
State Consistency Strategies for COTS Integration

 Sven Johann Alexander Egyed
 University of Applied Sciences Mannheim Teknowledge Corporation
 Windeckstrasse 110 4640 Admiralty Way, Suite 1010
 68163 Mannheim, Germany Marina Del Rey, CA 90292, USA
 sven_johann@gmx.net aegyed@ieee.org

Abstract. The cooperation between commercial-off-the-shelf (COTS) software
and in-house software within larger software systems is becoming increasingly
desirable. Because COTS software is typically integrated into standalone appli-
cations, they do not provide subscription mechanisms that inform other compo-
nents about internal changes. This, in combination with semantic differences in
how COTS data is perceived within the integrated system, causes consistency
problems. This paper will first present a scalable consistency approach for the
COTS software IBM Rational Rose. The paper will then discuss this approach
in context of a set of strategies for COTS integration that is heavily based on
incremental transformation.

Introduction

Incorporating COTS software into software systems is a desirable albeit difficult
challenge. It is desirable because COTS software typically represents large, reliable
software that is inexpensive to buy. It is challenging because software integrators
have to live with an almost complete lack of control over the COTS software product.

To date, COTS software integration is not uncommon. It has become common
practice to build software systems on top of COTS software. For example, a very
common integration case is in building web-based technologies on well-understood
and accepted web server COTS software. Indeed, COTS integration is so well ac-
cepted in this domain that virtually no web designer would consider building a web
server or a database anew.

User

Web-Application
<<in-house>>

Database
<<COTS>>

While there are many success stories that point to the seaming ease of COTS inte-

gration there are also many failures. We believe that many failures are the result of
not understanding the role COTS software is supposed to play in the software system.
In other words, the main reason of failure is architectural.

Many software systems, such as the web application above, use the COTS software
as a back-end; its use is primarily that of a service providing component. Only some
form of programmatic interface (API) is required for COTS software to support this

use. COTS software has become increasingly good at providing programmatic inter-
faces to data and services they provide.

COTS integration is less trivial if the COTS software becomes (part of) the front
end; e.g., with its native user interface exposed and available to the user. These cases
are rather complex because the COTS software may undergo user-induced changes
(through its native user interface) that are not readily observable through the pro-
grammatic interface. In other words, the challenge of COTS integration is in main-
taining the state (e.g. data model, configuration, etc) of the COTS software consistent
with the overall state of the system even while users manipulate the system through
the COTS native user interface.

This paper discusses this issue from the perspective of using COTS design tools
such as IBM Rational Rose, Mathwork’s Matlab, or Microsoft PowerPoint. These de-
sign tools are well accepted COTS tools; they exhibit commonly understood graphical
user interfaces. This paper will show how to use these COTS tools, with their ac-
cepted user interfaces, to build a functioning software system where the architectural
integration problem is more like this:

User

Component A
<<COTS>>

Component B
<<in-house>>

Component C
<<in-house>>

notifies

uses

The COTS integration challenge is to make software systems aware of when and

how incorporated COTS software undergoes changes. This problem does not exist
with in-house developed components because they can be re-programmed to notify
other, affected parts of a system (e.g., other components). The lack of access to the
source code of COTS software makes this approach impossible.

Because COTS software is not originally designed to be components of a new sys-
tem, they offer at most interfaces to extend their functionality with plug-ins. Their
purpose is to be the system and not being only a part of it.

If we want to incorporate COTS software into a system, we have to ensure that the
overall system state (data, control) is maintained consistently with that of the COTS
software. Therefore, we have to “observe” the COTS software and then forward all
events to the system. The system decides if the changes are relevant and updates it-
self if necessary.

There are two ways in doing that: 1) batch notification and 2) incremental notifica-
tion.

Batch notification is to externalize all relevant COTS state information (e.g., by
exporting design data from Rational Rose) so that it becomes available to other com-
ponents. This is probably the easiest solution but has one major drawback in that it is
a loose form of incorporating COTS software into software systems. State informa-
tion has to be replicated with the drawback that even minor state changes to COTS
software may pose major synchronization problems (e.g., complete re-export of all
design data from Rational Rose).

User

Component A
<<COTS>>

Component B
<<in-house>>

C
<<File>>

writes to

reads from

Batch notification is computationally expensive and thus only then feasible if the

integration between the COTS software and the rest of the system is loose. The fol-
lowing will present our approach to incremental notification. Our approach wraps
COTS software to identify changes as they occur with several beneficial side effects:

• Only changes are forwarded
• Changes are forwarded instantly
• Detecting changes and forwarding them does not require manual overhead

Scoping Change Detection

There is a trivial albeit computationally infeasible approach to identifying changes in
COTS software by caching its state and continuously comparing its current state with
the cached state. This approach obviously does not work well if the COTS state con-
sists of large amounts of data (e.g., design data in tools such as IBM Rational Rose,
Mathwork’s Matlab, or Microsoft PowerPoint). To identify changes in COTS soft-
ware smarter it has to be understood how and when changes happen.

Take, for example, IBM Rational Rose. In Rose a user may create a new class by
clicking on a toolbar button (“new class”) followed by clicking on some free space in
the adjacent class diagram. A class icon appears on the diagram and the icon is ini-
tially marked as selected. By then clicking on the newly created, selected class icon
once more, the name of the class can be changed from its default and class features
such as methods and attributes may be added. These changes may also be done by
double-clicking on the class icon to open a specification window. There are two pat-
terns worth observing at this point:

• Changes happen in response to mouse and keyboard events only
• Changes happen to selected elements only
The first observation is critical in telling when changes happen. It is not necessary

to perform (potentially computationally expensive) change detection while no user ac-
tivity is observed. The second observation is critical in telling where changes happen
(Egyed and Balzer 2001). It is not necessary to perform (potentially computationally
expensive) change detection on the entire COTS design data (state) but only on the
limited data that is selected at any given time.

Both observations are the key for scalable and reliable change detection in GUI-
driven COTS software.

Change Detection in Time and Space

Changes are detected by comparing a previous state of a system with its current
state. Generally, this implies a comparison of the previously cached state with the cur-
rent one. Knowing the time when changes happen and the location where changes
happen limits what and when to compare. Our approach therefore uses the program-
matic interface of the COTS software to elicit and cache state information. For exam-
ple, in IBM Rational Rose this may include all its design data such as classes, rela-
tionships, etc. The caching is limited to “relevant” state information that is of interest
to other components of the system. For example, if it is desired to integrate some class
diagram analysis tool with Rose, then only change information for class diagrams are
needed. Thus, it is not necessary to cache and compare other diagrams such as se-
quence or use-case diagrams.

Basic Change Detection

After every mouse/keyboard event, we ask Rose via its programmatic interface
what elements have been selected to compare these elements with the ones we cached
previously. If we find a difference (e.g. a changed name, a new method) between the
cached elements and the selected ones then we notify other components (e.g., in-
house developed components) about this difference. Thus, our approach notifies other
components on the behalf of the COTS software. If we find a difference, we also up-
date the cache because we want to find and report a difference once only. Obviously
the effort of finding changes is computationally cheap because a user tends to work
with few design elements at any given time only.

This approach detects changes between the cached and current state. But there are
two special cases: 1) new elements cannot be compared because they have never been
cached and 2) deleted elements cannot be compared because they do not exist in the
COTS software any more.

The creation and deletion problem can be addressed as follows. If we cannot find a
cached element for a selected one then this implies that it was newly created (other-
wise we would have cached it earlier). Thus, we notify other components of the newly
created element and create a cached element for future comparisons. In reverse, if an
element in the cache does not exist in the COTS software then it was deleted. Other
components are thus notified of this deletion and the cached element is deleted as
well. Note that a deletion can only be detected after de-selection (i.e., a deleted ele-
ment is a previously selected element that was deleted) and creation can only be de-
tected after selection.

Ripple Effect of Change Detection

Until now, we claimed that changes happen to selected elements only. This is not
correct always. Certain changes to selected elements may trigger changes to “adja-

cent”, semantically-related elements. For example, if a class X has a relationship to
class Y then the deletion of class X also causes the deletion of the relationship be-
tween X and Y and it also causes a change to class Y (i.e., it now does not have a rela-
tionship to X any more) although the latter are never selected.

There are two ways to handle the ripple effect. The easiest way is to redefine selec-
tion to include all elements that might be affected by a change. For example, if a class
is selected we could define that also all its relationships are selected. Then change de-
tection will compare the class and its relationships. This approach works well if the
ripple effect does not affect many adjacent elements (e.g., as in this example) but it
could be computational expensive.

The harder but more efficient way of handling the ripple effect is to implement
how changes in selected elements affect other, non-selected elements. For example,
we can implement the knowledge that the deletion of a class requires its relationships
to be deleted also. In this case, neither the creation of a class nor its change does have
the same ripple effect.

Anomalies

We found that basic change detection and the ripple effect cover most change de-
tection scenarios. However, there may be exceptions that cannot be handled in a dis-
ciplined manner. We found only few scenarios in Rose that had to be handled differ-
ently.

For example, state machines in Rose have a peculiar bug in that it is possible to
drag-and-drop them into different classes while the programmatic interface to Rose
does not realize this. If, in the current version of Rose, a state machine is moved from
class A to class B then, strangely, both classes A and B believe they own the state
machine although only one of them can. We thus had to tweak our approach to also
consider the qualified name of a state machine (a hierarchical identifier) to identify
the correct response from Rose. Obviously, this solution is very specific to this anom-
aly. Fortunately, not many such anomalies exist.

Consistency between Different Domains

It is generally easier to maintain consistency between COTS software and the sys-
tem it is being integrated with if the semantics of the COTS data is similar to the se-
mantics of the system data. For instance, the above example integrated Rational Rose
design information with UML-compatible design information and both are conceptu-
ally similar. Consistency becomes more complicated if the data of COTS software is
re-interpreted into a semantically different domain. This is not uncommon. For exam-
ple, many applications exist that use Rose as a drawing tool. In those cases, the mean-
ing of boxes and arrows may differ widely.

This section discusses how to “relax” change detection depending on the difficulty
of the integration problem. This problem is motivated by our need to have a domain-
specific component model, called the ESCM (Embedded Systems Component Model)
(Schulte 2002), integrated with Rational Rose. While it is out of the scope to discuss

the ESCM, it must be noted that its elements do not readily map one-to-one to Rose
elements. As such, there are cases where the creation of an element in Rose may
cause deletions in ESCM and there are cases where overlapping structures in Rose
may relate to individual ESCM elements. This integration scenario is more problem-
atic because it is very elaborate to define how changes in Rose affect the ESCM.

Previously, we solved the integration problem by comparing Rose data with cached
data. Batch transformation was used to create a, initial, cached copy of the Rose data
(transformation also re-interpreted the Rose data into UML data). User actions, such
as mouse and keyboard events, triggered partial re-transformations to compare the
current Rose state with the cached copy. The comparison itself was trivial; so was up-
date. The key was transformation.

The main difficulty of integrating the ESCM is in determining what to re-transform
and what to compare. This is a scoping problem and it becomes more severe the more
complex the relationship between system data (e.g., ESCM) and COTS data becomes.
A simplification is to implement change detecting with the possibility of reporting
false positives (Rose change does not affect the ESCM) but the guarantee of not omit-
ting true positives (Rose change affects the ESCM). In case of integrating ESCM
with Rose, it was not problematic to err on the side of reporting changes that actually
did not happen since it only lead to some unnecessary but harmless synchronization
tasks. The ability to relax the quality of change detection to also allow false positives
strongly improved computational complexity.

There are two simple strategies in doing change detection with false positives: 1)
we delete all ESCM elements which could be affected through a change in the COTS
tool and simply re-transform all deleted elements or 2) we compare all possibly af-
fected elements with the cached data and re-transform only the changed ones. The
first strategy is the cheapest but produces more false positives than the second strat-
egy. The more detailed discussion of these strategies is out of the scope here.

Conclusion

Consistency between commercial-off-the-shelf software (COTS), their wrappers,
and other components is a pre-condition for a working COTS-based system. Our ex-
perience is that it is possible to get notification messages about changes from GUI-
driven COTS software even if the COTS software vendor did not provide a (com-
plete) programmatic interface for doing so. This paper briefly discussed several
strategies for adding change detection mechanisms to COTS software.

 1. Egyed, Alexander and Balzer, Robert. Unfriendly COTS Integration - Instrumen-

tation and Interfaces for Improved Plugability. Proceedings of the 16th IEEE In-
ternational Conference on Automated Software Engineering (ASE)San Diego,
USA; 2001 Nov.

 2. Schulte, Mark . MoBIES Application Component Library Interface for the Model-
Based Integration of Embedded Software Weapon System Open Experimental
Platform [Technical Report, Boeing]. 2002 Jun.

