readily available and thus outside the scope of this paper. 



requirements are indeed orthogonal (they to not interfere 
with one another) and (2) sometimes the granularity of the 
trace analysis is not fine enough. In our case, the latter is 
at fault. In order to keep the presented information small 
in this paper, we chose to use Java classes as the smallest 
entities. This is usually problematic since different 
requirements may well use the same java classes although 
different methods thereof. Indeed, if we were to do the 
trace analysis by comparing overlapping methods (instead 
of classes) then we would not have found any red links. 

Nonetheless, incorrect trace results are bound to 
happen and it is important to understand the meaning of 
these trace dependencies to evaluate their correctness. The 
latter is important for identifying true dependencies for 
risk assessment and trade-of analyses. The figure shows 
that trace dependencies can get very complex even in this 
simple example confirming that there is a need for 
automation. 

Given correct input, our approach is exhaustive in 
generating explicit trace dependencies for every artifact 
which results in a large number of (potentially incorrect) 
trace dependencies.  

 

This has two implications: 
1) what to do with these many trace dependencies? 
2) how to deal with incorrect trace dependencies? 
 
Thus far, we used our approach on a range of 

automated techniques for consistency checking and other 
forms of reasoning. In that context, problems generally 
arise because of the lack of information and not its 
abundance. The availability of abundant trace information 
provides more interconnectivity among modeling artifacts 
allowing deeper manual investigation. It is generally not 
necessary to “comprehend” the complete set of trace 
dependencies but only subsets addressing particular 
concerns.  

As pointed out above, our approach also errs in 
producing incorrect trace dependencies at time. Here, our 
stance is that it is generally easier to dismiss incorrect 
trace dependencies, when encountered, instead 
discovering missing ones.  

In the absence of a precise, complete, and automated 
approach to generating trace dependencies, we are faced 
with the decision of trading-off completeness and 
correctness. We believe our approach to be complete in 

r0: download movie data on demand
while playing a movie

r2: user should be able to display textual
information about a selected movie

r5: 3sec max to load movie details

r12: system should automatically re-establish a link to the movie
server within 5sec in case of failure during streaming

r4: 3sec max to load movie list

r7: novices should be able to use major system
functions without training

r10: avoid image degradation caused by
temporary network load fluctuations

r8: user should be able to
stop a movie

r3: user should be able to
pause a movie

r11: Only authorized users should
get access to movies

r1: play movie automatically after
selection from list

r9: user should be able to
(re)start a movie

r6: 1sec max to start playing a movie

 
Figure 1: Automatically created trace links between VOD requirements. 

 



identifying all trace dependencies, however at the expense 
of also producing some incorrect ones. We found that our 
approach generally produces few incorrect trace 
dependencies compared to correct ones. Our approach is 
thus most useful in domains where completeness is 
desired (i.e., trade-off analysis, automation). 

3. Understanding Trace Dependencies 

Our approach identifies simple trace dependencies that 
do not convey any meaning or rationale. However, these 
simple dependencies are already very useful to support 
change management. For example, we know from the 
example in Section 2 that requirement r9 depends on 
requirement r10 and if requirement r10 changes then 
requirement r9 is affected by this change. Even in cases 
of incorrect trace dependencies (red link) this reasoning is 
useful since the change of one requirement may 
unknowingly result in the change of other, dependent 
requirements. However, while this reasoning about 
change management is very useful, we found that it is 
superficial in that it says little about how requirements 
affect one another. 

3.1 Semantic Differences among Requirements 

The trace dependencies derived through our approach 
are “dumb” links that merely express existing 
relationships. Human decision makers are thus required in 
clearly identifying the true nature of that relationship. 
However, upon investigating trace dependencies among 
requirements, we found that the meaning of these 
relationships is dependent on the types of requirements 
they bridge. For example: 
• Trace dependency between an efficiency requirement 

and a functional requirement. The meaning of an 
efficiency (time behavior) requirement is to define 
some time constraint a (sub)system has to satisfy while 
the meaning of the functional requirement is to define 
user/customer requested functionality. If our approach 
identifies a “dumb” trace dependency between an 
efficiency requirement and a functional requirement 
(e.g., the dependency from r6 to r1) then we may infer 
that the execution of this particular function has to 
satisfy the given performance constraint (e.g., the 
movies needs to be played within 1 seconds after 
selection from list). In doing so we thus identify an 
important property of the functional requirement going 
beyond mere change management. 

• Trace dependency between two efficiency 
requirements. If our approach identifies a “dumb” 
trace dependency from an efficiency requirement (e.g., 
r6) to another efficiency requirement (e.g., r5) we may 
infer that the second requirement r5 has to be at least 
as efficient as the first one (e.g., loading textual 
information about a movie has to be at least as fast as 

starting to play the movie). The reason is that if r6 
depends on r5 then r5 is executed as part of executing 
r6. Thus if r6 has to finish executing with a given 
efficiency condition then, obviously, r5 has to execute 
within the same or even better efficiency. 

 
Table 2 defines these and additional strong implications. 

 
Table 2: Strong Implication Table (Examples) 

Dependency Type Implication 
efficiency e ?  function f Function f has to satisfy 

efficiency e 
efficiency e1 ?  efficiency 
e2 

e2 has to be at least as 
efficient as e1 

efficiency r ?  security s s needs to be realizable with 
efficiency r 

Understandability u ?  
Recoverability r 

the recovering action r should 
not contradict understandability 

Function f ?  Reliability r f needs to be realizable within 
reliability r 

Security s ?  Function f Function f must satisfy at least 
security s 

Security s1 ?  Security s2 s2 has to provide at least the 
level of s1 

 
While Table 2 points out trace dependencies among 

requirements that have strong implications that are always 
true, there are also weaker cases listed in Table 3. For 
example, if a functional requirement depends on another 
functional requirement then an implication may be that 
the implementation of the second functionality is a pre-
requisite for the implementation of the first one. In other 
words, eliminating the second requirement is useless if 
the first requirement is not eliminated either. Consider for 
example requirement r1 “play movies automatically after 
selection from list” and, requirement r0 “download movie 
data on demand from server while playing.” Clearly, the 
second requirement needs to be implemented to support 
the first one. 

The implications in Table 3 are weaker because 
functions may be orthogonal which means that two 
separate functionalities are implemented “close” to one 
other but in a way that their execution does not affect one 
another. For example, requirement r1 “play movies 
automatically after selection from list” and requirement 
r13 (not listed) “log the playing of movies in a log file”. 
Clearly the second requirement is executed as part of the 
first requirement but the first requirement is indifferent to 
the second one. 

 
Table 3: Weak Implication Table (Examples) 

Dependency Type Implication 
function f1 ?  function f2  Implementing function f2 might 

be a pre-requisite to imple-
menting function f1 

function f ?  efficiency p Some/most of the function f 
has to satisfy performance 
constraint p 

 



Two pre-requisites are thus required for identifying 
meaningful strong and weak trace dependencies: 
(1) a classification of requirements (e.g, functional, 
efficiency, security), and (2) “dumb” trace dependencies 
among requirements. We demonstrated in previous work 
how we can identify “dumb” trace dependencies 
automatically as summarized in Section 2. Manual effort 
is still required for classifying requirements. As such, a 
single requirement may be classified into an arbitrary 
number of categories. Although a manual activity, we 
found that it is typically easy to categorize requirements 
this way. Indeed, looking at related work, we find that the 
classification of requirements is often a byproduct of 
existing requirements modeling techniques [8, 10]. 

3.2 Degrees of Overlaps 

Our approach to finding trace dependencies relies on 
finding overlaps among test scenarios that belong to 
requirements (or groups of requirements). If two test 
scenarios for two different requirements overlap in the 
lines of code they execute (i.e., their “footprints” overlap) 
then we assume a trace dependency. In terms of 
identifying the implications of a trace dependency, our 
approach thus has a unique advantage. Depending on the 
degree of overlap in the lines of code executed we can 
strengthen and weaken the implications from Table 2 and 
Table 3. 

Figure 2 shows how the lines of code of requirements 
may overlap. If there is no overlap (case 1) we can deduce 
that there is no trace dependency. In other words, if a 
security requirement affects different lines of code than a 
functional requirement then it is safe to say that the 
security requirement does not apply to the functional 
requirement. On the other extreme, if there is complete 
overlap (case 4) we can deduce that the requirements 
describe the same part of the system (e.g., clusters in 
Figure 1). In other words, if a security requirement is 
implemented by the same lines of code than a functional 
requirement then it must satisfy the security exactly; and 
that the security must be implemented by exactly this 
functionality (and no other). Both cases 1 and 4 in Figure 
2 support strong reasoning and we can create reliable 
trace dependencies. However, case 4 is the least likely 
case. Typically, scenarios do not overlap in the lines of 
code they execute or they overlap only partially (cases 2 
and 3). What does this imply? 

If a requirement uses a subset of the lines of code 
(case 3) of another one Table 2 and Table 3 apply, but 
only in one direction. For example, if a functional 
requirement uses a subset of the lines of code of a security 
requirement then it must fully satisfy the latter; however, 
the security requirement will only be implemented 
partially by the functional requirement resulting in a 
reliable trace link in one direction and a weak one in the 
other direction. We found that many trace dependencies 

fall under this category. In Figure 1, all (correct) trace 
dependencies (green links) fall under this category. 

A

B

A

B
A,B

A
B

A≠B B⊂A A≡B
1) 2) 3) 4)

B∩A

 
Figure 2. Types of Overlaps among 

Requirements 
 
If a requirement overlaps with another requirement but 

both requirements have their unique source code (case 2) 
the implications we can derive from the trace dependency 
are weakened. For example, a security requirement that 
partially overlaps with a functional requirement implies 
that a part of the functionality has to implement the 
security (which part of the functionality remains 
unknown) and it implies that a part of the security is 
implemented by the functionality (again the part is 
unknown). 

 

Security

Functionality

Security

Functionality  
Figure 3: Partially overlapping requirements 
 
Although this kind of dependency is weaker, it may 

still produce useful insights. Depending on how large the 
overlap is, we can gradually strengthen and weaken the 
meaning. If the functional requirement and the security 
requirement overlap 90% (almost complete overlap; left 
of Figure 3) then we can say that most of the functionality 
must satisfy the security constraint. Obviously, this is 
better than if the overlap is less (e.g., 20%; right of 
Figure 2). We can use this degree of overlap to 
distinguish between more and less reliable meaning. 

For example, the efficiency requirements r6 and the 
functional requirement r2 partially overlap with the 
efficiency requirement using most of the same Java 
classes as the functional one. Due to the partial overlap, 
we cannot imply a strong meaning but because of the 
strong overlap, it is fair to say that most of r2 has to have 
an efficiency of one second or less. 

3.3 Grouping of Requirements 

An interesting extension of this discussion is to 
consider packages of requirements instead of individual 



requirements. This is not only important for the purpose 
of this paper but has relevance in real-world settings. For 
example, in requirements negotiation we need to 
understand the dependencies among requirements in order 
to allow meaningful trade-off analyses. It typically does 
not make sense to look at individual requirements – we 
usually have to build packages of related requirements in 
order to better handle complexity. In context of adding 
meaning to trace dependencies this “grouping” of 
requirements has further implications. Figure 4 shows that 
both Security1 and Security2 partially overlap with 
Function1. We cannot infer which part of the function has 
to satisfy Security1 or Security2. But we see that a 
package of both security requirements together captures 
all of the functionality. Thus, we can deduce that all of 
Function1 must satisfy the weaker of the two security 
requirements; some of the functionality (and this part is 
unknown) has to satisfy the stronger of the two security 
requirements. 

Security1

Security2

Function1

Response
Time1

Response
Time2

Function2

 
Figure 4: Grouping of Requirements 

 
A similar example can be drafted with response time. 

If response times 1 and 2 overlap with a function then we 
can deduce that the response time of the functionality has 
to be less than the combined response times 1 and 2. It 
will be future work to investigate the effect of grouping 
requirements in more detail. 

4. Deriving Positive and Negative 
 Implications 

As mentioned in the introduction, another possible 
real-world application for the approach discussed in this 
paper is architectural risk assessment. We intend to 
develop decision support to help engineers in identifying 
possible risks of adding new requirements or changing 
requirements of an existing system. The premise is that 
changes to requirements cause conflicts and that it is 
error-prone and expensive to investigate all trace 
dependencies manually in order to identify those 
conflicts. Our approach already provides strong support 
for this kind of trade-off analysis. If the trace analyzer 
does not find a trace dependency between two 
requirements then changing one is unlikely to cause 
conflicts with the other2. However, in what ways do 

                                                           
2 Our approach clearly ignores potential side effects of 

requirement changes affect one another if there are trace 
dependencies? 

Based on the meaning of dependencies, it is possible to 
determine a likelihood of risk. It is however incorrect to 
argue that the mere existence of requirements have 
negative or positive implications. For example, it seems 
intuitive that a security requirement has a negative impact 
on efficiency because security implies additional 
functionality and efficiency goes down with additional 
functionality. However, this reasoning is potentially 
wrong because it does not include information about the 
relative difference to some norm. For example, if the 
security requirement would define a functionality to be 
less than average secure then this would be good for 
efficiency. 

It follows that we need information about the 
difference to some norm to reason about positive and 
negative implications of changes among requirements. A 
decision table could help us in determining these 
implications. Table 4 is a first attempt in defining such a 
decision support for trade-off analysis. For example, the 
table shows that a change in security (row) has a reverse 
effect on efficiency (column). As such, an increase in 
security has a high likelihood of a negative implication 
onto efficiency; and a reduction in security should have a 
positive implication. Other examples are: the addition of 
new functionality should also have a negative impact onto 
efficiency; the increase in security should have a positive 
impact onto reliability (i.e., we stipulate that a less secure 
system has to be more reliable for it to be more secure); or 
a change in security has an unknown impact onto 
understandability. 

We believe that it is not necessary to define quality in 
terms of absolute numbers but only in terms of relative 
differences. Table 4 thus does not show a table with 
absolute rankings among qualities requirements. We 
envision such a table to be useful for a first-cut, trade-off 
analysis among requirements changes. As such, making a 
quality requirement stronger does not require 
investigating requirements without trace dependencies; it 
likely does not require investigating requirements with 
positive reinforcements; it likely does require 
investigating requirements with indifferent/unknown 
reinforcement; it certainly does require investigating 
requirements with negative reinforcement. As such, we 
believe that our technique can support trade-off analysis 
by guiding human decision makers and prioritizing their 
tasks. 

5. Related Work 

Different researchers have been developing approaches 
for modeling dependencies among quality requirements: 

                                                                                              
data dependencies and emphasizes control dependencies 
only. We have not investigated this issue yet. 



Chung et al. discuss how architectural properties such as 
modifiability and performance can be modeled as 
“softgoals” and how different architectural designs 
support these goals. Architectural decisions can be traced 
back to stakeholders [2]. Franch and Maiden apply the i* 
actor-based modeling approach [3] for modeling software 
architectures, not in terms of connectors and pipes, but in 
terms of actor dependencies to achieve goals, satisfy soft 
goals, use and consume resources, and undertake 
tasks [8]. 

Automated generation of traceability dependencies is 
also gaining increasing importance. For example, Zisman 
et al. present an approach for automatic generation and 
maintenance of traceability relations based on traceability 
rules. The artifacts as well as the rules are described in 
XML and supported by a prototype tool [15]. The 
approach has also been applied to organizational models 
specified in i* and software systems models represented 
in UML [4]. 

6. Conclusion 

The tables presented in this paper are initial work and 
certainly require more elaboration. However, we believe 
that the presented work is detailed enough to demonstrate 
the usefulness of defining the implications of trace 
dependencies based on the meaning of requirements. To 
date, we have demonstrated that we can determine trace 
dependencies among requirements automatically while 
observing usage scenarios. This requires either existing 
code (for execution) or hypotheses on the impact of 
scenarios onto code. And this requires hypotheses on the 
relationship between test scenarios and requirements.  

We performed an initial experiment using the VOD 
system to determine how well the meaning of trace 
dependencies can be determined by the meaning of 

requirements. This only required the manual classification 
of requirements (i.e., grouping into qualities) which we 
found to be easy. As a result, we identified useful trace 
dependencies among system requirements that helped in 
identifying conflicts and risks. We also found that the 
meaning of trace dependencies can be strengthened and 
weakened depending on the degree of overlaps among 
requirements. 

We believe that the discussed capabilities would ease 
the task of engineers in performing tasks such as 
assessing the risks of new or changing requirements. 
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