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Abstract

Though acknowledged as being very closely related,
requirements engineering and architecture modeling have
been pursued largely independently of one another in the
past years. The inter-dependencies and constraints between
architectural elements and requirements elements are thus
not well-understood and subsequently only little guidance
is available in bridging requirements and architectures.
This paper identifies a number of relevant relationships we
have identified in the process of trying to relate a
requirements engineering approach with an architecture-
centered approach. Our approach, called CBSP
(Component-Bus-System, and Properties) provides an
intermediate language for representing requirements in an
architectural fashion. In this paper, we will present the
basics of our CBSP approach but also emphasize the
challenges that still need to be resolved.

1. Introduction

Requirements largely describe aspects of the problem to
be solved and constraints on the solution. Requirements are
derived from the problem domain (e.g., medical
informatics, E-commerce, avionics, mobile robotics) and
reflect the, sometimes conflicting, interests of a given set of
system’s stakeholders (customers, users, managers,
developers). Requirements deal with concepts such as
goals, conflicts (issues), alternatives (options), agreements,
[3], and, above all, desired system features and properties
(both functional and non-functional).

Architectures, on the other hand, model a solution to the
problem described in the requirements. Software
architectures provide high-level abstractions for
representing the structure, behavior, and key properties of a
software system. The terminology and concepts used to
describe architectures differ from those used for the
requirements. An architecture deals with components,

which are the computational and data elements in a
software system [10]. The interactions among components
are captured within explicit software connectors (or buses)
[11]. Components and connectors are composed into
specific software system topologies. And, architectures
capture and reflect the key desired properties of the system
under construction (e.g., reliability, performance, cost) [11].

The relationship between a set of requirements and an
effective architecture for a desired system, however, is not
readily obvious. This conflicts our need of having
requirements engineering and architectural modeling being
intertwined and mutually-dependent development activities
in order to ensure their complete and consistent treatment
(i.e., refinement). In context of requirements, architectural
modeling has to satisfy the roles of (1) supporting fast
trade-off analyses about requirements’ feasibility via the
modeling of architectural options, and (2) supporting the
modeling of architectural solutions in a manner that reflects
functional and non-functional properties of requirements in
a form that is more readily refineable to code. In context of
architectural modeling, requirements engineering has to
define (1) functional and non-functional constraints that
affect architectural decisions, and, (2) rationale that defines
purpose and goal of architectural solutions.

The existence of conceptual differences between what to
do (requirements) versus how to do it (architecture, design,
and code) constitutes a gap. This gap has been often
observed and frequently documented [9], however, despite
massive attention it remains unsolved. It is still a difficult
problem on how to transition from requirements to an
architecture and vice versa. Some of those many issues
involve: How to interpret informal requirements in context
of more formal architectures? How to elicit functional and
non-functional aspects out of requirements? How to infer
architectural topologies and styles out of constraints
imposed by given requirements? How to reason about
mismatches among requirements or between requirements
and given architectural solutions? How to maintain
requirements and architectures interpedently and yet
consistently while both are being evolved? And how to do
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all of the above if hundreds if not thousands of
requirements need to be considered?

To address these challenges and others we have
developed a light-weight method for identifying key
architectural elements and their dependencies based on
given requirements. Our method, called the CBSP approach
(Component-Bus-System-Property), helps in refining a set
of given requirements into potential architectures by
applying a taxonomy of architectural dimensions. Input to
our method can be a set of (incomplete) requirements
captured in textual or formal descriptions and containing
rationale. The result of CBSP is an intermediate model that
captures “architectural decisions” of requirements in form
of an incomplete architecture.

At the current state we applied CBSP in context of
EasyWinWin [2,6], a requirements elicitation technique,
and C2 [12], an architectural style for highly-distributed
systems. However, we believe that it can be applied to other
requirements elicitation and architecture-capture
approaches. The following discusses the basics of our
CBSP approach in context of an example followed by an
update of the current state of the approach and needed
future work to make our technique more comprehensive.

2. Cargo Router Case Study

We have performed a thorough requirements,
architecture, and design modeling exercise to evaluate
CBSP in the context of a cargo router application. The
Cargo Router system was built to handle the delivery of
cargo from delivery ports (e.g., shipping docks or airports)
to warehouses. Cargo is moved via vehicles (e.g., trucks
and trains) which are selected based on terrain, weather,
accessibility and other factors. The primarily responsibility
of the system’s user is to initiate and monitor the routing of
cargo through a GUI. The user can also request reports and
estimations on cargo arrival times and vehicle status (e.g.,
idle, in use, under repair).

We used the EasyWinWin tool to gather and negotiate
requirements for the cargo router system. The WinWin
negotiation model [4] and its supporting tool (EasyWinWin
[2]) are based on four artifact types: Win Conditions,
Issues, Options and Agreements. Win conditions capture
the stakeholder goals and concerns with respect to the new
system. If a Win condition is non-controversial, it is
adopted by an Agreement. Otherwise, an Issue artifact is
created to record the resulting conflict among Win
Conditions. Options allow stakeholders to suggest
alternative solutions, which address Issues. Finally
Agreements may be used to adopt an Option, which
resolves the Issue.

Three stakeholders participated in a 1-hour
brainstorming session and gathered 81 statements
(stakeholder win conditions) about its goals.

3. CBSP Steps

To create a “CBSP view” of a given set of requirements,
we identified a five-step process [7], four of which are tool
supported by EasyWinWin. In this section we will discuss
all five steps in context of the Cargo router example.

Identify Core Requirements

Our approach is meant to be used in an iterative manner,
where requirements get continuously added or changed.
Thus, initially, we found it useful and necessary to reduce
the complexity of a given problem by identifying core
requirements. In this step, stakeholders vote about
importance and relevance of a requirement. Naturally,
requirements that did not get included in this step can be
included in a future iteration of our process.

Architectural Classification of Requirements

To identify architecture-relevant information out of the
pool of requirements, we used a voting process to
categorize requirements into six CBSP dimensions
(C,B,S,CP,BP,SP). We thus asked all stakeholders to
individually decide whether they believe the given
requirements could contain component-relevant information
(C), bus (connector)-relevant information (B), or is a more
general system requirement (S) that affects a larger part of
the architecture. Since we were also interested in non-
functional requirements, we also gave the stakeholders the
option to vote for C-B-S properties (CP, BP, and SP). For
instance, the requirement “R09: Support cargo arrival and
vehicle availability estimation” was voted to be strongly
component-relevant by all stakeholders whereas the
requirement “R25: the system must be operational within 18
months” was not voted to be architecturally relevant. Some
requirements also received contradictory votes: The
requirement “R10: Automatic routing of vehicles” was
voted component1 relevant (C) by all stakeholders but only
system property (SP) relevant by one stakeholder.

Identification and resolution of mismatches

As the last example showed, stakeholders may have
distinct interpretations of requirements. Naturally, those
discrepancies may lead to distinct interpretations of the
architectural relevance of those requirements. Indeed, these
are the kinds of conflicts we are seeking since the mapping
from requirements to architecture often is a matter of
understanding the meaning of requirements in context of
architectures. The conflict above indicates a case where two
stakeholders have different opinions. A subsequent
discussion step thus has to be initiated to identify and

1 Components can be either data components or processing
components but that discussion is out of the scope here.
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resolve that difference. In above example, one stakeholder
thought this requirement implied that (1) the system needs
to suggest paths that vehicles travel (e.g., via navigation
points) but not their sources and targets whereas another
stakeholder thought this requirement implied that (2) the
system also needs to identify the sources and destinations
for vehicles. The discussion thus clarified this conflict and
an instant re-vote identified this requirement as component
relevant and system property relevant (SP).

Table 1: Concordance Matrix.

Consensus

ACCEPT
requirement as
architecturally
relevant if at

least one largely
or fully vote

REJECT
requirement as not

architecturally
relevant if no vote

higher than partially

Conflict

DISCUSS
and resolve reason of conflict before

proceeding (e.g., properties are
implicitly captured and often

ambiguous)

Table 1 shows rules that describe conflict handling
during CBSP voting. In case of consensus among the
stakeholders, the requirements are either accepted or
rejected based on the voted degree of architectural
relevance (note that stakeholders are given the option of
four votes: no, partial, strong, or full architectural
relevance; our tool provides statistical reasoning on how to
infer consensus). If the stakeholders cannot agree on the

relevance of a requirement to the architecture, they further
discuss it to reveal the reasons for the different opinions
until a point of consensus is reached. This typically leads to
a clarification of the particular requirements as above
example has shown. Figure 1 (left) depicts a few
requirements that were voted to be architecturally relevant.

Architectural refinement of requirements

Architecturally relevant requirements explicate at least
one CBSP dimension that all stakeholders agreed on to be
relevant. Obviously, some requirements address multiple
dimensions. For instance, the requirement “R09: Support
cargo arrival and vehicle availability estimation” was voted
to be fully component relevant, fully system relevant, and
largely bus relevant. In order to understand requirements
better and to better relate them to other requirements it is
necessary to refine them into more atomic entities.

CBSP dimensions also play an important role in the
refinement process of requirements. For instance, the
requirement “R09: support cargo arrival and vehicle
availability estimation” was determined C, B, and S
relevant. This implied that the refinement should reveal
component, bus, and system relevant aspects. Indeed, on a
high level, this requirement supports two processing
components: “R09_Cp Cargo arrival estimator” and
“R09_Cp Vehicle availability estimator.” Cargo arrival
estimator depends on data components like cargo (“R09_Cd

Cargo”), the vehicle (“R09_ Cd Vehicle”) it is on and the

R09: Support Cargo Arrival and
Vehicle Availability Estimation

R09_Cp: Cargo Arrival Estimator

R09_Cp: Vehicle Availability
Estimator

R09_1d: Cargo (weight, shape)

R09_Cd: Vehicle

R09_Cd: Location

R10: Automatic or Manual
Routing of Vehicles

R10_Cp: User Interface for
Vehicle Route Selection

R10_Cp: Vehicle Route Selector

R10_CP: Level of Automation of
Vehicle Route Selector

R01: Support for Different Types
of Cargo

R10_Cd: Warehouse

R10_Cd: Route

R22: Match Cargo Needs with
Vehicle Capabilities

R22_Cp: Cargo/Vehicle Matcher R22_Cd: Vehicle Cargo Shape

R22_Cd: Vehicle Cargo Weight

R10_B: Comm-Link to Vehicle

Architecture-Relevant
Requirements

CBSP Artifacts and Dependencies as Created During Refinement

Figure 1: Sample Artifact Relationships in Cargo Router Example.
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location of the vehicle (“R09_ Cd Location”). Vehicle
availability estimator only depends on the knowledge of the
vehicle and its location (but not cargo). Above requirement
was also rated bus-relevant. This was the case because the
location of a vehicle (and its cargo) is variable as it moves.
A connector (bus) is therefore needed to allow the system to
track vehicles (see Figure 1 right). Note that we now do not
talk about requirements any more but instead of pieces of
architecturally-relevant information elicited from
requirements – we refer to those pieces as CBSP artifacts.

It must be noted at this point, that generally only
component, bus, and system artifacts are seen as candidates
for refinement. Properties (CP, BP, SP) are harder to refine
since they tend to span large parts of a system.

Derivation of Architectural Style and Architecture
CBSP artifacts and their dependencies are valuable for

architectural modeling. For instance, we can see that the
estimator components depend on vehicle information, thus,
indicating potential architectural implications. Naturally,
CBSP artifacts and their dependencies also make
dependencies between requirements more explicit. For
instance, we can assume some dependency between “R09:
support cargo arrival and vehicle availability” and “R10:
automatic or manual routing of vehicles” because they both
”share” the CBSP artifact “R09_Cd: Vehicle.”

In context of the Cargo Router we found that CBSP
artifacts mapped straightforwardly to architectural elements
defined in C2. For instance, the C2 architecture has
components called Vehicle and Estimator and the
architecture makes use of explicit data connectors (buses)
to realize component interactions. However, we are not yet
in a position where we could actually derive architectures
or styles out of CBSP properties. We discuss this and other
issues in future work.

4. Future Work

We found CBSP very useful in organizing requirements
and systematically refining them but at the current state
some of the activities are still rather labor intensive.
Naturally, requirements engineering is people centric,
however, this section will discuss how automation can aid
stakeholders in coming up with requirements and
architectures in a faster more reproducible way. We
currently provide tool support for capturing requirements,
voting on them, identifying conflicts, refining them, and
maintaining trace dependencies. There are, however, a few
areas that have not been explored in depth.

Architectural Trade-off Analyses

Thus far we treated requirements and architectures very
static and defined how a CBSP approach can bridge the
two. However, requirements engineering is much more
iterative where stakeholders uncover not just goals but also

issues (conflicts) and potential options (solutions). Issues
may arise because of architectural conflicts (i.e., no suitable
architectural option can be found that satisfies given
requirements). We believe that CBSP artifacts are not only
useful for refinement but they also provide “feedback
loops” in cases where architectural decisions impact
requirements. The approach thereby helps to capture
findings from architectural modeling and simulation and
supports analysis of an architecture for adherence to
requirements.

For example, some issues can only be identified after a
draft architecture has been modeled and described. These
issues and corresponding architectural options can be
captured by architects as CBSP elements to capture the
rationale of architectural decisions and to relate this
rationale with the relevant requirements. (A Bus Property
issue (e.g., bottleneck) could be identified through
simulation experiments, a component option could be
suggested by the architect, etc.) This capturing of tradeoff
decisions is similar to the ATAM technique described in [8]

Problems identified through architectural models and
simulation can be captured as CBSP elements, such as
“I12_S Three seconds system response time not possible.”
Architectural options and alternative solutions can be also
described as CBSP elements. For example “O24_C
Consider use of OTS staff management component.” CBSP
provides as an intermediate model between a requirements
and an architecture definition approach that allows “bi-
directional” traces; the resulting intermediate model
facilitates synthesis of negotiation artifacts into
architectural elements and enables feedback from
architecture modeling and analysis.

CBSP can also be interpreted as a way to negotiate
about architectural concerns (win conditions, issues,
options, and agreements) with clearly established links to
both the related requirements and the architectural
elements.

CBSP Refinement of Issues, Options, and Agreements

If CBSP can be used to diversify requirements
engineering via architectural trade-off analyses then
naturally the subsequent negotiation results may also be in
need of refinement. For instance, if a potential option were
suggested to resolve a given issue then it would be desirable
if CBSP could support the “explorative” refinement of that
option in context of the rest of the system to evaluate its
feasibility.

To this end, Figure 2 shows one possible situations
where requirements issues and options can be used to guide
the refinement process. The left part of the figure shows
three win condition (W1, W2, and W3) which could be
requirements of an earlier negotiation process or simply
new stakeholder goals. The middle part of the figure shows
the corresponding CBSP artifacts (note that we did not
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define their interdependencies in the same detail as we did
in Figure 1).

After some time (potentially with the help of
architectural modeling) a problem (issue) is encountered
between win conditions W1 and W2. It is found that in
order to optimize concurrent routings (W1), we need to
support bi-directional real-time communication. This
contradicts W2 which only requires unidirectional
communication from system to vehicle (e.g., to forward
routing requests). This conflict could naturally be resolved
via an option (O1) that states that we need a two-way bus;
an option which would “replace” the win condition W2. In
the CBSP view this causes a dilemma in that one
requirement “artifact” requires a uni-directional bus
whereas the other requires a bi-directional bus. Thus, CBSP
refinement would also have to be complemented by a
minimization step that would interpret requirements
interdependencies (i.e., like the replace link between O1
and W2) to infer needed CBSP artifacts and their
interdependencies. We believe that such a minimization
step could be largely or even fully automated.

Inconsistency and Incompleteness Issues

Simplifying the refinement of requirements to
architecture and reasoning about requirements feasibility in
context of architectural modeling are two aspects we
believe CBSP could support. However, the relationships
between architecture, CBSP, and the negotiation rationale
may become very complex when both architecture and
requirements evolve independently. To this end, we found
that CBSP could also provide powerful support for
simplifying inconsistency detection between requirements
and architecture. For instance, we observed the following
cases:
• Inconsistencies between CBSP artifacts/dependencies

and their actual realization: For instance, if a CBSP
artifacts is categorized as a component but is

implemented as a connector in the architecture then this
could indicate a potential lack of understanding of
either the requirement or architecture. Similar
conclusions can be drawn when CBSP dependencies do
not match architectural ones.

• Inconsistencies between architecture/CBSP and
negotiation agreements: Take, for instance, the
example of the Optimizer component in Figure 2 which
depends on the Two-Way-Bus. If during the WinWin
negotiation it is decided to implement the Optimizer
but at the same it is decided to implement the One-
Way-Bus instead of the Two-Way-Bus (i.e., O1 would
not get adopted) then this indicates a potential
mismatch (Optimizer needs the Two-Way-Bus).

• Completeness mismatch between architecture and
requirements: For instance, CBSP can help in
identifying whether all agreed-upon architecturally-
relevant artifacts have actually been realized in the
architecture. Similarly, CBSP can help in pointing out
if there are any architectural elements for which there
are no corresponding negotiation artifacts.
Completeness issues such as the ones above could
suggest lack of awareness by stakeholders of some
architectural aspects that could have influenced the
negotiation process and vice versa.

Deriving/Validating Architectural Styles out of CBSP

In our work to date, we have chosen to use architectural
styles as guides in transforming the initial architectural
decisions produced by CBSP into an actual architecture.
Specifically, we have employed the C2 style [12] as
discussed above. However, each style is particularly well
suited for a certain type of problem; therefore, our intent is
to extend CBSP to leverage other styles as well.

We have begun exploring the feasibility of composing
CBSP artifacts into an architecture according to the Pipe-
and-Filter [11], GenVoca [1], and Weaves [5] styles, in

W1

Optimize
concurrent routing
to increase speed

of high-priority
cargo delivery

W2

Support real-time
communication
from system to

vehicle

I1
Problem: In order to
optimize concurrent
routings, we need to

support bi-directional real-
time communication

Support bi-directional real-
time communication between

system and vehicle

<<replaces>>

O1

Optimizer Vehicle

Warehouse

One-Way
Bus

Two-Way
Bus

<<depends>>

Negotation Rationale View CBSP View

Cargo Cargo
types

support for different
types of cargoW3

real-time
bi-direct.

Cargo

Optimizer Vehicle

Warehouse

Two-Way
Bus

<<depends>>

Minimized CBSP View

Cargo Cargo
types

real-time
bi-direct.

Cargo

Figure 2. From Negotiation rationale to an CBSP view using Minimization
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addition to C2. Each style imposes different constraints
that guide the composition of CBSP artifacts into an
architecture. For example, in the cargo router example, the
Optimizer CBSP artifact depends on the Vehicle and
Warehouse artifacts. C2’s substrate independence principle
mandates that Optimizer be placed below them in the
architecture. Since there are no direct dependencies
between Vehicle and Warehouse, they may be adjacent.
The same dependency relationship would have different
topological implications in a different style. For example,
GenVoca would require Optimizer to be above the Vehicle
and Warehouse components (while still allowing Vehicle
and Warehouse to be at the same level). Furthermore,
unlike C2, GenVoca would allow direct interactions among
its components, without the intervening connectors.

Similarly, if a component in a system, e.g., Weather
Module, communicates by producing streams of data, while
other components, e.g., Vehicle, assume discrete event-
based communication, then the style selected to represent
the architecture must supply explicit software connectors to
mediate between the two types of interaction. In this case,
GenVoca would not be an adequate candidate, while
Weaves, Pipe-and-Filter, and C2 may be, as all three of
them provide explicit connectors. However, if we further
consider the types of component interaction supported by
the three styles, we see that neither C2 nor Pipe-and-Filter
provide adequate solutions in this case: C2 assumes purely
discrete event-based communication, while Pipe-and-Filter
assumes purely data stream-based communication. This
would leave Weaves as the obvious choice.

Our future work will center around expanding the
number of architectural style we are considering. We will
also leverage existing studies on styles to codify the style
elimination and selection criteria such as the ones outlined
above. Finally, we intend to determine whether there are
architectural styles that are inherently incompatible with
CBSP, and the reasons for that incompatibility.

5. Conclusions

This paper introduced the CBSP approach for refining
requirements to architectures. The process is partially tool
supported and is currently integrated with our EasyWinWin
negotiation process. Besides requirements refinement, the
CBSP process also has great potential for improving a
variety of related issues like consistency and conformance
and architectural trade-off analyses. Future work involves
the exploration of those issues as well as a more tight
integration of our models and tools.
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