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1 Introduction  

Trace dependencies describe origin, rationale, or reali-
zation of software development artifacts. If a model ele-
ment A led to the implementation of some source code C 
then there is a trace dependency between the two. If the 
model element changes then the source code is affected. 
Conversely, if the source code changes then the model 
element is affected. Two basic properties of trace depend-
encies are:  

• Bi-Directionality: If A traces to C then C must 
trace to, at least, A. 

• Transitivity: If A traces to B and B traces to C 
then transitively A also trace to C. 

Based on these two simple properties, we built a tech-
nique and tool called the Trace Analyzer [2] which is 
given simple input trace dependencies to derives previ-
ously unknown trace dependencies through the shared use 
of “common elements.” That is, if model element A traces 
to some source code C and model element B also traces to 
the same source code C then one can infer that A and B 
trace to one another. The rationale for this can be derived 
from bi-directionality and transitivity. The use of common 
elements is thus another powerful property of trace de-
pendencies: 

• Commonality: if A is known to trace to some ele-
ments CA and B is known to trace to some ele-
ments CB then a trace dependency exists if CA and 
CB overlap. 

Shared use of common elements (commonality) can be 
a very useful form of deriving trace dependencies; espe-
cially if the common elements are part of an executable or 
simulatable system. In this paper, we assume the source 
code to be the commonality between model elements and 
we assume that scenarios exist that can be tested on  its 
compiled code – the system. While testing a scenario on a 
system, it can then be observed what implementation 
classes, methods, and lines of code it uses. For instance, 
we employ the commercial tool Rational Pure Coverage® 
to observe test scenarios on an executing system. With the 
help of such a tool, trace dependencies between test sce-

narios and source code can be generated automatically. If 
we then hypothesize what test scenarios belong to what 
model elements (the premise) we can then automatically 
infer trace dependencies between model elements and 
source code using transitivity.  

The Trace Analyzer technique takes such known or 
hypothesized trace dependencies between model elements 
(or other artifacts like requirements) and common ele-
ments (e.g., source code) as input. It then builds a graph 
consisting of nodes that contain those common elements 
and all their overlaps (e.g., separate nodes for CA and CB 
and if they overlap then another node that captures the 
overlap). This graph is then subjected to various manipu-
lations to move known model element between the nodes. 
The goal is to constrain for all nodes in the graph what 
model elements they relate to and what model elements 
they do not relate to.  

Trace analysis is an iterative process using various 
rules to manipulate the graph structure. In a final step, the 
graph is traversed one more time to identify all nodes 
related to individual model elements. Trace dependencies 
are then established if two different model elements relate 
to at least one common node (commonality). The graph 
may even help in determining the “strength” of a depend-
ency based on the number of nodes any two model ele-
ments have in common.  

The input required from the user can occur in one or 
both of the following forms: (1) hypothesized trace de-
pendencies between model elements and testable scenar-
ios or (2) hypothesized trace dependencies between model 
elements and common elements (i.e., source code). As a 
result, the user will receive new trace dependencies (1) 
among sets of model elements, (2) between model ele-
ments and common elements, and (3) between model 
elements and scenarios. The user will also receive incon-
sistency and incompleteness warnings where an inconsis-
tency indicates if the given input is contradictory and 
where incompleteness indicates remaining uncertainties 
(potential dependencies). Inconsistencies and incomplete-
ness needs to be resolved manually. As a general rule, the 
more trace dependencies are given as input the more 
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likely will inconsistencies and incompleteness be de-
tected. 

2 Example 

Our approach was validated on several case studies to 
date. Two of these case studies were presented in [1] and 
[2]. The following introduces a trivial, hypothetical ex-
ample and is used in the remainder of this paper to discuss 
two weaknesses of the approach. The example includes 
six model elements A1, A2, B1, B2, C1 and C2 that belong 
to three different views (i.e., diagrams). Five of the six 
model elements have known scenarios. Through the test-
ing of those scenarios, it is thus possible to infer trace 
dependencies between those five model elements and 
code. Four of the five trace dependencies are: 

 
A1 traces to {1,2,3,7,9} 
A2 traces to {3,4,5,6,7,8,9,10} 
B1 traces to {2,3,4,5} 
B2 traces to {5,10,11} 
 
The numbers 1 to 11 correspond to distinct, non-

overlapping sections of the source code (lines of code, 
methods, classes). For brevity we use the numbers as 
short identifies. Figure 1, below, shows graphically the 
distribution of model elements A1, A2, B1, B2 among the 
source code elements using set structures. Note that we 
use the term “footprint” to refer to the code elements of a 
single model element. For instance, model element A1 
was observed to have the footprint {1,2,3,7,9}. Indeed the 
figure shows the individual code elements 1, 2, 3, 7, and 9 
and a ellipse surrounding them. An arrow links the ellipse 
to the model element A1 to the left to indicate the trace 
dependency graphically.  
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Figure 1. Footprints of Model Elements 

 

2.1 Deriving Traces Through Commonality 

The property of “commonality” allows us to identify 
trace dependencies among A1 and A2, B1 and B2 by inves-
tigating whether or not their footprints overlap. We see an 
overlap between A1 and B1 in the footprint {2,3}. The tool 
thus infers the following trace dependencies between A1 
and B1: 

1B1A →⊂  and 1A1B →⊂  

 
The first dependency (left) states that A1 traces to a part 
of B1 where the symbol “ ⊂ ” on the arrow indicates the 
part-of relationship (subset). The second dependency 
(right) states that, in reverse, B1 also traces to a part of A1. 
One can even define how strong the traces depend on one 
another by measuring the size of the overlap. We refer to 
the size of the overlap as the “strength” of a dependency 
where 0% strengths implies no overlap (or no depend-
ency) and 100% strength implies complete overlap (no 
part-of overlap).  

2.2 Deriving Traces through Grouping 

The trace analyzer technique can increase the strength of 
a trace dependency by combining model elements. For 
instance, model elements A1 and A2 individually only 
trace to a part of B1 (strength less than 100%) but A1 and 
A2 together trace to the whole of B1 (see complete overlap 
of ellipse B1 with the combined ellipses for A1 and A2 in 
Figure 1; strength = 100%). In reverse, however, B1 still 
only traces to a subset of A1 and A2 together: 

1B}2A1{A →  and }2A1{A1B →⊂  

2.3 Deriving Traces through Set Theory 

The previous two examples concentrated on how to de-
rive trace dependencies if footprints overlap. It is however 
possible that not only footprints but also their model ele-
ments overlap. Consider the following example: 

{1,2}}2A1{A →  and {1}}1{A →  

 
If two sets of model elements trace to similar lines of 

code as in the case above then overlaps in the sets of 
model elements may also be used to derive more precise 
trace dependencies (see also Figure 2 left). For instance, if 
model element A1 is known to only trace to {1} and 
model elements A1 and A2 together are known to trace to 
{1,2} then using set theory one can derive a more refined 
understanding. As such, it is certain that {2} only traces 
to A2 and not A1 (set minus) or that {1} must trace to A1 
and potentially also to A2 (set intersection). Figure 2 
shows this relationship graphically. 
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Figure 2. Set Theory on Trace Overlaps 

This example of using set theory shows our approach’s 
ability to handle ambiguous input. Notice that the input 
dependency “A1 and A2 trace to {1,2}” is ambiguous in 
that it is unknown whether A1 traces to {1} or {2}. Only 
in combination with other input can this ambiguity be 
resolved. It is our observation that input ambiguities are to 
be expected from designers who tend to only have partial 
knowledge about a system’s model.  

2.4 Deriving Trace Inconsistencies  

Our technique can also detect some form of inconsis-
tencies in the provided input if it cannot satisfy all con-
straints imposed. Likewise, our technique can detect some 
forms of incompleteness in the provided input if the final 
trace dependencies contain “potential” elements. For in-
stance, in Figure 2 above the trace analysis encountered 
an incompleteness in that it remained unknown whether 
or not model element A2 is part of {1}. Our approach is 
capable of reasoning in the presence of inconsistencies 
and incompleteness although it is recommended to re-
solve inconsistencies when encountered (note: incom-
pleteness does not need to be resolved). To resolve in-
completeness, additional input dependencies need to be 
provided. To resolve inconsistencies, existing input de-
pendencies need to be altered. 

3 Problematic Issues  

The Trace Analyzer makes effective use of trace prop-
erties like commonality and set theory to derive previ-
ously unknown trace dependencies. The approach is com-
putationally inexpensive and fully automated and tool 
supported. Input trace dependencies between model ele-
ments and code have to be provided manually although 
one can (semi) automate their creation if an observable 
and executable software system or model is available. 
There are, however, two potentially problematic issues 
with the approach that are discussed next in more detail.  

3.1 Overlaps in Model Elements within Views 

We believe that the role of trace analysis is to derive 
trace dependencies between model elements of different 
views (i.e., diagrams) but not between model elements of 

same views. Views already define dependencies of model 
elements within it and thus little benefit is added by also 
defining traces.  However, this raises the question on how 
to handle footprint overlaps between model elements of 
same views. For instance, revisiting the example from 
Figure 1, one may notice the overlaps between the foot-
prints of, i.e., B1 and B2. It would be incorrect to assume 
that trace dependencies exist between B1 and B2 in this 
case since one may interpret the overlaps between the 
footprints in many different ways. For instance, if B1 and 
B2 correspond to classes in a class diagram then their 
overlapping footprint could be explained by B1 calling B2, 
B2 calling B1, B1 and B2 calling one another, or B1 and B2 
calling an unknown third class (e.g., off the shelf library 
class). In none of those cases, there is an actual  trace de-
pendency between B1 and B2. 
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Figure 3. Overlap within View 

 
It follows that “trace dependencies” encountered be-

tween model elements of same views have to be ignored. 
Our trace analyzer approach does this with satisfactory 
results, however, ignoring overlaps within views may also 
imply additional uncertainties in how model elements of 
different views trace to one another. As an example, let us 
assume that the overlaps between B1 and B2 are indeed the 
result of calling dependencies. Let us also assume that 
there is another model element C1 that is exactly at the 
intersection between B1 and B2 (see also Figure 3). Some 
of the possible scenarios are: 

 
(a) B1 calls B2: (Figure 4 left) 
(b) B2 calls B1: (Figure 4 middle) 
(c) B1 and B2 call an unknown B3: (Figure 4 right) 
 
Scenario (a) shows that if B1 calls B2 then the overlap 

between B1 and B2 belongs to B2. Consequently, model 
element C1 has a trace dependency with B2 but not with 
B1. On the other hand, scenario (b) shows that there is a 
trace dependency between B1 and C1 if B2 calls B1. Figure 
4 right shows the scenario of B1 and B2 calling an un-



 

known third class (e.g., library class). This scenario does 
not have a trace dependency between B1 / B2 and C1 given 
that the overlapping code does not belong to either model 
element. 
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no trace de-
pendencies 

Figure 4. Interpreting Overlaps 

 
In the absence of knowing the correct answer to above 

uncertainty, our approach takes a conservative approach: 
it will define that C1 depends on either B1, B2 none of 
them, or both  of them. This is indicated as: 

]2B|1[B1C →⊂ , ]1[C1B →⊂ , ]1[C2B →⊂  

Although this answer is technically correct, it intro-
duces an undesirable uncertainty. At the present time, this 
uncertainty can only be eliminated through human inter-
vention. 

Alternatively, we believe that this uncertainty could 
also be eliminated through automated consistency check-
ing. The work of Murphy et al. [3] suggests an approach 
that can detect inconsistencies by identifying calling de-
pendencies and comparing them with the model for con-
sistency. Presumably, the view (i.e., diagram) containing 
B1 and B2 will define some information on how both re-
late to one another. Recall our earlier premise that we 
presume individual views to contain information on how 
their model elements relate to one another (this is the pur-
pose of the view). Through consistency checking one 
could then eliminate infeasible alternatives and as a con-
sequence improve the precision of the trace analysis. 

3.2 Input Traces between Model Elements 

The second problem discussed in this paper is on how 
to handle input dependencies other then model element to 
code traces. In essence, our approach is capable of chang-
ing the types of input dependencies under the assumption 
that this is done comprehensively. For instance, if no 
source code is available then perhaps a simulatable state-
chart diagram will do as a substitute. In such a case, input 
trace dependencies are presumed to be between model 

elements and statechart elements only. A mixture of trace 
dependencies of different types are not supported. 

Consider the following new input trace dependency in 
addition to the example in Figure 1: 

1B2C →  

This new trace dependency adds a new constraint by 
stating that C2 depends fully on B1 (100% strength). The 
reverse dependency is unknown. The problem is that this 
new information is “talking” in a different language than 
the current trace analysis which is based on source code 
(no source code information present in the new trace de-
pendency). However, this new information could provide 
additional insight into other trace dependencies. As such, 
if C2 depends fully on B1 then one may infer through tran-
sitivity that C2 traces to at least the same footprint B1 does 
(plus potentially additional ones). One can thus assume: 

 
C2 traces to {5,10,11,+} 
 
Consequently, we can infer that C2 must trace to the 

same model elements that B1 does, plus potentially addi-
tional ones (see Figure 5). Although it would be relatively 
simple to automatically generate such “implied” foot-
prints for input dependencies between model elements, it 
introduces a consistency problem. Recall from the discus-
sion in Section 2.3 that model element to code dependen-
cies may change in the course of a trace analysis (e.g., in 
Section 2.4 an ambiguous trace from A1 to either {1} or 
{2} was resolved later). If some model elements then 
trace to other model element that change continuously 
then it may be hard to impose consistency.  

A possible solution to this problem is to do trace 
analysis separately for each type of input dependency. 
This solution would require an adaptation of our existing 
approach in its ability to synchronize its trace analyses to 
maintain overall consistency. It is however unclear at this 
point what the scalability implications are.  
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Figure 5. Implied Footprint for C2 
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