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ABSTRACT

Ideally, a software project commences with requirements gath-
ering and specification, reaches its major milestone with sys-
tem implementation and delivery, and then continues, possibly
indefinitely, into an operation and maintenance phase. The
software system’s architecture is in many ways the linchpin of
this process: it is supposed to be an effective reification of the
system’s requirements and to be faithfully reflected in the sys-
tem’s implementation. Furthermore, the architecture is meant
to guide system evolution, while also being updated in the pro-
cess. However, in reality developers frequently deviate from
the architecture, causing architectural erosion, a phenomenon
in which the initial architecture of an application is (arbitrarily)
modified to the point where its key properties no longer hold.
In this paper, we present an approach intended to address the
problem of architectural erosion by combining three comple-
mentary activities. Our approach assumes that a given system’s
requirements and implementation are available, while the
architecturally-relevant information either does not exist, is
incomplete, or is unreliable. We combine techniques for archi-
tectural discovery from system requirements and architectural
recovery from system implementations; we then leverage
architectural styles to identify and reconcile any mismatches
between the discovered and recovered architectural models.
While promising, the approach presented in the paper is a work
in progress and we discuss a number of remaining research
challenges.

1  INTRODUCTION

Ideally, software systems are developed via a progression
starting from requirements through architecture to implemen-
tation, regardless of the lifecycle model employed. Any
changes to those systems during their, possibly indefinite,
lifespans should then follow the same progression: a change in
the requirements is reified in the architecture and, subse-
quently, the implementation. However, frequently neither the
initial development process nor the system’s evolution and
maintenance follow such a path for reasons that include devel-
oper sloppiness; requirements that are immediately imple-
mented due to (the perception of) short deadlines; architectural
decisions that are violated to achieve non-functional qualities
(e.g., improve performance, satisfy real-time constraints,
reduce application memory footprint); off-the-shelf (OTS)
functionality that is directly incorporated into the system’s
implementation; and the existence of legacy code that is per-
ceived to prevent careful system architecting. 

For these reasons, architectural artifacts are often out of
sync with the system’s requirements and its implementation,
and we say that the architecture is eroded [27]. There are many

potential problems associated with architectural erosion: diffi-
culties in assessing how well the current implementation satis-
fies the current requirements; inability to trace a specific
requirement to implementation artifacts; lack of understanding
the complex effects of changing a requirement; and inadequate
system maintainability and evolvability. The incorrect percep-
tion of the architecture may lead to incorrect architecture-level
and, subsequently, implementation-level decisions in response
to new or changing requirements.

To deal with the problem of architectural erosion, research-
ers and practitioners have typically engaged in architectural
recovery [2,10,14,15,18,22,28,31,32], where the system’s
architecture is extracted from its source code. However, exist-
ing architectural recovery approaches fail to account for sev-
eral pertinent issues. They rely primarily on implementation
information, leveraging requirements in a limited fashion, if at
all. Since the implementation may have violated certain system
requirements, they will, in effect, recover incorrect architec-
tures in such cases. In addition, architecturally-relevant deci-
sions are frequently obscured by the implementation. This may
be the result of justified implementation-level decisions, such
as eliminating processing bottlenecks, removing duplicate
modules for efficiency, OTS reuse, and so on. Architectural
decisions might also be ignored without justification, due to a
missing system-wide view, developer sloppiness, misguided
“creativity” in implementing the desired functionality, and so
on. Another problem with existing approaches to architectural
recovery is their relative heavy weight, a by-product of the lack
of reliance on information already present in the system’s
requirements. Perhaps most importantly, the existing architec-
tural recovery approaches exhibit no understanding of the
importance and role of architectural styles in developing large-
scale, complex software systems. An architectural style is a
key design idiom that implicitly captures a large number of
design decisions, the rationale behind them, effective composi-
tions of architectural elements, and system qualities that will
likely result from the style’s use [8,22,29]. Without this knowl-
edge, a system’s architecture will present only a partial picture
regardless of how faithfully its structural, compositional,
behavioral, and/or interaction details are recovered.

Our research goal is to combine software requirements,
implementations, and architectural styles in a light-weight and
scalable manner to stem architectural erosion. Requirements
serve as the basis for discovering a software system’s architec-
ture. Implementations serve as the basis for recovering the sys-
tem’s architecture. Because of their different inputs, discovery
and recovery are likely to reveal different and possibly incom-
plete architectural models. Architectural styles can be used to
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reconcile the two models and combine them into a coherent
and more complete model of the software system’s archi-
tecture. Our approach therefore consists of three interre-
lated activities as depicted in Figure 1:
1. a technique supporting the discovery of an architecture

from system requirements; 
2. a technique for recovering an architecture from system

implementations; and
3. an architectural style characterization technique to

identify and reconcile any mismatches between the
discovered and recovered architectural models.
We assume that the existing information about an archi-

tecture either does not exist or is unreliable. We also
assume that the system’s requirements are known and that
an inspectable implementation exists. We acknowledge that
many modern software systems depend heavily on off-the-
shelf libraries (e.g., GUI libraries) or middleware platforms
(e.g., CORBA, DCOM). However, deriving architectural
properties from such technologies is a challenging task and
is thus outside the current scope of our work.

2  BACKGROUND

This work builds on three related areas: software archi-
tectures and architectural styles; software requirements,
and specifically approaches for mapping requirements to
architectural decisions; and architectural recovery.

2.1  Software Architectures and Styles
Software architecture is a level of design that “involves

the description of elements from which systems are built,
interactions among those elements, patterns that guide their
composition, and constraints on these patterns” [29]. A
goal of software architectures is to facilitate development
of large-scale systems, preferably by integrating pre-exist-
ing building blocks of varying granularity, typically speci-
fied by different designers, implemented by different
developers (possibly in different programming languages),
with varying operating system requirements, and support-
ing different interaction protocols.

An architectural style [8,16,29] is a set of design rules

that identify the kinds of building blocks that may be used
to compose a system, together with the local or global con-
straints on the way the composition is done [29]. Styles
codify the best design practices and successful system
organizations [1,20]. Several architectural styles have been
in use for a number of years, including client-server, pipe
and filter, blackboard [29], C2 [30], and REST [9]. 

2.2  Architectural Discovery
Software requirements describe aspects of the problem

to be solved and constraints on the solution. Requirements
deal with stakeholder goals, options, agreements, issues,
and conditions to capture the desired system features and
properties. Requirements may be simple or complex, pre-
cise or ambiguous, stated concisely or elaborated carefully.
Although informal requirements described in natural lan-
guage often lead to ambiguities and inconsistency, they are
frequently used in practice and are thus of special interest
in our research.

The relationship between the requirements and architec-
ture for a desired system is not readily obvious. Several
existing techniques provide suggestions for addressing the
problem. For example, the QUASAR approach [4] relates
desired system features (e.g., “The system must be
secure.”) to solution fragments that effect those features
(e.g., “Employ an encryption scheme.”). The objective of
QUASAR is to allow reuse and compose solution frag-
ments across systems with similar desired features. How-
ever, this work has only recently begun addressing the
relationship of desired features and software architectures.
ATAM [17], a technique that supports the evaluation of
architectural decision alternatives in light of non-functional
requirements, has a similar limitation. Twin Peaks [25]
attempts to overcome the separation of requirements speci-
fication and design activities by intertwining them. How-
ever, unlike our approach, Twin Peaks does not take into
account the implementation. Brandozzi and Perry [3] have
recently coined the term “architecture prescription lan-
guage” for their extension of the KAOS goal specification
language [19] to include architectural dimensions. Their
approach has the same limitations as our architectural dis-
covery technique: they are unable to suggest a complete
architectural configuration based on the information
extracted from the requirements, and they currently make
no use of non-functional requirements in modeling the dis-
covered architecture. This is why we have decided to cou-
ple architectural discovery, recovery, and styles.

Finally, a key issue in transforming requirements into
architecture and other software models is traceability.
Researchers have recognized the difficulties in capturing
development decisions across software models [11]. In
response to this, Gotel and Finkelstein [12] suggest a for-
mal approach for ensuring the traceability of requirements
during development. 

2.3  Architectural Recovery
A number of existing approaches focus on recovering a

software architecture from source code. ARM [14] is an
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Figure 1. Conceptual view of the approach.
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approach to architectural reconstruction distinguishing
between the conceptual architecture and the actual architec-
ture derived from source code. ARM applies design pat-
terns and pattern recognition to compare the two
architectures. Unlike our architectural recovery approach,
ARM assumes the availability of system designers to for-
mulate the conceptual architecture. Similarly to our recov-
ery approach, software reflexion models [24] treat a
system’s architecture from two perspectives: the idealized,
high-level view and the low-level view derived from source
code. Reflexion models support incremental architectural
recovery to analyze whether varying sets of relationships
hold between the idealized and actual architectures. How-
ever, reflexion models do not make direct use of architec-
tural concepts such as styles and connectors.

MORALE [28] is an approach for evolving legacy soft-
ware systems developed with procedural languages.
COREM [10] is an approach that converts procedural into
object-oriented systems via four steps: design recovery,
application modeling, object mapping, and source code
adaptation. Neither of these approaches provides a means
for determining whether the implemented systems com-
pletely and correctly satisfy their original requirements, or
whether the requirements themselves are complete and
consistent. 

Recently, a series of studies has been undertaken to
recover the architectures of several open-source applica-
tions [2,15]. The approach taken in these studies has been
to come up with a conceptual architecture from a system’s
documentation and use it as the basis for understanding the
system’s implementation. The system documentation is
assumed to be correct when, in fact, both the documenta-
tion (e.g., requirements) and implementation may be par-
tially incorrect, incomplete, or internally inconsistent. As
with all of the above approaches, architectural style infor-
mation is not leveraged during recovery.

3  EXAMPLE APPLICATION

To illustrate the discussed concepts we use ShareDraw,
an application implemented in Visual C++. ShareDraw is
an extension to the DrawCli application, which is provided
as part of the Microsoft Foundation Classes (MFC) release.
DrawCli allows users to manipulate 2-D graphical objects
(lines, ovals, polygons). ShareDraw extends DrawCli into a

distributed application that adds collaborative drawing and
chatting facilities, as depicted in Figure 2.

The architecture of ShareDraw was not available to us.
Similarly, DrawCli’s requirements were not available.
However, given the highly interactive nature of the applica-
tion, we can easily extract many of the functional require-
ments from the application’s observed behavior. The
requirements for the extension of DrawCli into ShareDraw
were available. Several informally stated requirements
describing some commonly performed operations are as
follows:

Reqt1: ShareDraw should allow the user to save
drawings for later retrieval.

Reqt2: ShareDraw should make object manipulation
operations easily accessible to the user.

Reqt3: ShareDraw should allow the user to group and
simultaneously manipulate multiple drawing objects.

Reqt4: ShareDraw should allow the user to instantly
view the actions of all other users.

4  THE APPROACH

The goal of our research is to develop a generally appli-
cable, style-centered approach for integrating architectural
discovery and recovery techniques, and reconciling the
identified differences. Our approach will comprise three
separate, but complementary techniques, as depicted in
Figure 1:
1. an architectural style-based technique for architectural

discovery from software requirements,
2. an architectural style-based technique for architectural

recovery from software implementations, and
3. a technique that leverages styles to reconcile the results

of discovery and recovery.

4.1  Architectural Discovery
Elaborating system requirements into a viable software

architecture satisfying those requirements is often based on
intuition [25]. Software engineers face some critical chal-
lenges in performing this task [13]:
• Requirements are frequently captured informally in a

natural language, while software architectures are usu-
ally specified formally [21].

• Non-functional system requirements are hard to capture
in an architectural model [21].

• Mapping requirements into architectures and maintain-
ing their inter-consistency is complicated since a single
requirement may address multiple architectural concerns
and vice versa. 

• Large-scale systems have to satisfy hundreds, possibly
thousands of requirements, making it difficult to identify
and refine the architecturally relevant information con-
tained in the requirements.
To address these challenges we developed CBSP [13], a

light-weight technique to distill from the system require-
ments the key architectural elements and the dependencies
among them. The result of the technique is an intermediate
model between the requirements and architecture that con-

Figure 2. Screenshot of
ShareDraw with two
clients shown.



tains the essence of architectural information embedded in
the requirements. This model is referred to as the discov-
ered architectural model, or DAM. The CBSP approach
creates DAM in a structured process using conflict resolu-
tion to address ambiguities in the requirements. The pro-
cess consists of three main activities, detailed in [13]:
1. classify architecturally relevant requirements,
2. identify and resolve classification inconsistencies, and
3. refine/restate architecturally relevant requirements.
In this section we detail the DAM model itself. 

4.1.1  Discovered Architectural Model
The basic idea behind our approach to architectural dis-

covery is that any software requirement may explicitly or
implicitly contain information relevant to the software sys-
tem’s architecture. It is frequently very hard to surface this
information, as different stakeholders will perceive the
same requirement in very different ways. CBSP captures
this information in the intermediate DAM model. DAM is
structured around a simple set of general architectural con-
cerns derived from existing software architecture research
[21,27,29]:
• Components provide application-specific functionality.

They may be data or processing components [27].
• Connectors facilitate and govern all interactions among

the components.
• Configuration of a system or a particular subsystem

describes the relationships and organization among mul-
tiple (possibly all) components in the system.

• Properties describe the non-functional characteristics of
individual components and connectors, or the entire con-
figuration.
Thus, each derived DAM element explicates an archi-

tectural concern and represents an early architectural deci-
sion for the system. For example, a requirement such as 

Reqt: The system should provide an interface to a Web
browser.

can be recast into a DAM processing component element
and a DAM connector element

Compp: A Web browser should be used as a component
in the system.

Conn: A connector should be provided to ensure
interoperability with third-party components.

Because of the complexity of the relationship between
requirements and architecture, DAM gives a software
architect leeway in selecting the most appropriate refine-
ment or, at times, generalization of one or more require-
ments. Examples of both refinement and generalization are
given below.

There are seven possible DAM dimensions discussed
below and illustrated with simple examples from the Share-
Draw application. The seven dimensions involve the basic
architectural constructs and, at the same time, reflect the
simplicity of our approach.
(1-2) Compp and Compd are model elements that describe
or involve an individual processing or data component in
an architecture, respectively. For example

Reqt: The system should allow the user to directly
manipulate graphical objects.

may be refined into DAM elements describing both pro-
cessing components and data components

Compp: Graphical object manipulation component.
Compd: Data for abstract depiction of graphical object.

(3) Conn are model elements that describe or imply a con-
nector. For example

Reqt: Manipulated graphical objects must be stored on
the file system.

 may be refined into 
Conn: Connector enabling interaction between UI and

file system components.
(4) Conf are model elements that describe system-wide
features or features pertinent to a large subset of the sys-
tem’s components and connectors. For example

Reqt:Allow independent customization of application
look-and-feel and graphical object manipulation tools.

may be refined into
Conf: Strict separation of graphical object manipulation,

visualization, and storage components.
(5) PropComp are model elements that describe or imply
data or processing component properties, such as reliabil-
ity, portability, incrementality, scalability, adaptability, and
evolvability. For example

Reqt: The user should be able to view the effects of his
actions with minimal perceived latency.

may be refined into
PropComp: Graphical object manipulation component

should be efficient, supporting incremental updates. 
(6) PropConn are model elements that describe or imply
connector properties. For example

Reqt: The system should support loading of graphical
manipulation tools at runtime.

may be refined into
PropConn: Robust connectors should be provided to

facilitate runtime component addition and removal.
(7) PropConf are model elements that describe or imply
system (or subsystem) properties. For example

Reqt:The system must support collaborative editing of
graphical objects.

may be transformed into
PropConf: The system should be distributable. 

Note that, e.g., the PropConn example (5) involved refin-
ing a general requirement into a more specific DAM ele-
ment. On the other hand, the PropConf example (6)
involved the generalization of a specific requirement into a
more general DAM artifact. In fact, in both cases multiple
DAM artifacts may be produced as part of a single require-
ment. We are currently studying this issue with the goal of
providing practical guidelines to architects engaging in this
task.

4.1.2  Summary and Open Issues
At this point, we have an intermediate model, DAM.

DAM classifies the key architectural concerns into seven
categories: data components, processing components, con-



nectors, configurations, component properties, connector
properties, and (sub)system properties. DAM is still stated
in a requirements-like notation, such that it can be verified
against the intentions of the system’s non-architect stake-
holders (e.g., customers). DAM reinterprets architecturally
relevant requirements; no requirements are actually
changed aside from clarifications that arise during the dis-
covery process. Finally, DAM classifies and describes the
system’s architecturally relevant information in a way that
makes it much easier to derive an architecture, and, subse-
quently, implementation from it would be from “raw”
requirements.

However, a remaining problem is that the DAM ele-
ments provide a very low-level view of the architecturally
relevant system requirements (recall the above examples).
It may not be straightforward to map some aspects of DAM
(e.g., configuration information, properties) into an effec-
tive architecture that will realize them. For example, in our
experience architectural discovery is often unable to infer
all interdependencies between architectural elements. This
directly motivates the need to introduce additional informa-
tion into the picture, as further discussed below.

4.2  Architectural Recovery

Architectural recovery complements architectural dis-
covery by highlighting the major structural characteristics
of the implemented system: data and processing compo-
nents, connectors, and configuration. The result of archi-
tectural recovery is a recovered architectural model, or
RAM. In this section we discuss the process of generating
RAM. Later we will show how this information can be
coupled with DAM to arrive at a more complete architec-
tural model. We use UML to represent the recovered archi-
tecture. 

4.2.1  Recovered Architectural Model
Our proposed architectural recovery technique will consist
of the following four simple activities. 

Generate class diagrams. Numerous tools are available
to infer class diagrams from source code automatically; the
engineer need not even look at the system’s source code to
accomplish this step. Figure 3a shows the class diagram of
ShareDraw’s client subsystem, automatically generated by
Rational Rose®. 
Group related classes.  Typically, a large number of
implementation classes are required to implement individ-
ual architectural components and connectors. Classes can
be grouped based on different criteria and/or architectural
concerns. Multiple architects may participate in this pro-
cess and, consequently, disagreements and mismatches
may arise. The diagrams in Figure 3b-e show one possible
such grouping of ShareDraw’s classes, obtained by apply-
ing the three simple rules adopted from our Focus tech-
nique [6]:
• Classes isolated from the rest of the diagram comprise

one grouping (Figure 3b).
• Classes that are related by generalization (i.e., inherit-

ance) comprise additional groupings, as do classes
related by aggregation and composition (Figure 3c). 

• Finally, classes with two-way associations are grouped
together since they denote tight coupling (Figure 3d). 

Package groups of classes into architectural elements. 
Clusters of classes identified in the previous stage are pack-
aged together into processing components, connectors, or
their relationships (links). These elements can be further
aggregated into even larger elements. Using this process,
ShareDraw’s client implementation is abstracted into seven
components and three inter-component links (Figure 3e), as
well as two remote procedure call (RPC) connectors. The
connectors are not shown in Figure 3 since UML and
Rational Rose® provide no mechanisms for distinguishing
connectors from components. Figure 3 also does not show
data components as introduced by Perry and Wolf [27] and
discussed in Section 4.1. Data components may be
extracted from the processing components’ states and inter-
faces based on varying desired criteria (e.g., all class vari-
ables, all public method parameters, or both).
Determine partial system configuration. The relation-
ships among the components identified in the preceding
steps reflect the system’s configuration. The configuration
information may be incomplete in cases where the compo-
nents do not interact in easily detectable ways (e.g., access
to shared implementation substrate classes, implicit invo-
cation, distributed interaction, and so on). Figure 3e shows
only a partial configuration of ShareDraw’s client: the
topological relationship of the FrameWindows_Mgr,
Dialog_Mgr, and View_Mgr components with the remain-
ing components has not been identified in this process; in
addition, the diagram does not identify the connectors for
reasons discussed above.

4.2.2  Summary and Open Issues
The described architectural recovery technique is very

simple and scalable, relying only on structural manipula-
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tion of the system’s implementation. The outcome of the
technique is the RAM model, i.e., the collection of existing
system’s major processing and data components, its con-
nectors, as well as a partial architectural configuration.
RAM is intended to map to the structural aspects of DAM
proposed in Section 4.1.

The result of the recovery step is not a complete “as is”
architecture of the system. Several pieces of information
are still missing. As discussed above, the architectural con-
figuration information will likely be incomplete. In addi-
tion, similarly to a great majority of the existing recovery
techniques (e.g., [2,10,14,15,18,28,31,32]), our proposed
approach does not take into account non-functional proper-
ties. This shortcoming suggests the next step of our
approach: by coupling the information represented in RAM
and DAM with architectural style information, we can mit-
igate this problem and present a more complete picture of
the architecture, as discussed below. 

4.3  Reconciling Discovery and Recovery

The above two techniques provide related, though dis-
connected models of the system’s architecture, as depicted
in Figure 1. The requirements are refined and rephrased
into DAM elements along the seven dimensions represent-
ing the key architectural concerns: data and processing
components, connectors, configurations, component prop-
erties, connector properties, and (sub)system properties.
The implementation is abstracted into four types of RAM
elements: data and processing components, connectors, and
(partial) configurations. This section discusses how the two

models can be “matched up” to derive a more complete
architecture based on their combined information.

4.3.1  Determining Appropriate Architectural Styles
As discussed earlier, architectural styles [8,16,29] pro-

vide rules that exploit recurring structural and interaction
patterns across a class of applications. Styles constrain
architectural models syntactically and semantically. In
order to select the appropriate style(s) for the given appli-
cation, we propose to classify existing architectural styles
across a set of commonly recurring dimensions. Our goal is
to provide the foundation of a classification that is rich
enough to allow us to effectively represent and select styles
based on the given DAM and RAM models. 

Our preliminary study of architectural styles [22] has
identified the following seven dimensions as a good candi-
date set for effectively describing styles. 
1. the types of data exchanged between style elements;
2. the structure of the elements allowed in a style;
3. the allowed topologies of architectural elements;
4. the allowed behavior of a style element;
5. the types of supported interactions between style

elements and their allowed specializations;
6. the key non-functional properties especially enabled by

the style; and.
7. the style’s domain of applicability.

Table 1 depicts the result of an exercise in which we
mapped four commonly occurring styles using this frame-
work. This experience has indicated several challenges that

Table 1: Characterization of Four Architectural Styles
Data Structure Topology Behavior Interaction Properties Domain

C2

Discrete events
Separable compo-

nents
Limited component 

dependencies
Exposed via named ser-

vices only Asynchronous coordination Distributability

GUI
Systems

Data queueing and buffer-
ing by connectors Heterogeneity

Explicit connectors

Partially ordered con-
nectivity-based “top” 

and “bottom” relations

Implicit invocation

Data tuples
Event-based interaction

Multi-tasking mechanisms 
such as threads

Composability

Dynamic creation of 
connections

Direction-oriented events 
propagated to topology-

based recipients
Dynamicity

Client-
server

Parameterized 
request

Independent servers Many-to-many connec-
tions among clients and 

servers

Listening server Server location
Distributability

Distrib-
uted Sys-

tems

Connections setup and 
teardown

Remote connection and 
communication protocol

Buffering and queueing of 
requests

Security
Specialized clients

Implicit server invocation

Typed response

Data marshalling and 
unmarshalling

Dynamic creation of 
connections

Evolvability
Multi-tasking mechanisms 

such as threads HeterogeneityDistributed protocol 
stacks

Client call synchronization
Exposed via named ser-

vices only Request-response protocol

Pipe-
and-fil-

ter
Streams of typed 

records

Explicit pipes and 
filters

Stream between a pipe 
and a filter Stream transformation state 

machine

Synchronization between 
filter reads and writes

Heterogeneity

Dataflow 
systems

ReusabilityInput and output 
ports on filters No two sources or sinks 

connected to the same 
port instance

Propagation of stream con-
tents to sinksSources and sinks on 

pipes Data buffering by pipes Composability

Push-
based

Channel notifi-
cation

Independent produc-
ers Producers connected 

only to distributors

Content filtering in distrib-
utors Distributor location Distributability

Distrib-
uted sys-

tems

Buffering and queueing by 
distributors

ScalabilityExplicit distributors Remote connection and 
communication protocol

RobustnessSubscription setupChannel access/sub-
scribersSubscription 

request

Many-to-many channels 
among receivers and dis-

tributors

Data marshalling and 
unmarshalling

Receiver user inter-
face Content storage/expiration SecurityDistribution policy

Implicit invocation



we will need to address. First, we will need to carefully
specify a large, representative if not complete, set of exist-
ing architectural styles. This process will help us test our
hypothesis that the seven dimensions are sufficient to
uniquely and richly describe a style. Second, we will need
to characterize each style in a manner that will simplify the
task of relating the information contained in DAM and
RAM models to the information contained in Table 1.
Third, we will need to address situations in which multiple
styles are highlighted in this process as plausible candi-
dates. A related issue is dealing with situations in which
multiple styles are most appropriate to use in tandem for a
given problem.

In fact, we indeed selected two styles in our ShareDraw
example application: client-server to handle the distributed,
coarse-grained aspects of the application, and C2 for its
ability to compose the GUI-intensive application compo-
nents within each client and server. This choice was aided
by several factors, including our familiarity with these two
styles, the fact that we had used them together in the past,
the relatively small number of styles we had considered
(e.g., Table 1 only includes four styles), and some domain
properties (distribution and GUI aspects) that clearly
mapped to these two styles. We envision this to be a much
greater challenge in a more general setting. Our future
work will include identifying conditions and situations
under which specific combinations of styles are
(dis)allowed. This is a non-trivial problem that deserves
particular attention. 

4.3.2  Integrating DAM and RAM

Once we have determined the suitable architectural
style(s), we can integrate the, still separate, DAM and
RAM models into a single integrated model. There are
three possible approaches to accomplishing this step:

1. Apply the style information to DAM to derive an “as
intended” architecture, and then “map” the information
from RAM onto this architecture.

2. Apply the style information to RAM to derive an “as
implemented” architecture, and then “map” the
information from DAM onto this architecture.

3. Integrate DAM and RAM into an “as extracted”
architecture, and then apply the style information to the
integrated model.

4.

We are currently investigating the respective benefits and
drawbacks of the three approaches. 

The “as intended” architecture of the ShareDraw appli-
cation, obtained by integrating DAM and architectural style
information as discussed above, is given in Figure 4a. The
complete architecture, obtained by mapping the informa-
tion contained in RAM to the “as intended” architecture, is
shown in Figure 4b. As mentioned above, the final Share-
Draw architecture combines the client-server and C2 styles.

Irrespective of the chosen integration approach, inte-
grating DAM and RAM requires knowledge about how
their elements interrelate. Although both DAM and RAM
present architectural perspectives, they may be inconsis-
tent, e.g., in the element names or level of architectural
detail. The two models will thus need to be reconciled. Var-
ious interesting reconciliation scenarios can be envisioned.
For example, a single RAM element may map to multiple
DAM elements, and vice versa. It is also possible that no
obvious relationship can be established between an element
in one of the models and the other model’s elements. We
will carefully study these scenarios.

5  CONCLUSION

This work described in this paper is motivated by the
observation that architecturally-relevant information is
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readily available in a system’s requirements and its imple-
mentation, although not always in an obvious form. This
information can then be uncovered and used to help stem
architectural erosion. The information captured in a sys-
tem’s requirements is high-level, possibly imprecise, but
rich in human stakeholders’ insights and rationale; this
information often suggests the suitable architectural
style(s) for the system. On the other hand, the information
contained in a system’s implementation is low-level, pre-
cise, and rich in detail; this information reflects the style(s)
applied in the system’s construction. We postulate that nei-
ther of the two sources of information should be considered
complete or correct by itself. Instead, we propose that they
be combined using the three presented techniques: archi-
tectural discovery, recovery, and reconciliation.

The work described in this paper is on-going. We have
already identified several open issues that will frame our
future research. In addition, we envision that the combina-
tion of the three techniques will likely result in a self-
adjusting process in which the architecture is already
known to be incorrect and/or incomplete, but, in addition,
neither the requirements nor the implementation need be
assumed correct or complete. Furthermore, the proposed
approach will result in clearly specified and maintainable
traceability links across the requirements, architecture, and
implementation. We plan to adopt existing techniques (e.g.,
[7,26]) to capture and manage the traceability links. 
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