Model/Analyzer: A Tool for Detecting, Visualizing and
Fixing Design Errors in UML

Alexander Reder
Institute for Systems Engineering and
Automation
Johannes Kepler University Linz, Austria

alexander.reder@jku.at

ABSTRACT

Integrated development environments are widely used in in-
dustry and support software engineers with instant error
feedback about their work. Modeling tools often react to
changes at a coarse level of granularity that make reasoning
about errors inefficient and late. Furthermore, there is of-
ten a lack of appropriate visualizations of model errors and
information on how to fix them. This paper presents the
Model/Analyzer tool, an eclipse-based plug-in for the IBM
Rational Software Modeler (RSM). The tool lets software
engineers define arbitrary design rules and provides instant
feedback on their validity in context of a model. Design
errors are then visualized together with the information on
what parts of the model contributed to them and how to fix
them. The tool is fully automated and currently supports
OCL and Java as languages for defining the design rules;
and UML as the modeling language. The main benefit for
the software engineer is the tool’s incremental nature — pro-
viding instant feedback for many kinds of design errors even
for large models.

Categories and Subject Descriptors: 1.6.4 Simulation
and Modeling: Model Validation and Analysis

General Terms: Design, Performance
Keywords: OCL, UML, Consistency Checking

1. INTRODUCTION

To reduce the cost of fixing design errors in software mod-
els, it is important to detect them early in the development
process. Today’s programming environments are efficient in
detecting many/most syntax and semantic errors instantly
during the writing of source code. In model-based develop-
ment such support is rare. Most approaches for detecting
design errors in software models are batch based and require
all design rules to evaluate at once — a computing intensive
problem that is done after long intervals only and typically
generates vasts amount of errors that are hard to associate
to the model changes that caused them. The few approaches
that support incremental error detection in software models
require non-trivial, manual annotations [6] which makes it
difficult for software engineers to use them. This is particu-
larly then a problem when software engineers like to define
application/domain-specific design rules (e. g., derived from

Copyright is held by the author/owner(s).
ASE’10, September 20-24, 2010, Antwerp, Belgium.
ACM 978-1-4503-0116-9/10/09.

347

Alexander Egyed
Institute for Systems Engineering and
Automation
Johannes Kepler University Linz, Austria

alexander.egyed@jku.at

requirements) or like to adapt the semantics of the underly-
ing modeling language.

This paper introduces the Model/Analyzer tool which lets
the software engineer define design rules arbitrarily without
requiring manual annotations of any kind. The tool is im-
plemented as a plug-in for the eclipse based IBM Rational
Software Modeler. The Model/Analyzer is currently able
to handle design rules written in Java and OCL (standard
language without adaptions). The underlying approach for
this tool is presented in [1]. The two main capabilities of
the Model/Analyzer tool are 1) the detection of design er-
rors in UML models and 2) the generation of fixing actions
for eliminating the detected errors — mostly in form of ab-
stract fixing actions (where to fix) [5] and in some cases also
in form of concrete fixing actions (how to fix).

The detection of errors, their visualization, and genera-
tion of appropriate fixing actions is done incrementally and
fully automatically without manual overhead. Design rules
written in OCL are freely adaptable (add, modify/delete)
[3] while the ones written in Java currently need to be com-
piled in. While our tool is implemented for UML models and
OCL/Java design rules, the approach is generic [1, 2] and
does not require annotations (neither model nor rule anno-
tations, in contrast to Xiong et al.[6], where an own, OCL
based language has been developed). The detection of incon-
sistencies and the generation of fixing actions is seamlessly
integrated into the tool, like the approach from Nentwich et
al. [4, 5], but our tool has the ability to 1) detect design
errors very efficiently due to a fine granular understanding
of the impact of model changes on design rules and 2) its
generated fixing actions are very precise due to tailoring to
specific inconsistencies based on the rule structure.

The Model/Analyzer tool has been evaluated on 24 UML
models ranging from 100 model elements (small) to tens
of thousands of model elements (very large) and 18 design
rules. We demonstrated that our tool has near-instant re-
sponse times and scales with the size of the model — both
for detecting design errors and generating fixing actions.

2. TOOL AND EXPERIENCES

The core component of the Model/Analyzer is the evalua-
tion mechanism for the design rules. A design rule is a condi-
tion on a model that needs to be satisfied for the model to be
correct. Each design rule has to be defined for a specific con-
text, to which the design rule applies. For example, a design
rule that ensures that messages in a sequence diagram are
declared as methods in their corresponding class diagrams
needs to be evaluated for every message in a model — hence

File Edit Diagram Navigate Search Project Model Analyzer Run Modeling Window Help

23 *LightSwitch.emx | 1) *Main 52

Ciswiteh | -tof =59 | Tyt have te aperations ‘civate! and deactvate
o ‘acivate) and

s
seif getAllOperations (-> exists(name='deactivate)}

o um-on ()
452 deactivate ()

st di (/] Switch the light

@on

deactivate lamvale

@on

& switch:switch] lightLight

lacivate |

2: deactivate

<

{3) Design Rules 82 . {7} Fixing Actions| ¢ Design Rule Instances

“ v D Overview

= Name = CO1

« [Design Rules
23 BOT > parent class should not have an attribute referring to a child class
{2 BO2 > parent class should not have a method with a parameter refering to a child class

727 CO1 —> Message action must be defined as an operatian in reciever's class = OCL Design Rule =

{2} CO2 --> Message diraction must match class association ~ [Rule Instances

2} C04 > Statechart action must be defined as an operation in owner's class 5 CO1_Messagelmpl.a

7} Model Rules —-> Design rules defined in the model :

B C

2
<

0

{7} Design Rules | {7} Fixing Actions | ¢ Design Rule Instances £3

~ [Overview
1 Name = CO1_Messagelmpl. activate
£ Evaluation Result = INGONSISTENT
~ [Design Rule
{2) CO1 > Message action must be defined as an operation in recie

-

&
L
&
L
L
&

<

{7} Design Rules | {7} Fixing Actions &3

+ [Design Rule Instances
301_Class!

£ Scope Elements
(e] Messagelmpl.activate[name]
€] Messagelmpl.activate[receive Event]
(& M O
(&) Lifelinelmpl.light[represants]
(] Propertylmp.light[type]
(2] Classimpl.LightjawnadOperation] @

4 Design Rule Instances

> Madify (MODEL) [element] [from] [to]
> Add (MODEL) [into] [element]

~ Madify (RULE) [element] [from] [to]
‘temp2.name.=(m)’

Impl.Light

e

v Madify (MODEL) [element] ffrom] [to]
* Operationimpl.tum-onfname]’
tum-on’

| Transitionlmpl.activats --> IN activate’
v Madify (MODEL) [element] ffrom] [to]

- * Messagelmpl activate[name]

_Transit

mpl. deact

onlmpl.null

Figure 1: Views of the Model/Analyzer in the Rational Software Modeler

its context element is the UML message (a type of model el-
ement). For each message in the model an instance of such
a design rule is created and evaluated (called rule instance).
During each evaluation of a rule instance, the accessed model
elements and its fields are observed and recorded - called the
scope of a rule instance. This information is then used to
identify how model changes affect the design rules. The
key to incremental reasoning is the observation that only
those rule instances need to be re-evaluated that previously
accessed the changed model element. Since our approach
investigates each evaluation of a rule instances separately,
it is able to determine the exact impact of a model change
for individual instances of design rules which greatly reduces
the computational overhead.

Fixing actions are generated based on the structure of the
violated design rule. If an error is found, the rule is parsed
to understand the individual expressions it is made of and
how these expressions contributed to the error. Note that
design rules are generally written in a style that is similar
to predicate logic and involves expressions such as not, and,
or, implies, forall, exists, or property and operation calls of
model elements. To determine what parts of the design rule
contributes to the error, the Model/Analyzer tool evaluates
all expressions individually to compare their (intermediate)
results with their expected results. The result of the parsing
and evaluation of its individual expressions is a tree which
we call the evaluation tree. In essence the evaluation tree
reflects the evaluation of an inconsistency with all its in-
termediate evaluation results and expectations. Out of this
tree, the fixing actions are generated for those expressions
where the evaluated result does not match the expected re-
sult — a very fine granular and precise approach that avoids
false fixing actions.

Figure 1 depicts a screen shot of the modeling tool. The
center shows the created model and is the default perspec-
tive of the RSM. Below the main window are the additional
views added by the Model/Analyzer tool. The first view
shows the freely definable design rules. The left side of that
view lists currently defined design rules and the right side the
details for a specific design rule. In this view, design rules
are managed (added, removed and modified) although it is
also possible to add/remove design rules for specific model

348

elements directly in RSM (see Figure 1 center, right of the
class Light). A new design rule is evaluated immediately af-
ter its definition and the result of its evaluation is visualized
in the corresponding views and in the model. Subsequent
model changes are then evaluated incrementally.

The right side of Figure 1 shows the views for the rule
instances and the generated fixing actions. On the left side
of these views, the rule instances and their evaluation results
are shown. The right side of the rule instance view shows a
short description of the rule, the corresponding design rule
and lists all the scope elements of this rule instance. The
view for the fixing actions shows the action for a particular
inconsistency. The fixing actions are depicted hierarchically
as it may contain a list of alternatives and conjunctions.
Three categories of actions are generated: Actions that are
independent of the design rule structure (trivial actions),
actions on the model (model actions), and actions on the
rule (user definable rules my be erroneous much like model
elements).

3. ACKNOWLEDGMENTS

This work was supported through the generous support of
the Austrian FWF under grant P21321-N15.

4. REFERENCES

[1] A. Egyed. Instant consistency checking for the UML. In L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, editors, ICSE, pages
381-390. ACM, 2006.

A. Egyed. UML/Analyzer: A Tool for the Instant Consistency
Checking of UML Models. In ICSE, pages 793-796. IEEE
Computer Society, 2007.

I. Groher, A. Reder, and A. Egyed. Incremental Consistency
Checking of Dynamic Constraints. In D. S. Rosenblum and
G. Taentzer, editors, FASE, volume 6013 of Lecture Notes in
Computer Science, pages 203-217. Springer, 2010.

C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein.
xlinkit: A Consistency Checking and Smart Link Generation
Service. ACM Trans. Internet Techn., 2(2):151-185, 2002.
C. Nentwich, W. Emmerich, and A. Finkelstein. Consistency
Management with Repair Actions. In ICSE, pages 455-464.
IEEE Computer Society, 2003.

Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei.
Supporting automatic model inconsistency fixing. In H. van
Vliet and V. Issarny, editors, ESEC/SIGSOFT FSE, pages
315-324. ACM, 2009.

(2]

	Introduction
	Tool and Experiences
	Acknowledgments
	References
	References

