

Reasoning about Trace Dependencies in a Multi-Dimensional Space

Alexander Egyed

Teknowledge Corporation
4640 Admiralty Way, Suite 231

Marina Del Rey, CA 90292, USA
aegyed@acm.org

1 Introduction

Trace dependencies describe origin, rationale, or reali-
zation of software development artifacts. If a model ele-
ment A led to the implementation of some source code C
then there is a trace dependency between the two. If the
model element changes then the source code is affected.
Conversely, if the source code changes then the model
element is affected. Two basic properties of trace depend-
encies are:

• Bi-Directionality: If A traces to C then C must
trace to, at least, A.

• Transitivity: If A traces to B and B traces to C
then transitively A also trace to C.

Based on these two simple properties, we built a tech-
nique and tool called the Trace Analyzer [2] which is
given simple input trace dependencies to derives previ-
ously unknown trace dependencies through the shared use
of “common elements.” That is, if model element A traces
to some source code C and model element B also traces to
the same source code C then one can infer that A and B
trace to one another. The rationale for this can be derived
from bi-directionality and transitivity. The use of common
elements is thus another powerful property of trace de-
pendencies:

• Commonality: if A is known to trace to some ele-
ments CA and B is known to trace to some ele-
ments CB then a trace dependency exists if CA and
CB overlap.

Shared use of common elements (commonality) can be
a very useful form of deriving trace dependencies; espe-
cially if the common elements are part of an executable or
simulatable system. In this paper, we assume the source
code to be the commonality between model elements and
we assume that scenarios exist that can be tested on its
compiled code – the system. While testing a scenario on a
system, it can then be observed what implementation
classes, methods, and lines of code it uses. For instance,
we employ the commercial tool Rational Pure Coverage®
to observe test scenarios on an executing system. With the
help of such a tool, trace dependencies between test sce-

narios and source code can be generated automatically. If
we then hypothesize what test scenarios belong to what
model elements (the premise) we can then automatically
infer trace dependencies between model elements and
source code using transitivity.

The Trace Analyzer technique takes such known or
hypothesized trace dependencies between model elements
(or other artifacts like requirements) and common ele-
ments (e.g., source code) as input. It then builds a graph
consisting of nodes that contain those common elements
and all their overlaps (e.g., separate nodes for CA and CB
and if they overlap then another node that captures the
overlap). This graph is then subjected to various manipu-
lations to move known model element between the nodes.
The goal is to constrain for all nodes in the graph what
model elements they relate to and what model elements
they do not relate to.

Trace analysis is an iterative process using various
rules to manipulate the graph structure. In a final step, the
graph is traversed one more time to identify all nodes
related to individual model elements. Trace dependencies
are then established if two different model elements relate
to at least one common node (commonality). The graph
may even help in determining the “strength” of a depend-
ency based on the number of nodes any two model ele-
ments have in common.

The input required from the user can occur in one or
both of the following forms: (1) hypothesized trace de-
pendencies between model elements and testable scenar-
ios or (2) hypothesized trace dependencies between model
elements and common elements (i.e., source code). As a
result, the user will receive new trace dependencies (1)
among sets of model elements, (2) between model ele-
ments and common elements, and (3) between model
elements and scenarios. The user will also receive incon-
sistency and incompleteness warnings where an inconsis-
tency indicates if the given input is contradictory and
where incompleteness indicates remaining uncertainties
(potential dependencies). Inconsistencies and incomplete-
ness needs to be resolved manually. As a general rule, the
more trace dependencies are given as input the more

Proceedings of the 1st International Workshop on Traceability, co-located with ASE 2002, Edinburgh, Scotland,
UK, September 2002.

likely will inconsistencies and incompleteness be de-
tected.

2 Example

Our approach was validated on several case studies to
date. Two of these case studies were presented in [1] and
[2]. The following introduces a trivial, hypothetical ex-
ample and is used in the remainder of this paper to discuss
two weaknesses of the approach. The example includes
six model elements A1, A2, B1, B2, C1 and C2 that belong
to three different views (i.e., diagrams). Five of the six
model elements have known scenarios. Through the test-
ing of those scenarios, it is thus possible to infer trace
dependencies between those five model elements and
code. Four of the five trace dependencies are:

A1 traces to {1,2,3,7,9}
A2 traces to {3,4,5,6,7,8,9,10}
B1 traces to {2,3,4,5}
B2 traces to {5,10,11}

The numbers 1 to 11 correspond to distinct, non-

overlapping sections of the source code (lines of code,
methods, classes). For brevity we use the numbers as
short identifies. Figure 1, below, shows graphically the
distribution of model elements A1, A2, B1, B2 among the
source code elements using set structures. Note that we
use the term “footprint” to refer to the code elements of a
single model element. For instance, model element A1
was observed to have the footprint {1,2,3,7,9}. Indeed the
figure shows the individual code elements 1, 2, 3, 7, and 9
and a ellipse surrounding them. An arrow links the ellipse
to the model element A1 to the left to indicate the trace
dependency graphically.

1

2

3
4

5

6

7

8

9

10

11

0

View A
A1
A2

View B
B1
B2

View C
C1
C2

Figure 1. Footprints of Model Elements

2.1 Deriving Traces Through Commonality

The property of “commonality” allows us to identify
trace dependencies among A1 and A2, B1 and B2 by inves-
tigating whether or not their footprints overlap. We see an
overlap between A1 and B1 in the footprint {2,3}. The tool
thus infers the following trace dependencies between A1
and B1:

1B1A →⊂ and 1A1B →⊂

The first dependency (left) states that A1 traces to a part
of B1 where the symbol “ ⊂ ” on the arrow indicates the
part-of relationship (subset). The second dependency
(right) states that, in reverse, B1 also traces to a part of A1.
One can even define how strong the traces depend on one
another by measuring the size of the overlap. We refer to
the size of the overlap as the “strength” of a dependency
where 0% strengths implies no overlap (or no depend-
ency) and 100% strength implies complete overlap (no
part-of overlap).

2.2 Deriving Traces through Grouping

The trace analyzer technique can increase the strength of
a trace dependency by combining model elements. For
instance, model elements A1 and A2 individually only
trace to a part of B1 (strength less than 100%) but A1 and
A2 together trace to the whole of B1 (see complete overlap
of ellipse B1 with the combined ellipses for A1 and A2 in
Figure 1; strength = 100%). In reverse, however, B1 still
only traces to a subset of A1 and A2 together:

1B}2A1{A → and }2A1{A1B →⊂

2.3 Deriving Traces through Set Theory

The previous two examples concentrated on how to de-
rive trace dependencies if footprints overlap. It is however
possible that not only footprints but also their model ele-
ments overlap. Consider the following example:

{1,2}}2A1{A → and {1}}1{A →

If two sets of model elements trace to similar lines of

code as in the case above then overlaps in the sets of
model elements may also be used to derive more precise
trace dependencies (see also Figure 2 left). For instance, if
model element A1 is known to only trace to {1} and
model elements A1 and A2 together are known to trace to
{1,2} then using set theory one can derive a more refined
understanding. As such, it is certain that {2} only traces
to A2 and not A1 (set minus) or that {1} must trace to A1
and potentially also to A2 (set intersection). Figure 2
shows this relationship graphically.

1A 2A1A

2A1A

1A,2A ¬

2A1A¬
]2[A1A

Figure 2. Set Theory on Trace Overlaps

This example of using set theory shows our approach’s
ability to handle ambiguous input. Notice that the input
dependency “A1 and A2 trace to {1,2}” is ambiguous in
that it is unknown whether A1 traces to {1} or {2}. Only
in combination with other input can this ambiguity be
resolved. It is our observation that input ambiguities are to
be expected from designers who tend to only have partial
knowledge about a system’s model.

2.4 Deriving Trace Inconsistencies

Our technique can also detect some form of inconsis-
tencies in the provided input if it cannot satisfy all con-
straints imposed. Likewise, our technique can detect some
forms of incompleteness in the provided input if the final
trace dependencies contain “potential” elements. For in-
stance, in Figure 2 above the trace analysis encountered
an incompleteness in that it remained unknown whether
or not model element A2 is part of {1}. Our approach is
capable of reasoning in the presence of inconsistencies
and incompleteness although it is recommended to re-
solve inconsistencies when encountered (note: incom-
pleteness does not need to be resolved). To resolve in-
completeness, additional input dependencies need to be
provided. To resolve inconsistencies, existing input de-
pendencies need to be altered.

3 Problematic Issues

The Trace Analyzer makes effective use of trace prop-
erties like commonality and set theory to derive previ-
ously unknown trace dependencies. The approach is com-
putationally inexpensive and fully automated and tool
supported. Input trace dependencies between model ele-
ments and code have to be provided manually although
one can (semi) automate their creation if an observable
and executable software system or model is available.
There are, however, two potentially problematic issues
with the approach that are discussed next in more detail.

3.1 Overlaps in Model Elements within Views

We believe that the role of trace analysis is to derive
trace dependencies between model elements of different
views (i.e., diagrams) but not between model elements of

same views. Views already define dependencies of model
elements within it and thus little benefit is added by also
defining traces. However, this raises the question on how
to handle footprint overlaps between model elements of
same views. For instance, revisiting the example from
Figure 1, one may notice the overlaps between the foot-
prints of, i.e., B1 and B2. It would be incorrect to assume
that trace dependencies exist between B1 and B2 in this
case since one may interpret the overlaps between the
footprints in many different ways. For instance, if B1 and
B2 correspond to classes in a class diagram then their
overlapping footprint could be explained by B1 calling B2,
B2 calling B1, B1 and B2 calling one another, or B1 and B2
calling an unknown third class (e.g., off the shelf library
class). In none of those cases, there is an actual trace de-
pendency between B1 and B2.

Code

View A
A1
A2

View B
B1
B2

View B
C1
C2

Figure 3. Overlap within View

It follows that “trace dependencies” encountered be-

tween model elements of same views have to be ignored.
Our trace analyzer approach does this with satisfactory
results, however, ignoring overlaps within views may also
imply additional uncertainties in how model elements of
different views trace to one another. As an example, let us
assume that the overlaps between B1 and B2 are indeed the
result of calling dependencies. Let us also assume that
there is another model element C1 that is exactly at the
intersection between B1 and B2 (see also Figure 3). Some
of the possible scenarios are:

(a) B1 calls B2: (Figure 4 left)
(b) B2 calls B1: (Figure 4 middle)
(c) B1 and B2 call an unknown B3: (Figure 4 right)

Scenario (a) shows that if B1 calls B2 then the overlap

between B1 and B2 belongs to B2. Consequently, model
element C1 has a trace dependency with B2 but not with
B1. On the other hand, scenario (b) shows that there is a
trace dependency between B1 and C1 if B2 calls B1. Figure
4 right shows the scenario of B1 and B2 calling an un-

known third class (e.g., library class). This scenario does
not have a trace dependency between B1 / B2 and C1 given
that the overlapping code does not belong to either model
element.

B1 B1 B1

B2 B2 B2

C1 C1 C1

(a) (b) (c)

2B1C

1C2B

→⊂

→

1B1C

1C1B

→⊂

→

no trace de-
pendencies

Figure 4. Interpreting Overlaps

In the absence of knowing the correct answer to above

uncertainty, our approach takes a conservative approach:
it will define that C1 depends on either B1, B2 none of
them, or both of them. This is indicated as:

]2B|1[B1C →⊂ ,]1[C1B →⊂ ,]1[C2B →⊂

Although this answer is technically correct, it intro-
duces an undesirable uncertainty. At the present time, this
uncertainty can only be eliminated through human inter-
vention.

Alternatively, we believe that this uncertainty could
also be eliminated through automated consistency check-
ing. The work of Murphy et al. [3] suggests an approach
that can detect inconsistencies by identifying calling de-
pendencies and comparing them with the model for con-
sistency. Presumably, the view (i.e., diagram) containing
B1 and B2 will define some information on how both re-
late to one another. Recall our earlier premise that we
presume individual views to contain information on how
their model elements relate to one another (this is the pur-
pose of the view). Through consistency checking one
could then eliminate infeasible alternatives and as a con-
sequence improve the precision of the trace analysis.

3.2 Input Traces between Model Elements

The second problem discussed in this paper is on how
to handle input dependencies other then model element to
code traces. In essence, our approach is capable of chang-
ing the types of input dependencies under the assumption
that this is done comprehensively. For instance, if no
source code is available then perhaps a simulatable state-
chart diagram will do as a substitute. In such a case, input
trace dependencies are presumed to be between model

elements and statechart elements only. A mixture of trace
dependencies of different types are not supported.

Consider the following new input trace dependency in
addition to the example in Figure 1:

1B2C →

This new trace dependency adds a new constraint by
stating that C2 depends fully on B1 (100% strength). The
reverse dependency is unknown. The problem is that this
new information is “talking” in a different language than
the current trace analysis which is based on source code
(no source code information present in the new trace de-
pendency). However, this new information could provide
additional insight into other trace dependencies. As such,
if C2 depends fully on B1 then one may infer through tran-
sitivity that C2 traces to at least the same footprint B1 does
(plus potentially additional ones). One can thus assume:

C2 traces to {5,10,11,+}

Consequently, we can infer that C2 must trace to the

same model elements that B1 does, plus potentially addi-
tional ones (see Figure 5). Although it would be relatively
simple to automatically generate such “implied” foot-
prints for input dependencies between model elements, it
introduces a consistency problem. Recall from the discus-
sion in Section 2.3 that model element to code dependen-
cies may change in the course of a trace analysis (e.g., in
Section 2.4 an ambiguous trace from A1 to either {1} or
{2} was resolved later). If some model elements then
trace to other model element that change continuously
then it may be hard to impose consistency.

A possible solution to this problem is to do trace
analysis separately for each type of input dependency.
This solution would require an adaptation of our existing
approach in its ability to synchronize its trace analyses to
maintain overall consistency. It is however unclear at this
point what the scalability implications are.

Code

View A
A1
A2

View B
B1
B2

View B
C1
C2

Figure 5. Implied Footprint for C2

4 References

 1. Egyed, A. and Gruenbacher, P.: "Automating Requirements
Traceability - Beyond the Record and Replay Paradigm,"
Proceedings of the 17th International Conference on Auto-
mated Software Engineering (ASE), Edinburgh, Scottland,
UK, September 2002, to appear.

 2. Egyed, A.: "A Scenario-Driven Approach to Traceability,"
Proceedings of the 23rd International Conference on Soft-
ware Engineering (ICSE), Toronto, Canada, May 2001.

3. Murphy, G. C., Notkin, D., and Sullivan, K.: "Software
Reflexion Models: Bridging the Gap Between Source and
High-Level Models," Proceedings of the 3rd ACM
SIGSOFT Symposium on the Foundations of Software
Engineering, New York, NY, October 1995, pp.18-28.

¬

