
Ž .Computer Standards & Interfaces 21 1999 63–75

Optimizing software product integrity through life-cycle process
integration

Barry Boehm 1, Alexander Egyed)

UniÕersity of Southern California, Center for Software Engineering, SalÕatori Computer Science Building 328, Los Angeles,
CA 90089-0781, USA

Received 18 December 1998; accepted 25 January 1999

Abstract

Ž .Managed and optimized—these are the names for the levels 4 and 5 of the Capability Maturity Model CMM
Ž .respectively. With that the Software Engineering Institute SEI pays tribute to the fact that, after the process has been

defined, higher process maturity, and with that higher product maturity, can only be achieved by improving and optimizing
the life-cycle process itself. In the last three years, we had had the opportunity to observe more than 50 software
development teams in planning, specifying and building library related, real-world applications. This environment provided
us with a unique way of introducing, validating and improving the life cycle process with new principles such as the
WinWin approach to software development. This paper summarizes the lessons we have learned in our ongoing endeavor to
integrate the WinWin life-cycle process. In doing so, we will not only describe what techniques have proven to be useful in
getting the developer’s task done but the reader will also get some insight on how to tackle process improvement itself. As
more and more companies are reaching CMM levels two or higher this task, of managing and optimizing the process,
becomes increasingly important. q 1999 Elsevier Science B.V. All rights reserved.

Keywords: Software product integrity; CMM; Process integration; WinWin; Spiral model; MBASE; View integration

1. Introduction

The major objective of the Capability Maturity
Ž . w xModel CMM 18 in several software process ini-

tiatives is to achieve defined, managed, and opti-
mized processes with the hope that this improvement
in process maturity will also yield a higher maturity

Ž .of the software system product.

) Corresponding author. Tel.: q1-213-7406504; E-mail:
aegyed@sunset.usc.edu

1 E-mail: boehm@sunset.usc.edu

The CMM does, however, not elaborate on what
approaches and techniques are useful in achieving
this goal. Especially the process optimization area,

Žwhich comes rather late in the maturity hierarchy in
.level 5 , is an issue which has not been tackled

strongly by the research or practitioner communities
in general. Nevertheless, during the optimization
level it is expected that ‘‘the organization has the
means to identify weaknesses and strengthen the
process proactively, with the goal of preventing the

w xoccurrence of defects’’ 18 .
This case study will present the findings of the

continuing process of observing over 50 develop-

0920-5489r99r$ - see front matter q 1999 Elsevier Science B.V. All rights reserved.
Ž .PII: S0920-5489 99 00005-7

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–7564

ment teams over a period of 3 years—roughly 15
teams each year. Those teams, with an average team

Žsize of five people per team as little as four and as
.high as seven people , were primarily involved in

developing multimedia applications for the Univer-
Ž .sity of Southern California USC with the USC

Library Services as their main customer. The user
communities for these applications are for the most
part faculty and students at the university and Li-
brary administrators and service providers. Since
many of these applications were developed for the
World-Wide-Web, the user community may be quite
extensive in some cases.

Those USC Digital Library projects constitute a
major proof of the success and feasibility of the

ŽWinWin Development Model a process model con-
sisting of the WinWin Negotiation Model and the

.WinWin Spiral Model in that the projects were
highly successful in their approaches and results. The
developers in question were computer science stu-
dents at USC, taking a graduate level course in
Software Engineering. On average, 30% of the grad-

Žuate students taking this class and the successive
.ones are experienced software developers from in-

dustry, who often take these courses remotely while
they are continuing to work at their respective com-
panies. This, fact also adds another interesting di-
mension to our findings—that of how more experi-
enced teams, or teams with mixed experiences, use
our process model differently from less experienced
ones.

This collaboration between us, the Center for
Software Engineering, and the USC Library is result-
ing in numerous advantages for all involved parties.
The students taking our software engineering course
gain valuable knowledge and skills in dealing with
real-world software development challenges as a
team, which poses greater challenges than the usual
individual programming assignment. The USC Li-
brary in turn gains well-engineered software prod-

Ž .ucts for a very reasonable price almost free and
with minimal disruption to the library operations.

ŽFurthermore, the industry and especially our affili-
.ates benefit by having access to a better educated

pool of future employees who have gained relevant
skills in handling the entire software life-cycle. And

Žfinally, we our center and the software engineering
.community in general gain invaluable experiences

in improving software engineering tools and tech-
niques, and in validating them.

In improving this course we applied the same
process model the development teams used in build-
ing their Library applications, the WinWin Spiral

w x Ž .Model 7 explained later , and combined it with
w xBasili’s Experience Factory 2 . This approach is

Ž w x.summarized in Fig. 1 see also Ref. 10 . We used
the WinWin Spiral Model to develop the initial
version of the course and its instrumentation. Each
project also uses the WinWin Spiral Model to define,
develop, and transition their respective application
products. We then analyze the course instrumenta-
tion results, student critiques, client evaluations, and
grading information to determine improvements for
the course in the following year, using the Experi-
ence Factory paradigm. Since the development pro-

Žjects involve dealing with COTS products Commer-
.cial-off-the-Shelf , architectural description lan-

Ž .guages UML , and Web technology we also had to
anticipate and adapt changes in those technologies.

1.1. The people

The first set of projects commenced in 1996,
when 15 development teams used the WinWin Spiral
Model approach to develop multimedia-related li-
brary applications for the Library of the University

Ž .of Southern California USC . The development
teams consisted of an average of six USC graduate

Ž .students Master and PhD students per team with a
Ž .mix of about 70% fresh only little experienced

students and 30% experienced practitioners from in-
Ždustry the latter were mostly working for companies

Fig. 1. Course development and evolution strategy.

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–75 65

and attended the course via the instructional televi-
.sion network .

In 1997, 16 development teams used an improved
version of the same WinWin approach to again
develop library related applications for the USC
Library. This time the domain of applications was
broader, covering also the administrative side of
Library operations. The students teams averaged five
per team and the ratio of experienced vs. inexperi-
enced students was similar.

At the time of the writing of this article, the next
rounds of projects have been initiated. In Fall 1998,
we have 20 development teams working on 18 dif-
ferent applications. The requirements negotiation, and
the first two iterations of the major deliverables
Ž .LCO and LCA milestones, see below have been
completed.

During all three years there were almost as many
projects as there were student teams. In a few cases,
more than one team worked on the same problem
set. The problem sets were provided by librarians
from the USC Library and their problem descriptions
were initially nothing more than one to two para-

Žgraph statements see Table 1 for a list of most
.projects .

The students were supervised by faculty and staff
of the USC Center for Software Engineering who
also taught them software engineering principles and
provided technical support. Further outside support
was provided by the Information Services Division
Ž .ICS of USC.

1.2. The projects

Ž .The projects were and are being developed over
a period of two semesters. Thus, the 1996 projects
started off in Fall 1996 and continued through the

Žspring semester of 1997 or in a few cases until the
.end of Summer 1997 . Similarly, the 1997 projects

started in Fall 1997 and went through Spring and in
one case through Summer of 1998. The first stage of
the 1998 projects is about to be finished and the
detailed design and implementation will follow in
Spring. We expect further collaboration for the fore-
seeable future.

Since those projects are often quite extensive, the
development is impossible to be compressed onto
one semester only. To deal with this, we offer two
consecutive software engineering courses where the

Table 1
Digital library projects

1996–1997 Projects 1997–1998 Projects 1998–1999 Projects
aCinema-TV Moving Images Architecture and Fine Arts Databases Data Mining the Library Catalog

aEDGAR Corporate Data Bella Lewitsky Archives California Virtual University Database
b bHancock Image Archive Business School Working Papers Dissertations

aInteractive TV Material Inter-Library Loan Virtual Education Reference Assistant
bKorean-American Museum Engineering Technical Reports Business Q&As

aLatin American Pamphlets General Library FAQ’s Asian Film Database on the Internet
aDigital Maps Hancock Museum Virtual Tour WWI—Record EnhancementrTOC

aMedieval Manuscripts Lion Feuchtwanger Archive Digital Document Creation and Storage
Planning Documents Network Consultation Support Current Awareness Service for Social

Work Doctoral Students
b aSearchable Archives for Images Serial Publication Seaver Auditorium Scheduling

b aStereoscopic Slides Statistical Charts Hispanic Digital Archive
Technical Reportsa Virtual Education Reference Assistant Book Locator for Doheny Stacks

New Booklist
ARIEL to Web Document Delivery
Metadata Creation for Digital Records
Authoring tool for the ADE system
Voice Input for Metadata
Qualcomm Dinner Scheduling

aContinued during the spring semester.
b Merged together to one project during the spring semester.

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–7566

second one continues the projects from the first one
in order to implement and transition them. Unfortu-
nately, the attendance of the Fall and Spring classes
are not the same. The Fall course is part of the core
requirements for the USC graduate program in com-
puter science—not so, the Spring course. This usu-
ally leaves us with only a third of the students to
continue the projects in the second semester. Thus,
we are forced to abandon some of the projects in
mid-year and continue only some of them. Table 1
shows most of the projects of all three years. The

Ž .projects marked with 1 are projects we continued
for the second semester. In rare cases, where we find
that the projects seem to be heading to a similar
solution, we merge them together and both are con-

Ž .tinued for a second semester 2 . As of this time we
do not know which projects will be continued this
year. We will determine this based on what students

Ž .return we favor their projects and which projects
have the best likelihood for a successful transition
into library use.

1.3. Real-world characteristics

The personnel strain we experience every year
through the discontinuity of students, however, also
adds to the realism of the projects. In fact, the
projects exhibited a number of real-world character-
istics as listed below:
Ø Real customers and users and, thus, real problems

and conflicts to solve
Ø Fuzzy requirements

ŽØ Resource conflicts availability and accessibility
.of hardware and software

ŽØ Personnel conflicts new people with new ideas
.join the teams; other people leave the teams

Ø Solutions need to be integrated into existing USC
Library operation. Independent ‘islands’ of solu-
tions are not effective.
Most of the projects, so far have been considered

a high success for our customer, the USC Library.
Not only did they commit to pursue the projects for
now three years in a row but also preparations for
the next year have been set in motion. This contin-
ued alliance between the Center for Software Engi-
neering and the USC Library proves to be a win–win
not only for the Library but also all other parties
involved as Table 2 shows.

Table 2
Stakeholder Win–Win approach

Stakeholders Win conditions

Developers Full range of software engineering skills
Ž .students Real-client project experience

Advanced software technology experience
Customers Useful applications
Ž .librarians Advanced software technology understanding

Moderate time requirements
Faculty Educate future software engineering leaders
and staff Better software engineering technology

Applied on real-client projects

1.4. Outline

Experiences with this project have been summa-
w xrized in detail in Ref. 8 . This paper builds strongly

w xon Ref. 9 and as such further concentrates on how
those projects helped us in integrating and validating
software engineering technology.

The following section will summarize the soft-
ware processes we used during the first year. Follow-
ing that, we will discuss the improvements of the
second and third year based on the lessons we
learned from the previous ones. We will conclude
this paper by discussing a few deeper aspects of
software engineering technology integration which
needs to supplement process integration in order to
yield higher product maturity.

2. The first development projects

During the first year, we used a number of models
to help develop the USC Library projects. The most

w ximportant ones were the WinWin Spiral Model 7 ,
w xthe WinWin Negotiation Model 6 , and COCOMO

w x3 . It is out of the scope of this paper to address
them in detail. We will therefore only concentrate on
the first one since it captures the development pro-
cess the developers used, as well as the optimization
process we used in validating their approaches.

2.1. Process models

The WinWin Spiral Model is a derivative of the
w xoriginal Spiral Model 4 which uses a cyclic ap-

proach to develop increasingly detailed elaboration

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–75 67

Ž .of a software system or process . The original model
focused on the following aspects:
Ø Elaborate the system or subsystem’s product and

process objectives, constraints, and alternatives.
Ø Evaluate the alternatives with respect to the ob-

jectives and constraints. Identify and resolve ma-
jor sources of product and process risk.

Ø Elaborate the definition of the product and pro-
cess.

Ø Plan the next cycle, and update the life-cycle
plan, including partition of the system into sub-
systems to be addressed in parallel cycles. This
can include a plan to terminate the project if it is
too risky or infeasible. Secure the management’s
commitment to proceed as planned.
The Spiral Model has been extensively elaborated

Ž w x.e.g. Ref. 21 , and successfully applied in numerous
Ž w x.projects e.g., Refs. 14,19 . However, some com-

mon difficulties have led to some further extensions
to the model. One difficulty involves answering the
question, ‘‘Where do the elaborated objectives, con-
straints, and alternatives come from?’’

The WinWin Spiral Model resolves this difficulty
by adding three activities to the front of each spiral

w xcycle, as illustrated in Fig. 2 5 . First, identify the
system or subsystem’s key stakeholders. Second,
identify the stakeholders’ win conditions for the
system or subsystem and, third, negotiate win–win
reconciliation of the stakeholders’ win conditions.
What this means is that for each cycle we need to

Ž .identify all important people stakeholder and their
goals. We then need to reconcile their goals so that

Žconflicts are resolved the WinWin Negotiation
.Model addresses exactly this process .

Fig. 2. The WinWin spiral model.

We found that these steps indeed produced the
key product and process objectives, constraints, and

w xalternatives for the next version 6 . The overall
stakeholder WinWin negotiation approach is similar
to other team approaches but our primary distin-
guishing characteristic is the use of the stakeholder
win–win relationship as the success criterion and
organizing principle for the software and system
definition process.

2.2. Process anchor points

The teams also followed the Anchor points de-
w xscribed in Ref. 7 . There, two generally applicable

milestones were defined for the WinWin spiral
Ž .model, called the Life Cycle Objectives LCO and

Ž . Ž .the Life Cycle Architecture LCA see Table 3 .
Each milestone corresponds to one spiral cycle and

Ž .the LCA milestone is a refinement a later cycle of
the LCO. Each milestone is divided into milestone
elements, such as operational concept, system re-
quirements, software architecture, plan, and feasibil-
ity rationale. The table entries contain information of
what is expected to be completed for a certain
milestone and for a particular milestone element.

The initial milestone, the completion of the Win-
Win requirements negotiation, was due at the end of
Week 4. The LCO milestone was due in Week 6 and
the LCA milestone was completed in Week 11 at the
end of the first semester. This included a prototype,
which was mostly done as part of the third cycle.
Thus, the net result of the first semester’s activity
was to go from a one-paragraph problem statements
to LCA packages of roughly 200 pages plus a proto-
type.

The second semester started off by revisiting the
LCA deliverables and continuing on to the IOC
Ž .Initial Operational Capabilities milestone, which
was due at the end of the second term. The IOC
milestone is about:
Ø User, operator and maintainer preparation, in-

cluding selection, teambuilding, training and other
qualification for familiarization usage, operations,
or maintenance

Ø Software preparation, including both operational
and support software with appropriate commen-
tary and documentation; data preparation or con-
version; the necessary licenses and rights for

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–7568

Table 3
Contents of LCO and LCA milestones

Ž . Ž .Milestone element Life cycle objectives LCO Life cycle architecture LCA

Definition of Operational Top-level system objectives and scope Elaboration of system objectives and scope by increment
Concept System boundary Elaboration of operational concept by increment

Environment parameters and assumptions
Evolution parameters
Operational concept
Operations and maintenance scenarios
and parameters
Organizational life-cycle responsibilities

Prototype Exercise key usage scenarios Exercise range of usage scenarios
Resolve critical issues Resolve major outstanding risks

Definition of system Top-level functions, interfaces, quality Elaboration of functions, interfaces, quality attributes
requirements attribute levels, including: by increment

Ž .Growth vectors Identification of TBDs to-be-determined
Priorities Stakeholders’ concurrence on their priority concerns
Stakeholders’ concurrence on essentials

Definition of system and Top-level definition of at least one Choice of architecture and elaboration by increment
software architecture feasible architecture Physical and logical components, connectors,

Physical and logical elements and configurations, constraints
relationships COTS, reuse choices
Choices of COTS and reusable software Domain-architecture and architectural style choices
elements Architecture evolution parameters
Identification of infeasible architecture
options

UDefinition of life-cycle Identification of life-cycle stakeholders Elaboration of WWWWWHH for Initial Operational
Ž .plan Users, customers, developers, maintainers, Capability IOC

interoperators, general public, others Partial elaboration, identification of key TBDs for later
Identification of life-cycle process model increments
Top-level stages, increments

UTop-level WWWWWHH by stage
Feasibility rationale Assurance of consistency among elements Assurance of consistency among elements above

above All major risks resolved or covered by risk management
Via analysis, measurement, prototyping, plan
simulation, etc.
Business case analysis for requirements,
feasible architectures

U
WWWWWHH: Why, What, When, Who, Where, How, How Much.

COTS and reused software, and appropriate oper-
ational readiness testing

Ø Site preparation, including facilities, equipment,
supplies, and COTS vendor support arrangements
More usage information on the anchor points as

well as their entry and exit criteria are described in
w xRef. 8 .

2.3. Gathered data

Since we wanted to analyze how students would
use our models and in what places they would

encounter problems while applying them, we gath-
ered extensive data throughout the development life
cycle. The following summarizes some of the data
we have.

. WinWin Negotiation Tool: Based on the Win-
Win negotiation model, which was designed to keep
track of changes during the negotiation. Besides the
model implicit information, the tool also captured
other usage activities in detail. For instance, Fig. 3
shows an example of the tool usage during the
requirements negotiation period. The vertical axis
shows the number of days the negotiation progressed

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–75 69

Fig. 3. Negotiation behavior—usage of WinWin over time.

and the horizontal axis shows the project teams. As it
can be seen, stakeholders used the tool syn-
chronously for the most time, however, some teams
such as 8 and 10 also used it asynchronously.

. Documentation: Each LCO and LCA mile-
stone element described above resulted in a docu-
ment tailored towards it. The LCO package averaged
in about 160 pages and the LCA package averaged
in 230 pages.

. w xArchitecture ReÕiew Board 1 : At the end of
the LCO and LCA milestones, teams presented their

Ž .solution and approach architecture, etc. to us and
their clients. This provided us with some insights
into team activities. However, we were not able to
capture those in a quantitative manner, other than the
grading of the LCO and LCA packages.

. Customer Questionnaires: At the end of each
Ž .semester LCA and IOC milestones we asked the

USC Library customers and users to provide feed-
back to us in the form of questionnaires. So, they
were asked to summarize their experiences working
with the students and whether or not the product
satisfied their needs.

. Student Critiques: Similarly, at the end of the
LCA and IOC milestones, we asked the students to
summarize their experiences. Basically, we asked
them what they would do differently if they would
have the chance to do it all over again.

. Weekly Metrics: Students were also asked to
submit effort data on a weekly basis. The metrics,
forms they had to fill out, described their daily
activities.

. COCOMO related questionnaires: To further
analyze the projects, the students had to fill out more
detailed questionnaires about factors affecting devel-
opment cost and effort.

3. Improving the process and its deliverables for
year two

Using the information we gathered during the first
year, we found a number of places where the process
was not efficient enough to meet stakeholders’ ex-
pectations. Those deficiencies were as follows.

3.1. Prototyping

In 1996, the development teams were required to
produce a prototype at the end of the first semester
and then a final product with sufficient initial capa-

Žbilities at the end of the second semester which for
most team members also marked the end of their

.involvement in the development process .
Having had a prototype which could be presented

to the Library clients before the actual construction
of the product was initiated was highly beneficial.
However, in 1996 the librarians created the problem
statement and participated in the WinWin require-
ments negotiation with the student teams before see-
ing the prototype. The prototypes yielded insightful
surprises, but had the downside that in the middle of
the project life-cycle, the clients expectation of what
is possible expanded—resulting in requirements
changes late in the process.

To cope with this challenge, we decided to incor-
porate prototyping as early on as possible. In the
second year, we followed the spiral model process
more closely and produced prototypes as part of
every cycle. The first one was being built in parallel
with the WinWin requirements negotiation process
and incorporated mostly user interface features. The
second and third prototypes were build with the LCO
and LCA milestones respectively. This stronger inte-
gration of prototyping into our development process
resulted in the adaptation of Table 3 which got

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–7570

Žextended by the Prototyping milestone element see
.Table 4 .

()3.2. Architecture reÕiew board ARB

Ž .The end of the first semester LCA milestone in
1996 featured also an activity that was similar to an
Architecture Review Board meeting. The main par-
ticipants were faculty and staff from USC Center for
Software Engineering, USC Library clients, and their
respective student teams.

Like with prototypes, all involved parties gained
important insight into the development process and
product, and how they would affect operation. To
increase the benefit of those sessions, we introduced
the ARBs to both the LCO and the LCA milestones
for all teams—thus enabling the teams to incorporate
stakeholder feedback earlier on. We further struc-
tured those meetings more formally, since the first
year’s ones were rather informal.

3.3. OO analysis and design

In 1996, we primarily concentrated on providing
process support for the high level activities such as
requirements negotiation, LCO and LCA package
creation. We left it, however, unspecified what de-
sign process the teams should follow. These were
done in class and involved 6 of the 15 teams.

The students turned out to be very resourceful in
dealing with that, however, this situation was far
from ideal when it came to analyzing what they did.
We found it hard to reconcile their approach to
extract best practices and pitfalls. After all, their
projects often needed to be integrated into the exist-
ing library systems and sometimes even with other
Library projects.

Table 4
Contents of the prototype element for the LCO and LCA mile-
stones

Milestone Life cycle objectives Life cycle architecture
Ž . Ž .element LCO LCA

Prototype Exercise key usage Exercise range of
scenarios usage scenarios
Resolve critical risks Resolve major

outstanding risks

In the second year, we went to a more concise
and integrated set of design views, based on the

Ž .Unified Modeling Language UML and the Rational
w xRose toolset 12 . Using UML, the teams were able

to more strongly refine their software architectural
Ždescription and using a design tool like Rational

.Rose turned out to be a great win–win for both the
designers and the analyzers. The designs used more
uniform methodologies which made it easier to com-

Ž .municate with teams e.g. during ARBs and the
design models could now be more uniformly ana-

Žlyzed e.g. we are currently attempting to develop a
.software sizing method based on UML .

3.4. Training

Another major problem we encountered during
the first year was the issue of training the teams in
using the spiral model, UML, and other models. We
found that without adequate training the teams would
fail to use the models and corresponding tools very
effectively.

Since it was not feasible for the graduate program
to add a prerequisite course in software engineering

Ž .models even though this would have been ideal , we
decided to spend more time in the beginning of the
first semester teaching those models. Fortunately for
us, not all models are needed right from the begin-
ning which gave us extra some lead time for prepara-
tions.

The additional training sessions in the usage of
WinWin, Rose, COCOMO, and other tools turned
out to be highly effective. With that, the student
teams had at least some tool experience before they
used them in their projects.

3.5. Transition of product

In the beginning, the library clients were consid-
erably uncertain about going forward with the pro-
jects. This changed however soon after they saw the
first prototypes. Nevertheless, in the first year we
learned that most of the clients were not empowered
to support the product not just with knowledge and
enthusiasm, but also with resources to support the
product’s transition, operation, and maintenance.
Most of the products, which got delivered after the
first year, did not see operation in the USC Library.

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–75 71

During the second-year projects, the transition of
the projects became our top criterion for selecting
projects. From the five projects we constructed in the

Ž .second semester of the second year , three were
transitioned into library operations, and the other two
have good prospects for transition after ongoing
refinements are completed.

3.6. Documentation

The first year, we structured the teams around the
main deliverables of the LCO and LCA milestones
—the documentation. We found, however, that this
had a major risk associated with it; that of inconsis-
tency. If each person in the team is given primary
responsibility in creating one document then the
team members must spend considerable time talking
to each other to make sure their documents are
consistent.

We found the concept of primary responsibility to
work well enough to continue it in the second year,
however, we realized that we had to ensure that the
conceptual integrity of the documentation is main-
tained in the process. This was one of the reasons
why we introduced ARBs during the LCO and LCA.
We also required the teams to post their documents
on the class Web site a week before the ARB
reviews. However, we found that the documentation
guidelines we provided were redundant, causing un-
necessary efforts in trying to keep them consistent.
We therefore restructured the document guidelines to
reduce duplication, and also to adapt them for use
with UML. The results can be seen in Table 5. We
successfully reduced the document specification size
by an average of 30–35%.

3.7. Data gathering

Improving the process, as it was described in the
items above, was done to a good part so that addi-
tional or more precise metrics could be gathered
throughout the second development life-cycle. The
following describes the improvements in the metrics
gathering process:
Ø Model and tool support was available for many

life-cycle activities. Thus, information about their
Ž .usage were captured e.g. Rational Rose

Ø Weekly effort metrics were also gathered in the
Žfirst semester we had previously only gathered

.them during construction
Ø COTS related questionnaires to analyze the cost

and effort impact of Commercial-Of-The-Shelf
Ž .COTS products were added. This was possible
since many teams incorporated COTS products

Žinto their designs e.g. the USC Library informa-
.tion system—SIRSI .

Ø Better structured student critiques and customer
questionnaires because looking at first years ques-
tionnaires we found that there were some issues
we would have liked to have feedback from all
clients and students.

4. Improving the improvements

For the third year, we refined some of the issues
we had discussed above. Particularly, we focused a
lot of our attention onto the LCOrLCA documenta-
tion set again since we continued to experience
critical consistency problems. Thus, we took the
documentation guidelines and revised them very ex-

Table 5
Project characteristics

Project characteristics 1996–1997 1997–1998 1998–1999

Architecture teams 15 16 20
Applications architected 12 15 17
Applications developed 6 5 6
Applications transitioned 1 3–5 NrA
LCO Spec pages 160 110 114
LCA Spec pages 230 154 NrA
Application types Multimedia Multimedia, text archives, Multimedia, text archives,

ref. service, infrastructure ref. service, infrastructure

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–7572

tensively in two ways. First, we elaborated in detail
what is expected of each document all the way down
to subsections. Second, we created a sample applica-
tion which fitted into guidelines. For that sample
applications, we modified one of our better projects
of year two, the Hancock Museum Virtual Tour
project.

The latter, although challenging, was not the real
problem. The problem was to come up with a well
integrated and detailed set of document guidelines.
For one, if we would have just added needful things
to our documentation guidelines, we would have run
the risk of creating a document-centric development
approach which would consume more development
time than necessary in creating and maintaining doc-
uments—a luxury we did not have or need. On the
other hand, if we would not have described our
approach in enough detail, we could never have
expected that all our development teams could fol-
low it. We ended up describing why and what is
needed for each section and in case it differed,

Ždescribing the intended audiences, the creators par-
.ticipants , high level dependencies with other parts

of the documentation, and the tool support. We hope
we found a reasonable compromise, but we will only
know once this year’s projects have been evaluated.

Another deficiency we would like to improve is
our ability to make more accurate schedule estima-
tions. As mentioned before, our teams use CO-

Ž .COMO Constructive Cost Model to plan and to
track their projects. The accuracy of COCOMO can,
however, be improved considerably if we could tai-
lor it towards the library domain. In doing so we
found that we did not gather all necessary data. This
problem is being addressed this year and we hope
what we can provide a calibrated version of CO-
COMO for next year. A major challenge with respect
to that is also the issue of process maturity. Which
CMM Level is ‘our organization?’ Obviously, we
are doing many things which are required by various
key process areas of the CMM, even process im-

Ž .provement level 5 itself as this work shows. But
does this mean that our development teams are CMM
Level 5? This is probably not the case since we are
not doing all required activities of the CMM. The

Ž .reasons for that are two fold: 1 we cannot teach the
student everything in software engineering plus do-
ing an elaborate project in only two semesters time

Ž .and 2 our projects team sizes are rather small with
an average of five people per team and, thus, some
activities of the CMM are not as important as others.

5. Integrating product and process

In optimizing the WinWin development process
we are more and more confronted with the fact that
just having a process is not enough. For one, we do
not know how rigorous our students follow that

Žprocess, and even if they do, our process like many
.others is not addressing another important aspect of

w xsoftware development. As Nuseibeh 17 wrote, ‘‘the
incremental development of software systems in-
volves the detection and handling of inconsis-
tencies.’’ Obviously our process is able to handle

Žchanges this is what the spiral model is know for in
.the first place but nothing in the process model

actually addressed how one can do this. When we
talk about integrating process and product, we want
to do this for two reasons:
1. To automatically find inconsistencies in the prod-

Ž .uct e.g. does not conform to requirements and in
Žthe process e.g. actual process did not follow

.planned process .
2. To guide the developer, which implies that the

process is able to adapt itself based on the state of
the product. So, for instance, if an inconsistency
in the product is encountered, the process could
suggest options on how to resolve it.
To address this problem, we are also extending

our models. The most significant result, so far, has
been the consolidation of many of our models into
an integrated conceptual model called MBASE
ŽModel-Based Architecting and Software Engineer-

. w xing 11 .
The MBASE model concentrates on avoidance of

model clashes between process model, success
model, product model, and property model. Fig. 4
shows an excerpt of the process on how to get to the
LCO milestone starting from the domain description
and describing the dependencies of intermediate pro-
cess stages. For instance, the WinWin negotiation
model needs a WinWin Taxonomy and the Stake-
holders’ win conditions as input and delivers the
WinWin Agreements as an output. The Agreements
in turn may be used to create a variety of documents,
such as the Requirements Document and so forth.

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–75 73

Fig. 4. Detailed process for LCO stage.

To make MBASE work and to truly create an
integrated model, we have to do more than just
providing a process model; we need to be somehow
able to integrate development models in general.
Take, for instance, the documentation issue we dis-
cussed above. We mentioned that we are encounter-
ing problems when it comes to the conceptual in-
tegrity of the documents. This is partially because
they are developed concurrently by a number of
people and it is partially because sometimes they are
not clear what they mean and what they are for. The
latter could be a problem related to the former since
the wrong person could be working on the document.

Yet another problem is the redundancy between
those documents. We had mentioned that it is our
goal to minimize the redundancy but it is impossible
to eliminate it. The reason for that is simple—each
document needs to be independent enough so that it
makes sense on its own and can be read indepen-
dently without having to jump between documents.
On the other hand, we could create those documents

Ž .using hypertext and the World-Wide-Web WWW
and this way we would avoid duplicating the same

information for the most part. However, the result
may be hundreds if not thousands of little clusters of
information, which are somehow glued together but
impossible to read in sequence.

A possible way of solving this problem is empha-
Ž .sizing model-based development as in MBASE .

We are moving towards using the MBASE document
model to store those little clusters of information and
on top of it to define views, e.g., the Requirements
document view, which use pieces of this model. This
way the reader would get the impression that he or
she is reading a standalone document. Changes,
which could be done in the model itself or in any of
its views, could then be automatically propagated
across all other views. This form of model-based

Ždevelopment may look as depicted in Fig. 5 see also
w x.Ref. 13 .

As can be seen in Fig. 5, views are nothing more
than abstractions of relevant information from the
system model and they present those bits of informa-

Žtion in some meaningful way to the user developer,
.customer, etc. . Thus, when we talk about the need

for tightly coupled views we are really talking about

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–7574

Fig. 5. Model-based development.

the need of having an integrated model which is
adequate in representing those views. The stakehold-

Ž .ers e.g. developer or customer can then derive
Ž .views e.g. requirements document from that model,

fill in the missing blanks, and reconcile the changes
with the model. This means that all information
about a software system is captured with as little
redundancy as possible in the model, even though,
the views, which are derived from that model, may
repeatedly use the same information and, thus, may
exhibit redundancy. In that respect we are talking of
the model as being a View Independent Representa-
tion. We are exploring this form of the view integra-
tion problem with particular emphasis on software

w xarchitectures and UML in Ref. 13 .

6. Conclusions

Our collaboration with the Library continues to be
very beneficial for us all in developing and evaluat-
ing new ideas. We are currently involved in observ-
ing this year’s students so that we may yet improve
the process a bit further for next year. To some
degree, we need to adapt and refine our existing
process but we also need to integrate our models
more tightly as described above. Next to that, we
also see the following areas as equally rewarding
topics for us to explore further.

. Combining the Best of Standards: Our original
standards were closely tailored to DoD standards
Ž .e.g., DoD 498 . We are now involved in integrating
new standards such as the IEEErEIA 12207.1-1997
w x15 into our process model.

. Product Lines: Since most of our projects are
in the library domain we would like to gain better
insights on how to reuse components or even on how
to reuse entire application frameworks. This would
enable us to use some teams in the future to provide
some form of product line support for other teams.

. w xIntegrating the Rational Unified Process 16
w xand the Unified Software Management 20 into our

modelrprocess.
The library projects were and will continue to be

a testing field for these kinds of improvements. We
are further collaborating with other Universities such

Ž .as George Mason University USA and Johannes
Ž .Kepler University Austria who have adopted some

of our concepts. This will enable us to learn more
about how our process works in other domains—and
other cultures. We also see this testing field as an
effective way of convincing our affiliates and the
software industry in general of the usefulness of our
models since we are able to show their effectiveness
in a very realistic project environment.

Acknowledgements

This research is sponsored by DARPA through
Rome Laboratory under contract F30602-94-C-0195
and by the affiliates of the USC Center for Software
Engineering: Bellcore, Boeing, Electronic Data Sys-
tems, FAA, GDE Systems, Hughes Aircraft, Institute
for Defense Analysis, Litton Systems, Lockheed
Martin, Loral Federal Systems, Lucent, MCC, Mo-
torola, Network Programs, Northrop Grumman, Ra-
tional Software, Raytheon, Science Applications In-
ternational, Software Engineering Institute, Software
Productivity Consortium, Sun Microsystems, TI,
TRW, USAF Rome Laboratory, US Army Research
Laboratory, and Xerox. We also thank Marwan Abi-
Antoun, Julie Kwan, Ray Madachy, Dan Port, and
Archita Shah for support in key areas.

References

w x1 AT&T, Best Current Practices: Software Architecture Valida-
tion, AT&T, Murray Hill, NJ, 1993.

w x2 V.R. Basili, R.W. Selby, D.H. Hutchens, Experimentation in
Software Engineering, IEEE Transactions on Software Engi-
neering, July 1986, pp. 733–743.

()B. Boehm, A. EgyedrComputer Standards & Interfaces 21 1999 63–75 75

w x3 B.W. Boehm, Software Engineering Economics, Prentice-
Hall, 1981.

w x4 B.W. Boehm, A spiral model of software development and
Ž . Ž .enhancement, Computer 21 5 1988 61–72.

w x5 B.W. Boehm, P. Bose, A Collaborative Spiral Software
Process Model Based on Theory W, Proceedings, 3rd Inter-
national Conference on the Software Process, Applying the
Software Process, IEEE, Reston, VA, October 1994.

w x6 B.W. Boehm, P. Bose, E. Horowitz, M.J. Lee, Software
Requirements as Negotiated Win Conditions, Proceedings of
ICRE, 1994, pp. 74–83.

w x7 B.W. Boehm, Anchoring the software process, IEEE Soft-
Ž . Ž .ware 13 4 1996 73–82.

w x8 B.W. Boehm, A.F. Egyed, J. Kwan, R. Madachy, D. Port, A.
Shah, Using the WinWin Spiral Model: A Case Study, IEEE
Computer, July 1998.

w x9 B.W. Boehm, A.F. Egyed, Improving the Life-Cycle Process
in Software Engineering Education, Proceedings of the First
European Software Day, 24th Euromicro Conference, August
1998.

w x10 B.W. Boehm, A.F. Egyed, D. Port, A. Shah, J. Kwan, R.
Madachy, A Stakeholder Win–Win Approach to Software
Engineering Education, Annals of Software Engineering,
1999, to appear.

w x11 B.W. Boehm, D. Port, Conceptual Modeling Challenges for
Model-Based Architecting and Software Engineering
Ž .MBASE , Proceedings, Symposium on Conceptual Model-
ing, Springer-Verlag, 1998.

w x12 G. Booch, I. Jacobson, J. Rumbaugh, The Unified Modeling
Language for Object-Oriented Development, Documentation
set, version 1.0, Rational Software, 1997.

w x13 A.F. Egyed, Integrating Architectural Views in UML, Quali-
fying Report, University of Southern California, Center for

Ž .Software Engineering, Los Angeles, CA, 1999 to appear .
w x14 T.P. Frazier, J.W. Bailey, The costs and benefits of domain-

oriented software reuse: Evidence from the STARS demon-
stration projects, IDA Paper P-3191, Institute for Defense
Analysis, 1996.

w x15 IEEE, Industry Implementation of International Standard
ISOrEIC 12207: 1995, IEEErEIA 12207.1-1997, April
1998.

w x16 P.B. Kruchten, The Rational Unified Process, Addison-Wes-
ley, 1999.

w x17 B. Nuseibeh, Computer-Aided Inconsistency Management in
Software Development, Technical Report DoC 95r4, De-
partment of Computing, Imperial College, London SW7 2BZ,
1995.

w x18 M.C. Paulk, C.V. Weber, B. Curtis, M.B. Chrissis, The
Capability Maturity Model—Guidelines for Improving the
Software Process, Addison-Wesley, 1995.

w x19 W.E. Royce, TRW’s Ada Process Model for Incremental
Development of Large Software Systems, Proceedings, ICSE
12, IEEErACM, March 1990, pp. 2–11.

w x20 W.E. Royce, Unified Software Management, Addison-Wes-
ley, Reading, MA, 1998, to be published.

w x21 Software Productivity Consortium, Process Engineering with
the Evolutionary Spiral Process Model, SPC-93098-CMC,
version 01.00.06, Herndon, VA, 1994.

Barry Boehm is the TRW Professor of
Software Engineering and Director of
the Center for Software Engineering at
the University of Southern California.
His current research involves the Win-
Win groupware system for software re-
quirements negotiation, architecture-
based models of software quality at-
tributes, and the COCOMO II cost-
estimation model. Boehm received a BA
in mathematics from Harvard University
and an MS and PhD in mathematics
from the University of California at Los

Angeles. He is an AIAA Fellow, an ACM Fellow, an IEEE
Fellow, and a member of the National Academy of Engineering.

Alexander Egyed is a PhD student at the
Center for Software Engineering at the
University of Southern California. His
research interests are in software archi-
tecture, design, and requirements elicita-
tion. He received a Diplom-Ingenieur in
Informatics from the Johannes Kepler
University in Linz, Austria and a MS in
Computer Science from the University
of Southern California. He is a student
member of the IEEE and the ACM.

