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Abstract

Software development is a constant endeavor to
optimize qualities like performance and robustness while
ensuring functional correctness. Architecture Description
Languages (ADLs) form a foundation for modeling and
analyzing functional and non-functional properties of
software systems, but, short of programming, only the
simulation of those models can ensure certain desired
qualities and functionalities.

This paper presents an adaptation to statechart
simulation, as pioneered by David Harel. This extension
supports architectural dynamism – the creation,
replacement, and destruction of components. We
distinguish between design-time dynamism, where system
dynamics are statically proscribed (e.g., creation of a
predefined component class in response to a trigger), and
run-time dynamism, where the system is modified while it
is running (e.g., replacement of a faulty component
without shutting down the system). Our enhanced
simulation language, with over 100 commands, is tool-
supported.

1. Introduction

Simulation is in common use in high-risk environments
where a system’s failure to function correctly may result
in loss of life or massive loss of money. Simulation allows
the safe exploration of a proposed solution in an
environment that shields from physical harm (e.g., combat
simulation) and monetary harm (e.g., investment banking)
[13]. Simulation, done during the architecture and design
stage, is also a low cost alternative to the actual
implementation and execution of a real system.

Simulation languages have a long history in
engineering; however, they are little-used in software
engineering [4,13]. This is most unfortunate since
“simulation can be applied in many critical areas and
enable one to address issues before these issues become
problems” [4]. It has become common knowledge that the
early identification and resolution of potential problems

can significantly reduce development time and cost, and at
the same time increase the quality of the overall software
product. [2]

The emergence of architecture description languages
(ADLs) and design languages like the Unified Modeling
Language (UML) [3] supply software architects with a
new range of tools to design and test the software systems
they are building. The static nature of many of those
models, however, limits the role they play in the software
life cycle. Although static analyses of those models result
in useful insights and guarantees, for some purposes static
models are simply inadequate. Architectural models,
however, have the potential to attain a much more central
role as participants in the software life cycle when
augmented with a dynamic modeling facility; i.e. a facility
for simulating certain aspects of system behavior. The
architecture descriptions themselves may even be
“reflected” in the running system!

Our interest is not to provide a full programming
language in which to describe the functionality of systems,
but rather to provide just enough structure to describe the
observable effects of system activities in terms of the
inputs driving their behavior. Of particular interest is the
dynamic reconfiguration of the system architecture.

Fortunately, some architecture description languages
have growing support for simulation. For instance,
Darwin/LTSA [10,11] provides a simulator for executing
labeled transition graphs; Rapide [9] can simulate events
for pattern-analysis purposes; Rhapsody [7] or Statemate
[8] can be used to simulate statechart models.

We adopted Statecharts [6] as our primary language for
modeling behavior. Statecharts are not only used widely in
components of the UML, but they are supported by a wide
range of design tools. Statechart models can be used to
depict the life-cycle of software components. In a
graphical form they describe how components can be
created, what kind of life stages (states) they can go
through, and when they can be terminated. The graphical
part of statechart model is re-enforced by a textual part
that describes events and conditions that cause state
changes as well as activities that can be performed in
response to those state changes.
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Our intention is to leverage people’s familiarity with
Statecharts and use them as an adjunct to an ADL model
to simulate the behavior of component-based systems,
where each component is modeled via a set of Statechart
diagrams. Hence, the interactions of the components can
be simulated via the interactions of their respective
Statechart diagrams. To model aspects of architectural
dynamism, Statecharts’ extension, Rhapsody currently
provides for describing simple changes components may
undergo, viz. they may be created or destroyed. We call
the use of Statecharts for reasoning at this level, design-
time dynamism (e.g. understanding that component A may
create zero to many components of type B over time)

Our model augments Statecharts with a more detailed
language for action description and a dynamic simulation
tool that can incorporate such models after the system has
already done some simulation. Such augmentations are
useful in order to model more fully activities such as
upgrading components or dynamic replacement with a
new version of a component, where the simulated
behavior is not necessarily consistent with the previously
observed behavior. Currently Statecharts can be used to
simulate simple architectural changes, but not such
changes in the behavioral descriptions of the components.
We call these modeling aspects run-time dynamism
because such dynamism occurs outside the scope of the
design; for example, a new version of component A that
was not available during design time needs to replace the
old component without shutting down the system.
Summarizing, modeling component-based software
systems requires the modeling of design-time and run-time
component dynamism.

Component dynamism is very important since it
provides a means for dealing with the instabilities and
fluctuations of today’s software market, where it is often
financially impossible to shut down software systems to
perform upgrades or repair defects. In case of software in
mission critical systems (e.g., supporting space
exploration, combat, and communications) it is
unreasonable to simply “stop” to make changes. This need
requires software components to be adaptable to dynamic
changes; even unforeseen ones. This need also requires
new simulators to test the fitness of those software
components to handle these dynamic changes.

To simulate statechart models, a number of very
powerful commercial statechart simulators are available,
Matlab [12], Statemate [8], Rhapsody [7], to name a few.
We have found that those simulators are ill-equipped to
handle the new challenges imposed by component
dynamism. For instance, Statemate and Matlab require
precise knowledge of what components exist during
design-time leaving no room for component dynamism.
Even tools like Rhapsody, having some support for
design-time dynamism via object diagrams [3], is of little
use in addressing most forms of run-time dynamism and

some forms of design-time dynamism. Also, Rhapsody’s
dependence on object diagrams makes it less suitable for
its integration with architectural description languages in
general. See Related Work for a more detailed discussion
of these and other tools.

In the following, we will present an adaptation to
Harel’s Statechart language to support component
dynamism. We do this without restricting state charts to a
particular modeling style or process. Our extensions are
self-contained and embedded in the graphical and textual
representation of Statechart models (states, transitions,
guards, actions); they primary enrich the language of how
guards, triggers, and actions are expressed but leave the
basic notation of Statecharts intact. We refer to our
language as the Statechart Script Language (SSL). The
SSL is fully tool-supported providing software architects
with a rich language of over 100 commands to model
component dynamism.

2. New Television Example

In this paper, we will show how our simulator can be
used to imitate various levels of component dynamism. To
this end, we will make use of a so-called New Television
example (NTV) to illustrate our work. NTV is a virtual
television for PCs. This (hypothetical) NTV system has
three major software component types: client components,
server components, and streamer components. Clients can
be downloaded over the web and started up in the users’
workstations. The clients (also “NTVClient”) have an
interface for selecting available movies, which, upon the
discretion of the user, will request the server to stream that
movie to the client. Interacting with the client is a central
server component. The server waits for movie requests
from clients and, upon receipt of such requests,
instantiates streamer components to handle the streaming
of movies to their respective clients. Each client gets
exactly one streamer for every movie it requests and no
streamer is used for more than one client. Figure 1
represents the logical architecture of the NTV example,
where client and streamer components are dynamically
created, i.e. the Server creating the Streamers.

The NTV example uses design-time and run-time
dynamism. During design-time it is defined that clients

ServerClient

Streamer
data flow
control flow

0..many

0..many 1

Figure 1. Logical Architecture of the NTV Example



may be instantiated at any time by any number of users.
There is only one server, however, it must instantiate
streamer components in response to user selections
(simulating component construction and destruction). The
example will also show that run-time dynamism is needed
to upgrade and improve the NTV system, activities that
were only partially foreseen during design time. For
instance, we will postulate that the streamer component
has a flaw, which can be mended through a simple fix. We
will then simulate how the new version of that streamer
(with the fix) can be instantiated by the server without the
need to shut down the server (simulating component
independence). The example will also demonstrate the
ability to deal with a flaw in the server; this will require
simulating the creation of a new version of the server to
replace the old one without affecting currently running
clients and their streamers (i.e., simulating late binding of
clients to the server). We will show how simulated clients
cope with the temporary lack of a simulated server to
communicate with (i.e., simulation of replacement) and
how simulated clients can locate the new simulated server
although it is a different software component (i.e.,
simulation of component localization).

Although all these forms of dynamism should be able
to be tested before the actual system is built, such
simulations can be useful for reasoning about previously
fielded systems as well. Our simulation language and its
tool support provide software architects with the
capability to reason about such concerns throughout the
system’s lifetime.

3. Dynamism in SSL

The NTV example uses a variety of component
dynamism concepts. The simplest one is simulating
component creation and destruction. For instance, the
server creates a new streamer every time a client makes a
movie request. Likewise, the streamer is destroyed after
the client is finished or a timeout occurs.

Simulating component localization is another aspect of
component dynamism where one component may know
about the location of a component but not have a handle
on it (reference). Unique ids (e.g. GUIDs in COM, URLs
on the Web) may be used to locate such components. For
example, clients in our NTV example use the unique name
“ntv.com” to locate the server component before making
requests.

Simulating component independence imitates, in state
charts, the unawareness of components of the existence of
neighboring components as is normal in ADLs. The NTV
example uses “late binding” to enable component
independency. For instance, the client component
searchers for the current instance of the server before
making requests.

Simulating component communication is of particular
interest for component dynamism. Since components tend
to be independent, asynchronous communication methods
like trigger calls need to be supported. Using triggers to
communicate between state machines was already part of
Harel’s definition (a state machine is an simulating
statechart). However, in order to support component
independence, the concept of triggers had to be extended.

Simulating component replacement is among the most
useful features of component dynamism. Due to the
independence of components, one or more components
may be destroyed or instantiated at any time. Naturally,
such actions may have undesirable side effects on the
entirety of a software system; hence, it is necessary to
simulate before doing it. The NTV example will
demonstrate two different types of run-time component
replacement where first a faulty streamer is upgraded and
second the server itself is upgraded. The replacement of
the streamer component will show that only new client
requests will benefit from the new steamer. Currently
running streamers will not be replaced. The replacement
of the server, however, replaces a currently running
component. Simulating the effects of this replacement on
already running clients is therefore important in evaluating
the fitness of the clients and the system.

4. Using the Statechart Script Language

This section introduces the statechart script language
(SSL) in the context of the NTV example. Special
considerations will be given to those parts of the SSL that
are dynamism-specific. The SSL, has over 100 keywords
and symbols and supports an equal number of commands.
In order to reduce the effort required to learn the SSL, we
modeled our language after Harel’s initial Statechart
definition and also adopted OCL expression language
constructs [15] wherever possible (e.g., collection types
and access methods).

Harel’s Statechart definitions describe a set of
(partially) independent states. Each state is either
composite or simple; in the diagrams, composite states are
named in the upper left-hand corner of rounded rectangles
containing their sub-states. Additionally each composite
state has a start state, indicated as a dark dot in the
diagrams and an end state, indicated with a circle.

With each state entry, exit, and during actions may be
associated. We have extended Harel’s language for
defining these actions by incorporating OCL constructs to
allow variable declaration and assignment, as discussed
within the example state descriptions below. Harel further
defined that with each transition an event that triggers the
transition may be specified, a guard expression that either
filters the triggered events or when used on its own, is
continuously evaluated and acts as a trigger itself when it



becomes true. An action may be associated with the
transition as well. Triggered events are named and can be
parameterized. They are explicitly triggered in actions
referring to the statemachine in which the trigger should
be applied, viz. statemachine.trigger event(parameters).
Asynchronous events arising at the volition of the user are
preceded by a question mark.

Ideally, the state machine execution model would
mimic real-world behavior as manifested in
synchronization mechanisms like Corba and DCOM, but
mimic it in a reproducible way! Presently, the execution
model is to sequentially consider each state machine in
turn, determining whether any transition can be made.
Each of its queued events is considered before any guards
are evaluated. Execution of a transition entails first, the
execution of any exit action from the state being left, then
execution of any action associated with the transition, and
finally, execution of the entry action of the state
transitioned into. This sequence is all done as an atomic
activity during which no other transitions occur.
Moreover, any events the actions signal are queued on the
relevant state machines' queues. However, the actions'
effects on variables are immediate during execution
(unlike in Harel's model). In the future we intend to
replace this "round robin" form of synchronization of the
machines with something more realistic.

4.1. The Client

Upon construction (CONSTRUCT), the client is in the
simple state selecting of the composite state ready of ntv

(Figure 2). Notice that the local variables server and
streamer are defined and initialized. Once the user
chooses to select a movie (?SELECTCHANNEL), the
client locates the server while still in the selecting state via
its unique name, “ntv.com.” Thereafter (after entry into
the loading state), the client sends the event
ADDSTREAMER to the server and passes
(communicates) a reference to itself as a parameter. Once
the client is in the loading state, three scenarios may
happen: (1) the client receives the response event
CONFIRM_ADDSTREAMER from the server side, (2)
the user chooses to cancel the current selection
(?CANCEL), or (3) a time out occurs after 10 seconds. If
the server responds in time (option 1), the server also
passes along a handle to the streamer it created. At this
point the client is ready to receive a streaming movie. The
user events ?PLAY and ?STOP may be used to start and
stop the movie resulting is the corresponding actions
STREAM() and WAIT() to be sent to the streamer
component. The user may also cancel the streaming
(option 2) of the movie at any time (?CANCEL) resulting
in a REMOVESTREAMER(self) event to the server. The
client then waits for a response from the server
(CONFIRM_REMOVESTREAMER()) or, if none occurs,
the termination will time out ([self.time > 10000]2).

2 self refers to the current state machine and self.time refers to
the time elapsed since that state machine last transitioned.

Server?SELECTCHANNEL

CONFIRM_ADDSTREAMER(streamer)

[self.time > 10000] ?CANCEL

CONSTRUCT()

[true]
?START

CONFIRM_REMOVESTREAMER()
?CANCEL

?PLAY [not streamer.isTerminated]DESTRUCT()

?END
?STOP

ntv
ready
/entry:

var statemachine server:=null;
var statemachine streamer:=null;

set

loading
/entry:

server.trigger ADDSTREAMER(self);

selecting
/exit:

server:=statemachine("ntv.com");

error
/entry: write "error";

terminating
/entry:

server.trigger REMOVESTREAMER(self);
streamer:=null;

go
stopped
/entry:

streamer.trigger WAIT();

playing
/entry:

streamer.trigger STREAM();

Figure 2. Statechart Model for Client Component. Uses component communication (e.g., “server.trigger
ADDSTREAMER(self)”) and component localization (“statemachine(“ntv.com”)”)



4.2. The Server

The server component (Figure 3) consists of only three
states. Upon construction, the server defines a set of
variables, initializes the streamers variable (of type
sequence) to an empty sequence (set, bag and sequence
are the most basic collection types supported by our
language), and gives the server the unique name
“ntv.com.” The [true] transition indicates that the server
will automatically transition to the idle state once all
initializations have been completed. In the idle state, the
server waits for either one of two events. If it receives an
ADDSTREAMER event, a series of statements are
executed. The first statement searches for already existing
streamer components for that client. If one is found
(second statement), the existing streamer is destroyed3

(DESTRUCT) and removed from the collection of
streamers. Finally, the server creates a new streamer
component of type “StreamerV1.” If the server receives a
REMOVESTREAMER event, a similar set of statements
is executed to destroy the current streamer supporting the
given client. Upon destruction of the server, all streamers
are destroyed. In order to enable a shutdown of the server
component without interrupting current streaming

3 There can be at most one.

components (e.g., for
maintenance), the
FORCE_DESTRUCT
event is provided.

Note that the type
name of the streamer is
variable, viz. the value of
streamerType. This
makes it possible to
support dynamic run-
time upgrades of
streamers where it is
unknown during design-
time what that streamer’s
name will be. Variable
component type names
are another means for
simulating late binding.
Also note that the server
uses the setQualifier
command to define a
unique name for itself.
This command simulates
the registration of a
component in a
component database (i.e.,
much like what COM or
CORBA components
do). If the setQualifier

command is not used, an automatic ID will be generated.
The server also makes use of collection types. For

instance, the variable streamers is defined as a collection
of type sequence. A sequence is essentially an array where
items like integers, strings, and even state machines can be
stored. Collection types support design-time dynamism
since they allow variable numbers of components to be
defined during runtime. As such, at any given time the
server may support zero, one, or many streamers.
Collection types can be used to keep track of groups of
statemachines. Commands available to perform operations
on statemachines include tests for validity, initialization
and termination. Furthermore, a series of OCL
expressions, like select, forAll, or iterate can be used to
perform collection operations. For instance, the action
associated with the ADDSTREAMER event uses the
select command to find state machines in the streamers
collection that have a given terminal variable equal to the
client.

The server is also the first component to directly
construct and destruct components. The command “new
streamerType(terminal)” creates a new instance of
component type “StreamerV1.” Note that here a variable
contained the component type. If such late binding is not
desired, the command “new “ServerV1”()” could be used.

CONSTRUCT()

[true]

FORCE_DESTRUCT()

DESTRUCT()

[true]

startup
/entry: streamers := sequence{};

idle

ADDSTREAMER(statemachine client)
/ list := streamers->select(statemachine s | s.client=client)->asSet;

if (list->size > 0) {
list->at(0).trigger DESTRUCT();
streamers->excluding(list->at(0));

}
streamers->including(new streamerType(client));

REMOVESTREAMER(statemachine client)
/ list:=streamers->select(statemachine s | s.client=client)->asSet;

if (list->size > 0) {
list->at(0).trigger DESTRUCT();
streamers->excluding(list->at(0));

}

server
/entry:

setQualifier("ntv.com");
var sequence streamers;
var statemachine streamer;
var integer index;
var set list;
var string streamerType:="StreamerV1";

shutdown
/entry:

while (streamers->size > 0) {
streamers->at(0).trigger DESTRUCT();
streamers->removeAt(0);

}

Figure 3. Statechart Model for Server Component. Uses component construction and
destruction (e.g., “new streamerType(terminal)”) and collection variable to handle large sets of

potentially unknown types of depending state machines (e.g., “var sequence streamers”).



As we shall see, this would be at the expense of flexibility
should use of a new streamer type become desirable.

4.3. The Streamer

The server constructs a new streamer component
(Figure 4) for every client that requests one. The
CONSTRUCT event4 passes the handle of the client,
which gets stored in the variable client in the streamer
component. In the initializing state, the streamer then
sends the notification event
CONFIRM_ADDSTREAMER(self) to the client with a
handle of itself as a parameter. The streamer then uses the
WAIT() and STREAM() events to send movie data to its
client upon request. During destruction, the streamer
sends a CONFIRM_REMOVESTREAMER notification
to the client.

5. Run-Time Dynamism in SSL

Thus, far we have primarily demonstrated how our
extensions to the statechart language can handle design-
time dynamism – that is the kinds of dynamism that are
predicted during design time to occur while the system is
running. This section discusses how more advanced run-
time dynamism can be simulated via our language. Again,
these entail changing the state machines under which the

4 Note that the construct event is implicitly sent to the new state
machine with the “new” command. This guarantees that it is the
first event that component receives.

components operate at run time. We will demonstrate how
changes to the running system can be simulated, in
particular, the replacement of a faulty server component
without shutting down the entire system. For the following
scenarios we assume that the NTV system is operational
with one server, many clients, and many streamers
running.

5.1 Introducing a New Streamer Version

Imagine that during operation, the designers discover a
flaw that was unforeseen at design-time. When the client
sends the ADDSTREAMER event to the server, the server
creates a streamer and that streamer, in turn, sends a
CONFIRM_ADDSTREAMER notification event back to
the client. Under normal circumstances, the server can do
this within a ten second period; however, in rare cases it
may happen that the client times out ([time>10000]
causing an error message to be displayed on the client
side, followed by the termination of the selection. This
may cause problems if the streamer is not aware of the
timeout of the client and continues to wait for a client
response. For the streamer, this constitutes a deadlock
since the streamer itself never times out. A simple timeout
fix is thus added to the streamer component, resulting in a
new streamer version.

Fixing the timeout condition on the streamer is,
however, only half the solution. The server still needs to
use the new, changed version of the streamer. But since
many clients are using the server, this re-configuration
needs to be done during run-time without shutting down
the server. One way to do this is to leave it variable on the
server side what the streamer type name is. Instead of
creating a pre-defined streamer, the server instead tries to
locate a component definition with a given name (e.g.,
like COM names). Our simulator supports this via
variable names for statemachines. This makes it possible
to simulate how the running server, clients, and streamers
react if a new streamer type is introduced. Since the server
already supports a streamer type variable (as predicted
during design time), updating that variable is simply
accomplished by executing the command
statemachine(“ntv.com”).streamerType:=”StreamerV2.”
This command needs to be executed by the process
responsible for the creation of the server. This will either
be executed manually (e.g., via a server command
interface supported by an equivalent command interface
provided by our statechart simulator) or automatically by
another component (e.g., a server user interface
component). Our simulator supports both forms of access
to the server.

The effect of this server re-configuration, which occurs
during run time, is that new client requests will result in
the server instantiating a streamer with the new

CONSTRUCT(client)

WAIT()

STREAM()

WAIT()

STREAM()

initializing
/entry:

client.trigger CONFIRM_ADDSTREAMER(self);

waiting

streaming

streamer
/entry:

var statemachine client;
DESTRUCT()
/ client.trigger

CONFIRM_REMOVESTREAMER();

Figure 4. State chart for Streamer Component



component type. It can then be simulated whether already
running clients as well as newly created clients can handle
the new streamer – a vital test before a similar streamer
upgrade is performed on the real system with potentially
disastrous consequences.

5.2 Replacing the Active Server

Now imagine that after the streamer fix, the designers
discover another flaw that only becomes obvious after
long execution times. Whenever the server adds a new
streamer (after the ADDSTREAMER request), that
streamer is also added to the collection variable
streamers. Only the REMOVESTREAMER event causes
that entry to be deleted from the streamers variable,
causing problems whenever the client does not properly
shut down and thus does not send a
REMOVESTREAMER request. In itself this is not a
problem because a new ADDSTREAMER request will
automatically terminate an older running streamer for that
same client. The designers, however, did not foresee that
their client component would be downloaded in large
numbers, resulting in users that only use it once or a few
times. If a client then does not properly shut down, the
server will keep a reference to its streamer indefinitely
(although the streamer itself may have shut down because
of our prior bug fix). This results in a gradual performance
problem as time passes, causing periodic shutdowns of the
server. The server therefore needs a cleanup feature that
periodically removes old streamer entries. Figure 5 shows
the necessary modifications required in black (grey items
overlap with Figure 3). Again, we are faced with the
challenge of making that change as the system is running.
A potentially large number of people may be using the
NTV service and it is unreasonable to assume that every

client needs to be upgraded to recognize
the new server. Our simulator can thus be
used to simulate such a run-time swapping
of components and the effect this may
have on other running components. The
way other clients are aware of the server
component is via its unique name
(“ntv.com”). That unique name is
originally assigned automatically but was
altered by the server state machine via the
setQualifier command. To exchange the
old server with the new server, we only
need to issue a FORCE_DESTRUCT()
command to the old server (e.g.,
‘statemachine(“ntv.com”).trigger
FORCE_DESTRUCT()’) followed by a
startup command for the new server (e.g.,
‘new “NewServer”()’). The new server
will register itself as the new “ntv.com”

server, making it available to all currently running clients
as well as old clients

The simulated swapping of the server components can
again be used to test how clients and streamers react with
a brief absence of the server. For instance, prior to the
“real” swapping of the servers, it is important to test
whether running clients (in whatever states they may be)
will continue to be able to interact with the server.
Designers can also use our simulator to test whether the
client timeout features work properly when the old server
is down and before the new one is started up.

6. Tool Support

SSL is supported with a simulation environment we
call SDS (Simulator for Dynamic Statecharts). SDS (see
Figure 6) provides for design and specification of state
charts by integration with Stateflow from Mathworks and
the PPDE from Teknowledge, which act as state chart
drawing tools. The bottom, left pane of the figure
illustrates a window onto Stateflow.

Our simulator extracts state chart descriptions from the
respective drawing tools and gives the architect the option
to decide which state charts to simulate (usually only a
few in the beginning since state machines can instantiate
needed components themselves). In the figure
NTVClients 2, 5 and 9 have been created.

Our simulator provides a graphical user interface to
running state machines. The graphical interface is
primarily meant to support user interactions. The
graphical interface thus becomes the simulated “user
interface” for all running state machines (the source of
events beginning with “?”). For instance, where the actual
client application is expected to have a user interface that
allows users to select movies and to start and stop those

server
...

[true]

FORCE_DESTRUCT()

idle

ADDSTREAMER(statemachine client)

if (list->size > 0) {
list->at(0).trigger DESTRUCT();
streamers->excluding(list->at(0));

}
streamers->including(new streamerType...

REMOVESTREAMER(statemachine client

if (list->size > 0) {
list->at(0).trigger DESTRUCT();
streamers->excluding(list->at(0));

}

[self.time>cleanupTime]
/ index := 0;

while (streamers->size < index) {
streamer:=streamers->at(index);
if (streamer.terminal.isTerminated)

streamers->removeAt(index);
else

index:=index+1;
}

DESTRUCT()

/ list := streamers->select(statemachine...

/ list := streamers->select(statemachine...

Figure 5. Statechart Model of New Server (upgrade) . Uses time condition
to cause cleanup transition.



movies, an interface to SDS allows the user to simulate
these inputs (e.g., ?PLAY). These are entered through the
“User Selection” window, the top, left window in Figure
6.

In addition to allowing users to cause events, our
simulated user interface also displays the current states of
all running state machines (top, middle window), their
recent event history (top, right window), and error
messages (middle, left window), should some illegal
command have been encountered. The user interface also
display messages that have been created as part of actions.
For instance, our language supports the “write” command
that may be used to display any text or variable contents.
This information appears in a separate window (not
displayed) or , if a state machine window is open, the
message is displayed there.

Our simulator also provides a textual interface for
running state machines. (See the bottom part of the
bottom, right window in Figure 6.) A textual interface is
provided for every state machine separately (the whole
bottom, right window). It can be used for everything the
graphical interface is used for and more. It provides direct
and full access to the SSL interpreter, allowing architects
to create, modify, or delete anything they wish. Notice the

history of activity in that window displayed as the largest
bulk of text in the bottom, right window. These activities
reflect commands that were manually entered by the user.
Other state machine-specific information displayed in the
textual interfaceare the current state, the available
transitions from that state, and a running history of the
state changes the machine has undergone. We found the
textual interface to be invaluable for simulating “special
cases of component dynamism,” e.g., the sudden
destruction of a simulated component (e.g., the server) to
observe the impact this has on any other simulated
component.

7. Related Work

The key idea that separates our work from other ADL
and statechart simulation research is that we allow new
models to be incorporated in a simulation during the
running of the simulation itself. Nonetheless, we have
certainly built on the ideas of others There are two major
emphases of this research: architecture dynamism and
statechart-based modeling.

In general we are interested in using other people’s
systems (COTS) wherever possible while avoiding over

Figure 6. Screen Snapshots of SDS Tool showing an ongoing NTV Simulation, Matlab Stateflow for Drawing, and
the Command Line Interface. The command line interface shows the history of recent commands that were entered

manually; i.e., “write streamers” which returns the contents of the variable streamers.The command interface allows users
to directly access the SDS interpreter to create, modify, or destruct artifacts.



commitment to supporting formalisms. For these reasons
we chose to adapt Matlab and Stateflow as our input
mechanism for state charts. In addition, we tried to keep
as much of the Statemate semantic framework as possible,
while extracting the means for expressing simulations
from the UML-based class diagrams required by
Rhapsody, an extension to Statemate for expressing
simulations.

We specifically wanted to avoid using knowledge
about component interactions during design time because
we feel it proscribes component dynamism too much.
Indeed, Rhapsody incorporates design-time dynamism
constructs. Its limitations for our purposes are that: it is
limited to a single modeling language (object models) and
it is not understandable and useable alone (one cannot
understand the statechart model without also looking at
the object model). Its integration with object models
makes it a suitable candidate to model dynamism in the
context of UML; however, architecture description
language and many other design languages do not use
object models.

Even in cases where ADLs have been successfully
mapped to UML (e.g., C2 [14] to object model mapping)
[1] this mapping also changed the meaning of those
objects (that is a main reason why stereotypes were used).
For instance, in C2 one component is not aware of any
components next to it and thus cannot refer to it directly
by name. An object model representing a C2 component
model thus cannot make use of Rhapsody’s statechart
simulation capabilities..

Two ADLs that have stressed the ability to describe
dynamism require some mention. First, the event-based
model of Rapide [9] has been used to describe
architectural components and the events they are
exchanging. Its tool suite can then be used to analyze
event patterns to identify potential problems (e.g., an
invalid causality relationship).

Again, although we are unaware of any other efforts to
provide run-time (model) dynamism, Rapide supports
various forms of design-time dynamism, including the
creation of components dynamically. In fact, the use of
Rapide for dynamic modeling purposes is additionally
hampered by its tight links to the rest of Rapide; this is
much the same criticism as we have for Rhapsody as well.

A second ADL used to describe dynamic effects is
Darwin [11]. The language is certainly of a kindred spirit
in that it specifies what services are provided and what
services are needed for each component. The language is
unique for proscribing structural dynamism, by emphasis
on lazy binding of (potentially unbounded) recursive
structures and, as with both Rhapsody and Rapide, direct
dynamic instantiation. Darwin is not event-based, and is
incapable of modeling change to as fine a grain size as
statecharts.

8. Future Work

Of course our criticisms of other work do have their
flip side. It may be argued that both Rapide’s and
Darwin’s models are more declarative than the state chart
models we have adopted. This makes them more
amenable to static analysis, which of course aids
predictability when the system can be guaranteed to
adhere to the implied design principles as it evolves. Our
specifications are somewhat less general than a full
programming language, but the ability to analyze them is
certainly limited, especially with the potential for run-time
dynamism and concurrency (the specifications are not
closed in any sense, so there are few opportunities for
preanalysis). We imagine a continuum of modeling
technologies that will be useful in analyzing, simulating,
and realizing systems on architecture description-based
designs.

Our future work will in part involve just these
concerns. We want to integrate with less dynamic
languages for expressing the more static design constraints
which we can rely on even during run-time changes.
Hence, we want to integrate our model with a variety of
concrete ADLs, by extension. We will start with Acme
[5], of course, because of the potential leverage to other
ADLs via interchange with it.

Along the same lines, there are analyses that could be
done on the state chart specifications that extract what
information we do require that a different implementation
of a component must provide. Although we claim to
espouse no particular object model, in fairness, there is a
sense in which we build the part of the object model we
need into the vars of the states, or more accurately, into
other state charts’ knowledge of these vars. In particular,
we know which triggers it must be able to react to
(including those from the user, sometimes); we know
which of its state variables are relied on by other state
machines. And we know what triggers it raises, although
responsibility for raising these could conceivably be taken
on by other component (models) after dynamic
modification. All of these could be used to constrain
future modification to the system.

Finally, there are situations where exactly the same
abilities to change the model at run-time occur; we want to
study what ways these contexts could affect the modeling
constructs and tools we provide. We have already
mentioned the simulation of in-place critical software
systems such as space or combat missions. Another
scenario involves systems that monitor their own health
and status in order to determine whether to reallocate
resources or raise warnings when situations change or
deteriorate, respectively. Such systems are being studied
in the DASADA program at DARPA. The use of such
“reflective” capabilities to detect a system’s deviations



from its model – a simulation whose inputs are the real
stimuli to which the system is reacting – is certain to
modify our modeling concepts in some ways in the future.

9. Conclusions

Component-based development emphasizes the
individual nature of components, the services they provide
and the services they need. The increasing use of
commercial off the shelf (COTS) components aggravate
this. Modeling software components thus needs to take
into account situations like the independence of software
components, the uncertainty of the existence of other
components around it and the ability of being replaceable
by another component (or set of components). that
provides the same services

We have presented a simulation language based of
Harel’s Statemate definition that supports a wide array of
design-time and run-time dynamism concepts. Harel’s
statechart language has been extended to support
component construction, destruction, localization, storing,
accessing, and communication.

Current statechart modeling techniques are ill-equipped
to deal with component dynamism in which the behavioral
model changes. In fact, most currently available statechart
simulators do not even support design-time dynamism,
however, none is capable of supporting run-time
dynamism in the fashion described above.
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