
Maintaining Life Perspectives During the
Refinement of UML Class Structures

Alexander Egyed1, Wuwei Shen2, and Kun Wang2

1 Teknowledge Corporation, 4640 Admiralty Way,
Suite 1010, Marina Del Rey, CA 90292, USA

aegyed@teknowledge.com
2 Dept of Computer Science, Western Michigan University, USA

{wwshen, kwang}@cs.wmich.edu

Abstract. Models provide an alternative perspective for the under-
standing of a software system. However, models reflect the state of the
system at the time of their creation (or last updating) but they do not
reflect intermediate changes during the system’s evolution. Depicting
perspectives without showing changes is like watching a movie through
a small set of still pictures (i.e., no motion). This paper demonstrates
this problem on an existing technique for the automated simplification
(abstraction) of class diagrams. We will show that it is computationally
feasible to maintain a set of abstract perspectives of a class structure such
that evolutionary changes to the class structure are instantly perceived
through its perspectives. For developers, this provides the ability to un-
derstand changes to systems from the modeling perspectives they care
about. It also gives the developers the confidence that their modeling
perspectives remain up-to-date with the system even while the system
evolves.

1 Introduction

Software is more than source code and software development is more than pro-
gramming. Software development generates and maintains a wide range of arti-
facts, such as documentation, requirements, or design models; all of which are
valuable to the understanding of a software system. These artifacts help devel-
opers in understanding the software system through different perspectives (i.e.,
representing different goals or problems). In doing so, these perspectives empha-
size certain development concerns and ignore others that are momentarily not
of interest. For example, the design is an abstraction of the implementation and
it often omits language-specific programming details that are not necessary to
the understanding of the system. Our notion of perspectives is similar to the
notion of views, however, a view typically hides parts of a model whereas our
perspectives interpret the hidden information.

Perspectives separate concerns and thus cope with the complexity of soft-
ware development. Perspectives reduce the complexity of software development

M. Cerioli (Ed.): FASE 2005, LNCS 3442, pp. 310–325, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Maintaining Life Perspectives 311

as they limit the amount of information the developers have to be aware of at any
given time (i.e., instead of having to understand the entire system, developers
only need to understand the perspectives). In this paper, we discuss perspectives
of UML (v1.3) class structures [14]. With modern software systems becoming in-
creasingly complicated, developers can easily lose their vision of the structure
of the system while diving into the implementation details. It is thus common
practice to retain abstractions of the class structure (sometimes referred to as
higher-level designs or architectures [15]). These higher-level perspectives typi-
cally represent snapshots of the lower-level design, omitting lower-level details.
It is not uncommon to retain different perspectives of the same lower-level de-
sign, to, say, represent different requirements, development concerns, or aspects
(aspect oriented software development [11]).

While developers derive tremendous value from perspectives, they are not
free. There is a cost in creating perspectives and a cost in maintaining them
(i.e, new or changing goals or needs [4]). If a perspective cannot be updated
promptly based on the changes made in a software system then the perspective
no longer correctly reflects the system. This lack of correctness may then mislead
developers.

Like many others [5, 12], we have investigated techniques for creating and
maintaining perspectives. This paper builds on one such technique for the au-
tomated class abstraction [7]. This technique simplifies (=abstracts) UML class
structures where developers can decide which classes to keep and which ones to
temporarily “hide.” This technique solves a range of concerns that will be dis-
cussed in Section 2. For example, the hidden classes have to be reinterpreted in
terms of their effect on the remaining, non-hidden classes. Our technique has the
benefit that developers may derive perspectives when they are needed. However,
our technique does not maintain the correctness of the perspectives thereafter
(i.e., during evolutionary changes). Of course, perspectives could be recreated
instantly after design changes but this is computationally infeasible because class
abstraction is not cheap computationally, there are potentially many perspec-
tives, and iterative software development [4] encourages changes to be frequent.
Relatively minor but frequent changes thus lead to costly re-transformations.

As an alternative, this paper discusses on how to efficiently update perspec-
tives by only propagating changes (additions, removals) [3]. This paper thus
contributes a technique for the instant and incremental abstraction of class struc-
tures to keep perspectives up to date continuously at a low cost. It works on the
same rules as the original abstraction technique (batch abstraction) but it only
updates changes. That is, any change to the system is evaluated in terms of its
impact onto all perspectives. The change is then propagated to every perspective
separately such that only those parts of the perspectives are updated that have
changed.

This paper also contributes a new philosophy to working with perspectives.
Since the perspectives are updated instantly, they provide developers with an
instant understanding on the high-level effect(s) of their changes. Developers now
instantly become aware about the impact of their low-level changes in context



312 A. Egyed, W. Shen, and K. Wang

of the perspectives they care about. Previously, this could only be done after a
costly batch re-abstraction and comparison. Even then, it was often not possible
to tell exactly what had changed (e.g., if the name of two classes are swapped
then an after-the-fact comparison might confuse this with the movement of its
relationships).

This paper is organized as follows: Section 2 defines perspectives for class
abstraction and provides background for generating them automatically. Sec-
tion 3 discusses our approach to the incremental and instant class abstraction.
Section 4 shows results of several case studies. Finally we draw our conclusions
in Section 5.

2 Background

2.1 A Need for Perspectives

Fig. 1 shows a class diagram of a simplified hotel management system (HMS)
taken from [7]. The role of the HMS is to provide support for hotel reservations,
check-in/check-out procedures, and associated financial transactions. The class
diagram depicts details on how a guest is a person (inheritance), how every
person has an account or how payment and expense transactions are associated
with accounts.

ExpensePayment

Person

Transaction

is-ais-a

Account0..1

1..n

0..1

0..n+transactions 0..n

+account

Reservation

Hotel

0..n0..n
Room

0..n0..n

Guest
is-a

0..n

1..n

has_reservation0..1

0..n

0..1

0..n

stays_at

Class Diagram

Fig. 1. Refinement of a Class Structure

While this class diagram is simple enough for human comprehension, we
have worked with class diagrams that include thousands of classes and many
more relationships [13]. It is impossible for humans to comprehend such class
structures and developers resort to abstraction as a means of coping with this
complexity. Abstraction depicts a class structure from a particular point of view,
concern, requirements, or other form of interest. We refer to such an abstraction
as a perspective of the class structure. Fig. 2 depicts four such perspectives of
the class structure in Fig. 1.

Naturally, the perspectives in Fig. 2 are class structures themselves albeit
simplified ones. A trivial form of a perspective is to represent a subset of the
class structure only. For example, Fig. 2 (a) simply depicts the classes Guest,



Maintaining Life Perspectives 313

Reservation, and Hotel (and their relationships) from Fig. 1 by omitting all
other classes and their relationships. These forms of trivial “perspectives” (i.e.,
sometimes referred to as views) are supported in many modeling tools, i.e., in
form of diagrams. Yet, it must be understood that deriving perspectives is not
just about eliminating details but also about re-interpreting the hidden details.
For example, Fig. 2 (b) depicts the classes Guest, Payment, and Expense (as
taken from Fig. 1) but it also depicts relationships among these three classes that
are not to be found in Fig. 1. These relationships are the abstract interpretation
of the hidden information. Fig. 2 (c) and (d) depict yet other perspectives that
“slice” across the classes in Fig. 1. Clearly, there are a range of benefits associated
with working with perspectives. Each perspective is easier to understand than
the original class diagram.

Guest may have Payment or Expense Transactions

ExpenseGuest

0..n0..n

Payment0..n0..n

Reservation may involve several
Guests but only one Hotel

Guest may have one Account

Account

0..10..1

Guest

Hotel

Reservation

(a)

(b)

(c)

Guest

Hotel

Guest

0..n

0..n

0..n

0..n

reservation_for

0..1

0..n

stays_at

Guest may have a
reservation for a
hotel and/or stay

at hotels

(d)

Fig. 2. Perspectives of the HMS system

Yet, without instant and incremental abstraction, it would be computation-
ally infeasible to maintain these perspectives consistent with the system while
the system evolves. That is, a change in Fig. 1 instantly renders all perspec-
tives obsolete unless this change is propagated to all affected perspectives. Such
propagation has the benefit that the perspectives continue to reflect the system
accurately (i.e., important for decision making); and it has the benefit that the
developers understand their system change(s) in terms of its impact onto the
various perspectives. For example, if the cardinality from Person to Account
changes from 0..1 to 0..n in Fig. 1 (i.e., a person may have many accounts and
not just one) then which perspectives need updating? Does this change affect the
Guest-Payment relationship in Fig. 2 (b)? Or does it change the Guest-Account
relationship in Fig. 2 (c)?

2.2 Automated Abstraction

We previously developed a transitive reasoning technique in collaboration with
Rational Software [10]. The technique takes arbitrary complex class structures
and infers transitive relationships among its classes. A transitive relationship is
the semantic equivalent of a collection of normal relationships. For example, if



314 A. Egyed, W. Shen, and K. Wang

(1) A B C A C

(4) A CB CA

(5)
B C CAA

B C CAA(28)

(36) A A CA A CCB CB

(50) C CAA B

(63) C CABA

(68) A B C A CC A CBA

(70) A A CCB CBA A C

CA B CA

(118)

(81)

A A CA CCB CBA(83)

C CABA

Input Pattern Output Pattern

Fig. 3. Subset of Transitive Abstraction Rules for UML relationships [6]

A calls B and B calls C then, transitively, A calls C. Transitive relationships are
thus indirect relationships between classes.

A transitive relationship is always the result of a collection of direct relation-
ships. By composing the properties of a collection of direct relationships one can
infer properties of the transitive relationship. Properties of relationships include
the direction of the call, the type of relationship, or the cardinality of association
ends. If, say, two relationships have the same type and the same calling direc-
tion then transitively the two relationships can be composed into a single one
of the same type and direction (see Rule 70 in Fig. 3). Transitive relationships
are thus a form of abstraction where the transitive relationship is semantically
equivalent or weaker (less constrained) than the direct relationships it composes.
Fig. 3 gives an excerpt of about 121 transitive relationships defined in [6]. For
instance, rule 1 states that if A inherits from B and B inherits from C (input
pattern) then, transitively, A inherits from C (output pattern). Or Rule 118
states that if C depends on B, A is a part of B (diamond head), and A is called
by B (arrowhead) then, transitively, C depends on A.

The given transitive abstraction rules are simple in nature. Most rules de-
scribe a collection of two input relationships that are composable into a single
output relationship (or not composable if the output pattern does not have a
relationship). What makes this abstraction technique powerful is the large num-
ber of simple rules (121 rules for three types of class relationships and various
properties). Given the simplicity of the rules, the abstraction algorithm is fast
(see empirical studies in [6]); however, at the expense of precision. UML rela-
tionship semantics are not well-treated in the current UML specification which
may lead to uncertainties during transitive reasoning (e.g., A calling B and B



Maintaining Life Perspectives 315

calling C may not imply A calling C always; see validation in [6]). While we
cannot guarantee the correctness of all abstraction results, we found that we can
guarantee completeness. That is, the lack of an abstraction result true means
that there is no transitive relationship. Furthermore, validation showed that it
was a two-orders of magnitudes (100 fold) saving in checking the correctness of
abstraction results manually versus having to abstract by hand.

As input, the algorithm takes an arbitrary complex class structure and a list
of “important classes”. The list of important classes emphasizes the classes that
should not be hidden. In Fig. 3, the classes A and C are important and the
class B is not important as it gets replaced (together with its relationships) by
a higher-level relationship. A human has to make the decision what classes are
important as it depends on the circumstances and usage of the perspectives.

Important classes are not used for transitive reasoning during abstraction.
They remain untouched during abstraction but their relationships to other,
important classes are derived through transitive reasoning by hiding and re-
interpreting unimportant classes (=helper classes). Fig. 4 shows the use of tran-
sitive reasoning in understanding the relationship between the important classes
Guest and Payment (from Fig. 1). Although the two important classes are not
directly related to one another, a transitive relationship can be derived by elim-
inating the helper classes Person, Account, and Transaction. Fig. 4 shows that
the application of Rule 4 eliminates the class Person, the subsequent application
of Rule 70 eliminates the class Account, and, finally, rule 28 eliminates Trans-
action. This results in an incremental abstraction where the previous result is
then abstracted further if needed. The resulting abstraction is depicted in the
bottom of Fig. 4. It depicts the two untouched, important classes and a single
relationship between them that is semantically equivalent to the now-hidden
helper classes.

Guest PaymentPerson Account Transaction

Guest' Payment'Transaction'Account'

Payment''Guest'' Transaction''

Payment'''Guest'''

rule 4

rule 70

rule 28

Fig. 4. Transitive Relationship between Classes

In summary, transitive reasoning merges low-level classes and relationships
into higher-level relationships. This form of abstraction is necessary in cases
where lower-level classes are the result of refining a relationship. For instance,
the low-level class Account is important for implementing the HMS system but
it is not needed on a higher-level abstraction to convey the point that a guest
may have payment transactions. The class was thus hidden together with other



316 A. Egyed, W. Shen, and K. Wang

classes and the hidden information was then re-interpreted through higher-level
relationships. It is also possible to merge classes into higher-level classes (instead
of relationships) and our approach is capable of doing so but its discussion is
not of importance in this paper [8].

In the remainder of the paper we refer to the class structure in Fig. 1 as the
design and to the abstractions in Fig. 2 as the perspectives. Abstraction assumes
the existence of the design and a list of important classes in order to compute
perspectives. The design and list of important classes must be provided by the
developer.

3 Approach

Automated abstraction gives the developer the ability to create one perspective
at a time. This perspective is then consistent with the design (assuming the
rules for abstraction are accurate) but any change to that design may render any
and all perspectives obsolete. Naturally, developers may re-compute perspectives
to make them consistent again; however, many automated techniques, such as
ours are computationally not cheap. It is thus infeasible to update perspectives
continuously while the design changes.

This paper extends our previous work through incremental abstraction. In-
stead of updating perspectives in their entirety (batch abstraction), we only
update changes. The basic goal of our approach is depicted in Fig. 5. Incremen-
tal abstraction understands both the design and its perspectives such that it
can reason about a change in the design in terms of its impact onto the per-
spectives. It then updates the perspectives by deleting obsolete information or
adding new ones. Compared to the abstraction of entire perspectives, we find
this incremental approach to be much more efficient.

perspective 1 perspective 2 perspective n...

design
(class structure) is there a change?

if yes, where?

how does this change affect
perspective 1? how does it

affect perspective 2, ...?

Fig. 5. Instant and Incremental Abstraction to maintain the Consistency between a
Design and its Perspectives

Incremental abstraction is a two-step process in that one has to understand
1) when and where changes happen in the design (class structure) and 2) how
such changes affect the given perspective(s). While a change to the design is a
constant, its impact is dependent on the particular perspectives at hand. This
section explores these two issues and discusses our solution.



Maintaining Life Perspectives 317

3.1 When and Where Changes Happen

To understand when and where changes happen in a design, we need to instru-
ment its drawing tool (e.g., the design capture tool). Of interest is information
about the creation, modification, and deletion of classes, their relationships, and
associated properties (e.g., methods, attributes). This task is only moderately
complex if the source code of the drawing tool is available. However, we previ-
ously demonstrated a capability for “spying” into commercial-off-the shelf tools
to elicit these kinds of information [9]. In particular, we demonstrated on IBM
Rational Rose [1] and Matlab/Stateflow [2] how to convert low-level keyboard
and mouse events into the kinds of events discussed above (e.g., class creation,
renaming, and relationship moving).

This technology has been published in [9] and is not described in more detail
here aside to say that we have built a tool support, called the UMLInterface,
that enables us to use the commercial tool IBM Rational Rose as a drawing tool
for class structures and is able to observe developer changes. Fig. 6 depicts the
architecture of our tool schematically where design changes from inside Rose
are forwarded to our abstraction tool, which then responds by updating the
perspectives in Rose. It is important to note that Rose maintains both the design
and its perspective(s) and our tool simply propagates the changes. Therefore,
all the visible activities happen inside Rose and the developer is never aware of
our tool.

IBM Rational Rose

UML Interface

Instant & Incremental
Abstraction Toolchanges

updates

Fig. 6. IBM Rational Rose and the Instant & Incremental Abstraction of Changes

Since Rose is used as both a design drawing tool and a perspective visual-
ization tool, we had to define logical structures for separating them. We also
had to define a way for developers to designate “important classes.” Recall from
Section 2 that perspectives must define lists of important classes. We found a
way of capturing this information inside Rose. However, these details are not
discussed here as they do not contribute to the main topic of this paper.

3.2 How Changes Affect Perspectives

Incremental abstraction assumes the existence of a design and its perspectives.
Changes to the design then cause updates to the perspectives. This approach
assumes that perspectives are initially consistent with the design. The change
to the design then causes an inconsistency and the simple propagation of the
change is sufficient to re-establish consistency. However, there are situations



318 A. Egyed, W. Shen, and K. Wang

Table 1. Perspective Changes in Response to Design Changes

PerspectiveImpact of design onto
Class Relationperspectives

Add Remove Add Remove
Add no no no no

Remove no yes no yesClass
Upgrade yes no yes yesDesign

Downgrade no yes yes yes
Add no no yes noRelation

Remove no no no yes

where it is incorrect to assume initial consistency. For example, if a developer
loads an existing class diagrams then we need to ensure initial consistency by
abstracting all perspectives in their entirety. We refer to this process as the initial
batch abstraction which is, in our case, the same as the normal class abstraction
discussed in Section 2.

After the initial consistency between design and perspective is ensured, a
change to the design requires no more than the abstraction of the change to
again guarantee consistency. The kinds of changes in a design made by developers
during software include: adding a class, removing a class, upgrading a class in
a design from a helper class to an important class and downgrading a class
(there are also other changes but are not discussed here). Table 1 depicts design
changes in the rows. In response to a design change, the perspective may change
by adding/removing classes and adding/removing relationships. Table 1 depicts
these perspective changes in the columns.

We do not have a mechanism to prove the consistency between the batch
transformation and incremental transformation. Thus, we tested batch abstrac-
tion and incremental abstraction concurrently such that we could compare dif-
ferences. Fortunately, changes in the design have limited ways on how they affect
a perspective. The fields in Table 1 indicate what kinds of perspective changes
are caused by what kinds of design changes. For example, removing a class from
the design may remove classes and/or relationships from the perspective (e.g.,
if the class was important then the perspective may loose a class; if the class
was unimportant then the perspective may loose relationships). It is interest-
ing to observe that class and relationship changes in the design have few effects
onto the perspectives but class upgrades/downgrades are more complex. Table
2 summarizes and discusses these impacts in more detail.

Changing a Class in the Design
Adding a new class to a design does not add any new relation to that design.
Therefore the perspective remains unchanged. However, deleting a class from
a design may result in a change in the perspective. For example, if a developer
decides that the class Person (Fig. 1) is no longer required in the design then this
also changes some of the perspectives. For example, the perspective “Guest may
have Payment or Expense Transactions” becomes out of date because Person is



Maintaining Life Perspectives 319

Table 2. Design Changes and Impact onto Perspectives in More Detail

User Action Changes based on perspective
Add a class No change
Remove an Delete class from the perspective. Also remove
important class the relations between the class and all other

important classes.
Remove a Delete relations from the perspective whose
helper class abstractions used the helper class.
Add a relationship Find paths between important classes that
between two classes pass through the relationship. Abstract

these new paths into relations.
Remove a relation Delete relations from the perspective that
between two classes were abstracted from the removed relation.
Upgrade a class from a Add class to the perspective. Delete relations
helper class to an from the perspective that were abstracted
important class from the upgraded class (the previous

helper class). Also find paths between
the new important class and other important
classes. Abstract these new paths into
relations.

Downgrade a class from Remove class from perspective. Find paths
an important class to between important classes that pass through
a helper class the downgraded class. Abstract these new

paths into relations. Also delete relations from
the downgraded class to other important
classes.

a helper class in that perspective and its removal affects the paths from Guest to
Expense and Payment (recall Fig. 4). Consequently, there are no longer abstract
relations among these classes and the perspective needs to be updated.

Since the removed class is a helper class, incremental abstraction only removes
those relations in the perspective that were abstracted from it. Fig. 7 shows a
design (left) and its perspective (right) with X and Y being important classes.
If developers remove the helper class A in the design then our approach deletes
the relation (2+A+3)’ because this helper class was used to derive that relation.

Removing an important class in a design obviously results in its removal from
the perspective. As a side-effect of the removal of an important class, all relations
connecting to the important class must be removed also. For example, in Fig. 7
the removal of the design class X instead of A would delete the perspective class
X’ and all its relationships.

Changing a Relationship in the Design
There are two situations related to changing a relation in a design: adding a
relation and deleting a relation. The addition of a design relation implies that
there are potentially new paths among the important classes. This in turn may
result in new relationships in the perspective. For example, if a developer adds a



320 A. Egyed, W. Shen, and K. Wang

Y

A

X

(a) design

Y'X'

1

2 3

1'

(2+A+3)'

(b) perspective

Fig. 7. Remove a helper class from a design

Y

A

X

(a) design

Y'X'

1

2 3

1'

(2+A+3)'

(b) perspective

Fig. 8. Add/delete a relation in a design

relation between the Transaction and Account classes then this again affects the
perspective “Guest may have Payment or Expense Transactions”. The addition
of the relation creates new paths among Guest, Expense, and Payment. Thus,
we need to find all new paths between the important classes that pass through
the new relation and abstract them.

Fig. 8 shows a general case for adding a new relation. If the new relation “2”
is added between classes X and Y (Fig. 8 left) then we need to search for new
paths among the reachable important classes (X and Y in this case) that pass
through the relation. There is one such path (2+A+3)’ which is then abstracted
and added to the perspective.

The deletion of a relation is similar to the deletion of a helper class. If a
developer deletes a relation from the design then incremental abstraction only
removes those relations in the perspective that were abstracted from it. For
example, if relation 2 in Fig. 8 is now removed from the design then the relation
(2+A+3)’ in the perspective must be removed also. While the removal of a design
class may affect both perspective classes and relations, the removal of a design
relation only affects perspective relations.

Upgrading and Downgrading a Class in the Design
Upgrading a class changes it from a helper class to an important class. Upgrad-
ing affects perspectives more than class and relation changes (recall Table 1).
However, upgrading is not complex but simply the concatenation of class and
relation changes. If a developer changes a helper class to an important class then
three things have to be done. First, the newly-important class has to be added



Maintaining Life Perspectives 321

B'

3 4

A

21

Y

B

X

(a) design

1

3 4

(b) perspective
before upgrade

(c) perspective
after upgrade

Y'X'Y'X'

(3+B+4)'

(1+A+2)' (1+A+2)'

Fig. 9. Upgrade a class A

to the perspective (i.e., because important classes are not hidden). Second, all
relations in the perspective that were abstracted from it need to be removed.
And, third, all paths between it and other important classes must be found,
abstracted, and added to the perspective.

For example, if developers are not only interested in “Guest may have Pay-
ment or Expense Transactions” but also in “Guest may have Transaction” then
the helper class Transaction should be upgraded. The paths among the classes
Guest, Expense, and Payment have to be removed from the perspective because
they all pass through Transaction which is no longer a helper class. Transaction
also needs to be added to the perspective and all paths between Transaction and
Guest, Expense, and Payment need to be found and abstracted.

Fig. 9 (a) shows a general case for upgrading the class B in a design where
classes X and Y are important. Before the upgrade, the perspective had two
classes (X’ and Y’) to reflect the important classes of the design, and it had two
relations between them to reflect the two paths through A and B (see Fig. 9
(b)). After class B is upgraded to an important class, incremental abstraction
adds B’ to the perspective, eliminates all relations in the perspective that were
abstracted from B (e.g., (3+B+4)’), and adds relations from B’ to all other
important classes if it can find abstractable paths (see Fig. 9 (c)).

Downgrading an important class to a helper class is the exact opposite of
upgrading a class (simply reverse the before/after picture in Fig. 9). The down-
grading of a class removes that class from the perspective and with it all its
relations to other important classes. Furthermore, it searches for paths among
the important classes that pass through the downgraded class.

4 Validation

Software development changes have side effects. Yet these side effects are local-
ized in that single changes in the design typically only cause small changes to
their perspective(s). It is thus computationally wasteful to dispose of abstractions
in their entirety simply because of small changes in the design. We evaluated the
design models of four software systems (see Table 3) ranging between 9 classes
and 127 classes to investigate this trade-off.



322 A. Egyed, W. Shen, and K. Wang

Table 3. Design Models used for Cases Study

Design Perspective
Classes Relations Model Size Classes Relations

Hms 9 9 104 3 3
Vod 65 199 1683 7 15

Visualizer 50 92 823 6 17
iTalks 107 127 1270 11 25

Fig. 10 (left) depicts the impact of design changes onto perspectives. As
was discussed previously, there are essentially three types of changes of interest:
up/downgrading, class changes (add/remove a class) and relationship changes
(add/remove a dependency, association, or generalization). We subjected these
models to over 800 random changes and observed their impact. For example,
a change to a trace dependency in the iTalks design impacted in average 2.5
perspective elements (at least one and at most 8); or a change to a relationship
impacted in average 0.9 perspective elements (0-5). The other three systems
exhibited similarly small impact numbers which confirms our initial claim that
design changes typically only have small impacts onto the perspectives for class
abstraction. This observation is important for scalability.

While Fig. 10 (left) depicts up/downgrading, class, and relationship changes
independently, there are situations where they occur together. For example, in
IBM Rational Rose, the deletion of a class also causes the deletion of all its re-
lationships and knowledge of its important/unimportant markers. Or the copy-
and-paste action supported in many modeling tools allows a set of classes, rela-
tionships, and, perhaps, important/unimportant markers to be pasted at once.
We thus conducted over 280 random changes that involved the deletion and cre-
ation of classes with relationships and important/unimportant markers. Fig. 10
(right) depicts the averaged results of these tests. For example, a typical deletion
of a class in the vod system also deleted three design relations and 0.2 “impor-
tant” markers (i.e., every 5th class deleted an important class). We refer to this
deletion as a group deletion. In response, a group deletion changed elements in
the perspectives. In the vod system, in average 0.2 classes and 2.3 relationships
were changed per group deletion. These numbers demonstrate that the grouping
of elements has only mild negative effects onto the impact of changes.

It must be noted however that a single copy-and-paste could involve an entire
class structure which would then result in a change to the entire perspective.
However, these kinds of changes are rare and so is their associated computational
penalty.

Fig. 10 (left) also depicted another interesting observation. In all four sys-
tems, the up/downgrading had more severe effects onto the perspectives than
relationship changes, which in turn had more severe effects than class changes.
The differences are quite strong in that a relationship change impacts in average
3.5 times more perspective elements than a class change; and a up/downgrade
impacts in average 2.9 times more elements than a relationship change (one order



Maintaining Life Perspectives 323

0

1

2

3

4

5

6

7

8

9

hms vod visualizer iTalks

up/downgrade

relation change

class change

0

1

2

3

4

hms vod visualizer iTalks

up/downgrade design class
design relation perspective class
perspective relation

Fig. 10. Average, Min, Max Number of Perspective Changes per Design Change (left)
and Grouping of Design Changes and Perspective Changes (right)

hm
svo

d

vi
su

al
iz

er

iT
al

ks

remove relation

remove class

0

10

20

30

40

50

60

70

downgrade
upgrade

add relation

add class

Fig. 11. Average number of Path Re-Evaluations for Design Changes

of magnitude difference). The differences are caused by the path re-evaluations
that are part of class abstraction.

Fig. 11 depicts the average numbers of path re-evaluations for all four systems
and it is obvious that up- and downgrading are particularly expensive. However,
it must be noted that the path re-evaluations during incremental abstraction are
cheap in comparison to the existing approach to abstraction (the batch abstrac-
tion of entire class structures). Also, we believe that trace changes are much less
likely than relationship or class changes. After all, the four systems contain only
27 traces but almost 700 classes and relationships.

5 Conclusion

Abstraction, as in the simplification of complexity, plays an important role dur-
ing software development. This paper demonstrated on UML class structures
that it is possible and computationally feasible to maintain“life” perspectives
that change instantly with system changes. The foremost advantage of instant
transformation is that perspectives never become obsolete. Another advantage is
that developers can observe system changes through their perspectives. The lat-



324 A. Egyed, W. Shen, and K. Wang

ter, in particular, is not common practice today because of the enormous cost of
instant transformation. Yet, we believe that it is vital for the uninterrupted work
flow of software developers to maximize the instant transformation of all kinds
of information. Some of this capability is already transitioning into software de-
velopment today. For example, many programming environments are capable of
keeping the source code consistent with GUI modeling tools. We therefore see
this work as another step in the same direction; and as the first step in doing
so for software modeling and its model perspectives. The approach discussed in
this paper is fully tool supported.

It is our future work to investigate the coupling of the instant and incremental
abstraction discussed in this paper with the instant and incremental compari-
son for scalable consistency checking. That is, instead of checking the validity of
entire models, we believe it is computationally much cheaper to check the con-
sistency of models incrementally. Using instant and incremental abstraction to
guide this instant and incremental consistency checking has not been attempted
yet. It is our future work to investigate how to formally prove the consistency
between batch and incremental transformation.

References

1. IBM Rational Rose. http://www.rational.com.
2. Matlab and Stateflow by Mathworks. http://www.mathworks.com.
3. R. Arnold and S. Bohner. Software Change Impact Analysis. In IEEE Computer

Society Press. 1991.
4. B. Boehm, A. Egyed, J. Kwan, and R. Madachy. Using the WinWin Spiral Model:

A Case Study. In IEEE Computer, pages 33–44. 1998.
5. B. Cheng, E. Y. Wang, R. H. Bourdeau, and H. A. Richter. Bridging the Gap

Between Informal and Formal Approaches to Software Development. In Proceedings
of Software Engineering Research Forum, November 1995. 1995.

6. A. Egyed. Semantic Abstraction Rules for Class Diagrams. In Proceedings of the
15th IEEE International Conference of Automated Software Engineering (ASE),
Grenoble, France, 2000.

7. A. Egyed. Automated Abstraction of Class Diagrams. In ACM Transactions on
Software Engineering and Methodology, volume 11, pages 449–491, 2002.

8. A. Egyed. Compositional and Relational Reasoning During Class Abstraction. In
Proceedings of the 6th International Conference on the Unified Modeling Language
(UML), pages 121–137, San Francisco, USA, 2003.

9. A. Egyed and B. Balzer. Integrating COTS Software into Systems through Instru-
mentation and Reasoning. In Journal on Automated Software Engineering (JASE),
accepted for publication.

10. A. Egyed and P. Kruchten. Rose/Architect: A Tool to Visualize Architecture.
In Proceedings of the 32nd Hawaii International Conference on System Sciences
(HICSS), 1999.

11. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier, and J. Ir-
win. Aspect-Oriented Programming. In European Conference on Object-Oriented
Programming (ECOOP), pages 220–242, 1997.



Maintaining Life Perspectives 325

12. F. D. Racz and K. Koskimies. Tool-Supported Compression of UML Class Dia-
grams. In Proceedings of the 2nd International Conference on the Unified Modeling
Language (UML).

13. W. Roll. Towards Model-Based and CCM-Based Applications for Real-Time Sys-
tems. In Proceedings of the 6th IEEE International Symposium on Object-Oriented
Real-Time Distributed Computing, pages 75–82, Hakodate, Hokkaido, Japan, 2003.

14. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison Wesley.

15. M. Shaw and D. Garlan. Software Architecture: Perspectives on an Emerging
Discipline. Prentice Hall, 1996.


	Introduction
	Background
	A Need for Perspectives
	Automated Abstraction

	Approach
	When and Where Changes Happen
	How Changes Affect Perspectives

	Validation
	Conclusion

