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Abstract. Commercial-off-the-shelf (COTS) software tends to be cheap, reliable, and functionally powerful
due to its large user base. It has thus become highly desirable to incorporate COTS software into software
products (systems) as it can significantly reduce development cost and effort, while maintaining overall soft-
ware product quality and increasing product acceptance. However, incorporating COTS software into software
products introduces new complexities that developers are currently ill equipped to handle. Most significantly,
while COTS software frequently contains programmatic interfaces that allow other software components to
obtain services from them on a direct call basis, they usually lack the ability to initiate interactions with other
components. This often leads to problems of state and/or data inconsistency. This paper presents a framework
for integrating COTS software as proactive components within a software system that maintain the consistency
of the state and data they share with other components. The framework utilizes a combination of low-level
instrumentation and high-level reasoning to expose the relevant internal activities within a COTS component
required to initiate the communication needed to maintain consistency with the other components with which
it shares state and data. We will illustrate these capabilities through the integration of IBM’s Rational Rose
into a design suite and demonstrate how our framework solves the complex data synchronization problems
that arise from this integration.
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1. Introduction

As a result of their large user base, Commercial-off-the-Shelf (COTS) software systems
usually have stable interfaces (APIs) and are reasonably reliable. The need to satisfy a
large and diverse user base makes COTS software very generic and functionally powerful
with the added advantage that they are widely understood and accepted. Since COTS
software also tends to represent large pieces of code, their reuse can significantly reduce
development cost and effort (Boehm et al., 2000). These features make COTS software
very attractive reuse targets in the wake of exploding software development costs.

We define a COTS-based system to be a software system that includes COTS software
(Brownsword et al., 2000). From a software architecture perspective, a software system
consists of a set of interacting software components. We thus also refer to COTS software
used within a COTS-based system as COTS components. A COTS-based system may
include one or more COTS components among the set of its software components.

Incorporating COTS software into new and existing COTS-based systems has found
strong and widespread acceptance in software development (Boehm et al., 2002; Morisio
et al., 2000). There are many advantages in doing so but the lack of source code requires
that the reuse of COTS software be treated differently than traditional code reuse (Abts
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and Boehm, 1996; Boehm et al., 2000; Morisio et al., 2000). COTS software cannot be
tailored from “within” by modifying its source code. Instead, changes must be imposed
from the “outside” via wrappers or glue code (Boehm and Abts, 1999; Egyed et al.,
2000). Incorporating COTS software into COTS-based systems is risky because the lack
of source code makes it very hard to work around deficiencies (Garlan et al., 1995;
Morisio et al., 2000). “The fact is that using COTS software brings with it a host of
unique risks quite different from those associated with software developed in-house.”
(Boehm et al., 2000)

Abts et al. (2001) identified four primary sources of effort due to COTS-based software
development: assessment, tailoring, glue code, and custom application code construc-
tion. These sources of effort are also sources of risks during COTS-based software
development. Assessment is the evaluation and selection of viable COTS software; tai-
loring and glue code are the activities associated with integrating COTS software into
systems; and custom application code construction is the development of additional,
required functionality not covered by the integrated COTS software. Their perspective
is supported by data collected from developing several dozens COTS-based systems
(Boehm et al., 2002). This data shows that COTS reuse has enjoyed a steady growth
in the past years (in some domains) but warns that it does not come without a price.
Inappropriate COTS reuse can negate all its benefits and even result in project failure
(Garlan et al., 1995; Sedigh-Ali et al., 2001).

The emphasis of this paper is to explore the technical feasibility of integrating COTS
software into software systems in cases where the COTS component(s) share state and/or
data with other components and the consistency of that state and/or data must be main-
tained. For example, if a user manipulates the COTS software through its native user
interface then these activities typically remain unnoticed by the software system it is
integrated with. Consequently, data and state synchronicity problems may arise. The
technique presented in this paper is thus useful when the COTS software does not ex-
pose changes to the state and data it shares with other components.

This integration problem poses the challenge of how to augment COTS software with
notifications of its “internal” changes (data and state) when those changes affect the soft-
ware system it is integrated with (the COTS-based system). The main difficulty of this
integration problem is thus to alter the behavior of the COTS software (e.g., make it com-
municate information about internal changes) without altering the COTS software itself.

This paper proposes an architectural framework for observing internal activities within
COTS software to communicate these activities to other software components proac-
tively. Internal activities can be observed by monitoring how the COTS software is
manipulated from the outside (e.g., user interactions) and then selectively query the
COTS software about the internal effects of these manipulations. This solution does not
require changes to the COTS software itself and, from the perspective of the software
system, the COTS software becomes proactive because the framework instigates com-
munication on its behalf to inform other components of the changes made to shared state
and/or data.

As an example, consider the integration of a model consistency checking component
with a model design component. The stated requirement is that consistency checking
should evaluate model design changes only. That is, consistency checking should be
smart enough to not re-evaluate portions of the model that have not changed but instead
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re-evaluate only the changed portions (i.e., to reduce the computational cost). Further
consider that the model design software is the COTS software product IBM Rational
Rose (a CASE tool that supports modeling in the Unified Modeling Language (UML)
(Booch et al., 1999)) while the consistency checking software is an in-house developed
software component. The integrated system should thus function in a way where the
model design component will forward changes of its design model to the consistency-
checking component to trigger re-evaluations. Unfortunately, IBM Rational Rose has a
very limited mechanism to notify other components of changes. It obviously does not
understand the needs of our component and it will not notify the consistency-checking
component of all required model design changes. Rational Rose thus cannot be used,
by itself, to satisfy our system requirement. The framework presented in this paper
will passively observe Rational Rose to identify its internal model design changes.
The framework, tailored to the needs of our system, will then forward these observed
design changes in Rational Rose to the consistency-checking component to trigger its re-
evaluations of the shared design model. Rational Rose is neither aware of the framework
observing it nor is it aware of the framework instigating communications on its behalf.
Rational Rose, together with our framework, now satisfies the system requirement to
forward design changes to the consistency-checking component.

We see our framework as augmenting COTS software with added behavior without
changing the COTS software from within (i.e., no source code is available). Moreover,
the COTS software is augmented to satisfy the requirements of the system it is being
integrated with. For example, we will demonstrate how our framework augments several
COTS software products (1) to elicit notifications of changes to their data for maintain-
ing data synchronicity between them and other components and (2) to initiate service
requests to other components in response to user activities within the COTS software.

We will illustrate the use of this COTS integration framework on Rational Rose and
present results of integrating two other, large-scale COTS software products, Matlab/
Stateflow and Microsoft PowerPoint. We will demonstrate that COTS software can
be augmented to communicate internal changes to other components proactively. We
will also describe the technical reasons why these types of COTS integration may fail
without our integration framework (e.g., lack of usability, scalability, and reliability).
Our framework will work for COTS software integration projects where (1) the data
within a COTS component undergoes internal changes in response to external stimuli
(e.g., user input) and (2) those changes are restricted to an identifiable subset at the time
of the stimuli (e.g., selected data). The former defines when changes happen (e.g., mouse
click) and the latter defines where changes happen (e.g., selected element). Many COTS
software products satisfy the above conditions. To demonstrate this, we have applied
our framework on several major products (e.g. Egyed and Wile (2001) and Tallis and
Balzer (2001)) to date.

It must be noted that this paper does not propose a new process for COTS-based
software development. Several such processes exist (Boehm et al., 1999; Brownsword
et al., 2000; Morisio et al., 2000). Also out of the scope of this paper is COTS assessment
which is primarily a risk management activity (Boehm, 1989; Lawlis et al., 2001; Maiden
and Ncube, 1998) that precedes software development. Several solutions for COTS
assessments are described in Dean and Gravel (2002). This paper solely investigates
technical issues for solving the problems outlined above.
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Section 2 discusses the pros and cons of integrating reactive and proactive COTS soft-
ware. Section 3 then introduces our infrastructure for converting reactive COTS software
into proactive ones. It defines the roles of mediation, translation, instrumentation, and
reasoning to support COTS software integration. Section 4 describes an implementation
of our infrastructure for Rational Rose and Section 5 describes three integration scenarios
where only one of them (the augmented proactive Rational Rose) satisfies all functional
and quality integration goals. Section 6 then discusses other integration scenarios and
relevant issues. Section 7 concludes this paper.

2. Reactive and proactive COTS software

COTS products generally assume that they are an independent system rather than a
component in some larger system. It is hard to integrate such software because it has no
knowledge of the role it is supposed to play in the context of the larger system. Whereas
software components (figure 1(a)) are typically capable of both responding to requests
(reactive) and initiating requests on their own (proactive), COTS software (figure 1(b))
is generally only capable of responding to requests. This restriction severely limits its
reuse.

COTS software typically provides three types of services: (1) logic/functionality, (2)
(persistent) data handling, and (3) user interface. If COTS software is reused as part
of COTS-based systems then this typically implies a need of managing its services
reactively or proactively. This section discusses the pros and cons.

2.1. Reactive COTS software

The most commonly attempted (traditional) integration of COTS software is to have
the COTS software accessed by in-house-developed software. In this scenario, COTS

Figure 1. Software components respond to requests of other components but they also initiate requests to
others (top); COTS components generally only respond to requests since they have little to no knowledge of
their new environment (bottom).
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software is used as a reactive, service-providing (COTS) component where “reactive”
implies that the COTS component is not required to have any knowledge about the
surrounding system that interacts with it (whether they are in-house or other COTS
components). It is the nature of reactive components not to initiate interactions with
other software components but instead to wait for service requests. From the perspective
of the overall COTS-based system architecture, it thus appears as if integrated COTS
software is dormant unless it is instructed to do something.

To allow COTS software to be integrated reactively into a system, the COTS software
vendor has to provide a programmatic interface (e.g., API-application program interface)
that facilitates access to its services. The interface is then used by other software compo-
nents to interact with it (figure 1(b)). Usually, the interface provides (1) data access for
reading and writing the COTS data store and (2) control access for triggering some form
of COTS processing. Many COTS vendors supply their COTS software with at least a
partially complete interface for data and/or control access. Consequently, COTS soft-
ware can be integrated as reactive components into COTS-based systems with relative
ease. Databases and web servers are typical examples of reactive COTS components.

2.2. Proactive COTS software

Most COTS software only initiates interaction with other software products they are
explicitly designed to interact with. This is problematic because there are integration
scenarios where COTS software is required to interact with software it was not explicitly
designed to interact with (e.g., recall the example in the introduction). Moreover, while it
is true in some cases that COTS software is fully proactive (with respect to changes to its
internal state and data), we found that COTS software with user-driven GUIs (graphical
user interface) tend to be less proactive. This raises the severe problem of maintaining
the consistency of shared state and data from such a COTS component in a system while
it is being manipulated by a user. The challenges are:

(1) Data Inconsistency: Data captured in COTS software may have to be consumed
by other components in a system. If a user manipulates the data within a COTS
software then this may introduce inconsistency in the shared data. The problem is that
COTS software typically does not know or care about notifying other components
of internal changes.

(2) State Synchronicity: User actions in COTS software may have system relevance in
some cases. COTS software does not understand the needs of a system it is part of
and consequently does not recognize user actions the system must be notified about.
System relevant user actions may thus get lost if they are done through the user
interface of the COTS software.

In an ideal world, COTS software could be configured to notify other components of
relevant internal changes (data and state). In such an ideal world, the COTS software
would become an active participant in the COTS-based system into which it is being
integrated. Today it is rare for COTS software to have these capabilities built-in. For
integration, this creates a major challenge of how such COTS software can be augmented
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from the “outside” so that internal activities (state and data changes) relevant to other
components are proactively communicated to them. The next section will discuss how
this can be accomplished using a combination of instrumentation and reasoning.

3. Augmenting COTS software

This section will show how to augment reactive COTS software into proactive software
components with respect to the system they are integrated with. Since it is generally
not possible to change COTS software from “within” (no source code is available), we
augment its behavior from the “outside.” Our approach is most useful in cases where
(1) internal activities within COTS software are triggered through outside stimuli (e.g.,
user input) and (2) the desired proactive behavior of the COTS software is in response
to its internal activities (e.g., to notify others of a change).

Figure 2 depicts our infrastructure for augmenting COTS software schematically. The
center of the figure holds the actual COTS software. Since no source code is available,
it cannot be changed from within. Instrumentation is used to monitor outside stimuli
directed towards the COTS software (shaded frame around the COTS software). For ex-
ample, we use instrumented wrapper technology (Balzer and Goldman, 1999) to observe
interactions between a software component and its environment (e.g., user interactions,
requests from other components). A customized Reasoning component within the frame-
work then uses information made available through instrumentation and from inspection
of the COTS component’s state and data (via its API) to infer what internal changes this
activity caused.

For example, instrumentation may indicate that a delete key was pressed while the
COTS API may reveal that a piece of data was selected at that time, but no longer ex-
ists. The Reasoning component concludes that the selected element was deleted. The
Reasoning component also initiates notifications to other software components of the

Figure 2. Augmenting a COTS component from the outside through mediation, Translation, Instrumentation,
and Reasoning.
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system on behalf of the COTS software to inform them of relevant changes. Our frame-
work also provides an optional, alternative interface that may be used to mediate and
translate the appearance of the COTS software if required. Other components can then
use the alternative interface instead of the COTS native interface. An optional data cache
may be required if knowledge of internal activities within a COTS component must re-
main available for later use. Each of these components are described in the following
subsections.

3.1. Instrumentation

User interfaces and programmatic interfaces (API) are typically the only means of access-
ing and manipulating COTS software. They provide access to COTS data and services
in a form that was deemed appropriate by the COTS software designers. Reusing COTS
software within software systems requires open, unrestricted access to it. The lack of
openness is a severe inhibitor to COTS reuse but can be eased. This section discusses
a variety of techniques that have been developed to investigate and observe (COTS)
software.

Hooking is a technique for observing and manipulating the interaction between the
operating system and COTS software (Balzer and Goldman, 1999). Since the operating
system is the core of virtually all communication between the COTS software and the out-
side world (user), observing and manipulating communications reveals detailed records
of COTS behavior. This includes user interface activities, interactions with devices and
system libraries. In particular, file access, network communication, user input/output,
and interactions between sub-components of software products (including COTS soft-
ware) are channeled through these hooks. Hooks receive this information and may either
passively observe it or actively manipulate it.

Alternatively to hooks, (COTS) software may be changed through its binary represen-
tation. Given enough understanding of its binary code, it could be “patched” to replace,
delete, or add new functionalities. This form of access, however, requires low-level
familiarity with its machine code.

These two instrumentation techniques differ in their invasiveness. While hooks are
placed at the interfaces to COTS software and only affect data and control flow to and
from them, patches change the actual software. Both techniques have respective benefits
and drawbacks and have in common the problem that they may be obsoleted by new
releases. There may also be legal implications that have to be considered. Nonetheless,
both techniques provide access to otherwise inaccessible data and control information.

Fortunately, instrumentation is only needed to the extent that the required COTS
services are inaccessible. We have used hooks to implement all our instrumentation
needs (e.g., for Rational Rose, Microsoft PowerPoint, and Mathwork’s Matlab) (1) to
observe the occurrence and type of user events such as keyboard strokes or mouse clicks,
(2) to block user events if desired, and (3) to observe low-level activities such as shutting
down the COTS software.

For this instrumentation to be effective, typically, multiple observations have to be
combined to infer desired information. Thus, it is possible to derive higher-level, com-
plex, and system-relevant information about COTS software based on simple, low-level
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instrumentation. This is the responsibility of the Reasoning component and is described
in the next subsection.

3.2. Reasoning

The Reasoning component uses instrumentation and programmatic interfaces to COTS
software to infer the internal activities of that component. Reasoning also instigates
communication to other components of the COTS-based system on behalf of the COTS
software. This is simple when the COTS software externalizes its internal activities
through its programmatic interface. The Reasoning component would then periodically
request the latest internal activities from the COTS software and initiate change no-
tifications to other components when required. We found that COTS software rarely
externalizes all the relevant internal activities required for maintaining the consistency
of the state and data being shared with other components. In cases where it does not
externalize the relevant internal activities, we apply our instrumentation technologies
to infer when these non-externalized internal activities might have occured. Thus, our
technique is only applicable to COTS software where these non-externalized internal
activities occur in response to some form of external stimuli. The Reasoning compo-
nent then combines the observed external stimuli, and the observable internal state of the
COTS product before and after the external stimuli to infer whether the non-externalized
internal activity actually occurred and if so, what changes it caused.

It must be noted that the COTS software typically is not aware that it is being observed
and manipulated. Also, other software components typically are not aware that the
communication does not originate from the COTS software itself but from the Reasoning
component. The Reasoning component thus augments the COTS software with proactive
behavior that can be tailored towards a particular system. Typically, a particular system
does not require access to all internal activities within the COTS software and the
Reasoning component only needs to be customized to provide the required subset. The
following discusses two reasoning strategies.

3.2.1. Partial-order events. If a component X must be notified every time a piece of
shared data is deleted within the COTS software then the Reasoning component has to
continuously observe the COTS software to watch such pieces of data. If the interface
of the COTS software externalizes such deletions then the Reasoning component can
simply periodically check the externalized activity and call component X each time it
occurs.

However, COTS software rarely externalizes activities as they are required by a system.
In such cases, reasoning must instead check for the occurrence of certain internal or
external events that indicate the non-externalized activities of interest. For example,
if the COTS software does not externalize data that was deleted then, instrumentation
can detect whenever the “delete” key on the keyboard was pressed. Of course, pressing
“delete” on the keyboard only sometimes eliminates elements on the screen. For example,
in Rational Rose pressing “delete” only deletes an element on the screen if the element
was selected. Thus, the Reasoning component could be implemented to observe the
selection of elements and keyboard events and only call component X if “delete” was
pressed, and at least one element was selected beforehand and not deselected thereafter.
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The above scenario is a simple example of reasoning with partial-order events where
events are things like “delete pressed” or “element selected.” Partial-order events can be
applied on external stimuli or internal activities to reason about temporal occurrences
(i.e., while in state X, if Y happens but Z did not occur then. . .). Various techniques
are available for temporal reasoning (Luckham and Vera, 1995). We applied these tech-
niques extensively in the context of Rational Rose and Matlab/Stateflow to infer internal
activities. For example, we observed that a particular sequence of low-level interactions
between Rational Rose and the operating system implies that the application is shutting
down (low-level interactions provided through instrumentation). Since this information
is relevant to other components, the reasoning component was instructed to notify other
components whenever Rational Rose was shutting down.

3.2.2. Caching and partial comparison. COTS software often has redundant user in-
terfaces that allow users to perform the same activities in different ways. For example,
in Rational Rose a user may create a design element by dragging-and-dropping it from
the toolbox; by selecting a design element from the menu; or by using a keyboard short-
cut. Although the external, instrumentation-observable user stimuli differ, the resulting
internal activities are the same. In cases where many choices exist on how to perform the
same internal activities, it is often significantly easier to detect internal activities after
they are completed rather than trying to predict the effects of observable stimuli. We
have used cachingand partial comparison as a mechanism for inferring internal activities
from the changes they produce in a COTS component’s observable state and data.

A naive implementation of this approach for observing data changes is to cache data
and then periodically compare the cached data with the COTS software’s current data.
This naive implementation works well if the amount of “relevant” data is small but
becomes unscalable otherwise.

To demonstrate that a more sophisticated version of caching and comparison, based
on partial caching and comparison, can scale to large amounts of data, consider again
our Rational Rose example. Rational Rose maintains potentially large design models,
which makes full caching and comparison infeasible. To limit the amount of caching
and comparison, we use a combination of instrumentation and partial comparison. The
rationale is as follows. We know that a user can make changes to data in Rational Rose
only through the mouse or keyboard. We thus use instrumentation to observe mouse and
keyboard events. We also know that only selected design elements in Rational Rose can
be modified or deleted. We thus cache design data when it is selected and only compare
the cached, selected data whenever mouse or keyboard events occur. Design data that is
deselected remains in the cache but it is not compared any more. This limits the scope of
caching and comparison—instrumentation detects when to cache/compare (e.g., mouse
event) and the Rational Rose API determines what to cache/compare (e.g., Rose’s API
identifies which elements are selected at the time of a request). Note that previously
selected data remains in the cache and its consistency with Rose is guaranteed until it is
selected again.

We found that this “GUI-driven” partial caching and comparison approach—where
mouse and keyboard instrumentation detect when to cache and compare and the COTS
product’s selection mechanism determines what to cache and compare—is applicable to a
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Figure 3. Propagating Change Detection. Example Class Diagram in bottom right. Meta Model of Example
Diagram in center. Deletion of Class Guest triggers subsequent deletions that can be detected through caching
and partial comparison.

variety of COTS software (e.g., Rational Rose, Matlab/Stateflow, Microsoft PowerPoint)
with one additional caveat. Sometimes, COTS software may allow the modification of
non-selected elements. Indeed Rational Rose has such exceptions. For example, when
Rose deletes selected design data then it may also delete related design data that cannot
exist without the deleted one. Figure 3 (lower right) shows a simple class diagram
created in Rose. The diagram depicts two classes (Guest and Reservation) and a simple
association relationship between them. If the class Guest is deleted then Rose also deletes
dependent design elements that are related to the class, in this example the attribute name
of the class Guest and the association relationship to it from Reservation.

Our selection based caching and comparison method will only detect the deletion of
class Guest since it was the only selected element and consequently the only element that
was cached and compared. There are two solutions to this problem. The first solution
augments the Rational Rose method that returns selected model elements to also include
the attributes and relationships of selected classes. This extended selection based caching
and partial comparison will correctly detect the deletion of all involved design elements.
This solution is simple since it approximates the notion of what elements are selected by
assuming the worst-case scenario. Unfortunately, it raises scalability concerns because
the assumed worst-case must always be compared for changes.

The second solution avoids the scalability concern by limiting comparision to only the
truly selected design elements. If a selected design element has not changed then none
of its related design elements can have changed either. Only the related design elements
of changed selected elements must also be compared. For example, figure 3 (main part)
depicts the Guest/Reservation class diagram example from the perspective of the UML
meta model. It shows the model element Guest of type Class, its attribute name, and its
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relationship to Reservation (note: UML association relationships have association ends
that attach to classes). A deletion of class Guest, once detected through comparison,
triggers a subsequent comparison of all other cached, related design elements. If an
element did not change then no further comparison is necessary. If an element did change
then its related elements (if any) also need to be compared. In the example in figure 3,
caching and subsequent comparison is similar to a wave that originates at the selected
element(s), navigates through all related elements, and terminates at those elements that
have not changed. In this example, only two elements will remain after the wave of
comparisons: Logical View and Reservation. This second solution is computationally
much more efficient than the first solution since it limits the necessary comparison to a
minimum.

Caching and partial comparison may be elaborate to implement but it can be very
efficient in tracking changes to large data stores of COTS software. We used this tech-
nique successfully on Rational Rose, Matlab/Stateflow, and Microsoft PowerPoint with
up to 37000 data elements (e.g., model size in Rose). These COTS software products
had in common that they did not provide change notifications to data stores but they
did provide access to selected elements upon request. In all three cases, caching and
partial comparison was used to detect changes to data. See case study later for a concrete
example.

3.2.3. Approximation. Although instrumentation and reasoning may sound simple in
principle, it is often hard and elaborate to implement for a particular COTS product:
Instrumentation often produces low-level, operating-system events; and reasoning may
have to duplicate some of the functionality of the COTS software to infer relevant
internal activities from external stimuli. Fortunately, instrumentation and reasoning is
only required in as much detail as necessary to infer relevant internal activities. Also, the
complexity of integration depends heavily on the accessibility of information relevant to
infer internal activities. Even in cases where it is hard to infer internal activities precisely,
we found that there are integration scenarios where it is good enough to approximate
internal activities (i.e., false positives or negatives are acceptable).

As an example, let us reconsider the integration of Rational Rose and the consistency
checking software discussed in the introduction. This software, called UML/Analyzer,
checks the validity of UML diagrams (Egyed, 2001) created in Rational Rose. Due to the
computational complexity of consistency checking, it was unrealistic and non-scalable
for the UML/Analyzer to check the entire model frequently. However, validating only
the consistency of changes as they occurred was feasible. We thus used our framework
to observe changes to the Rose design models and to forward these changes to the
UML/Analyzer for consistency checking. In this setting, false negatives (not reporting
changes that happened) were not acceptable because the consistency checking software
would fail to evaluate some changes. However, false positives (reporting changes that
did not happen) were acceptable because re-evaluating a part of a model that was already
validated is at most a waste in computation but not an error. Allowing false positives
and/or negatives is a useful approximation and it can save computational effort and cost.
That is, approximation algorithms typically execute faster and are cheaper to implement.
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3.3. Mediation and translation

Returning to the COTS augmentation framework presented in figure 2, we now consider
the use of mediation and translation to construct alternative interfaces for COTS products
to facilitate their use as components in larger systems. Mediators and translators (Egyed
et al., 2000) augment native interfaces of COTS software (i.e., wrappers or glue code).
The purpose of translation is to make COTS-specific data and control information avail-
able in a format that is understood by other components of the COTS-based system (e.g.,
to impose a standardized interface on a COTS software). The purpose of mediation is to
bridge middleware platforms (e.g., COM (Williams and Kindel, 1994), CORBA (Ob-
ject Management Group, 1995; Vinoski, 1997), DLL, RMI (Sun Microsystems, 2001))
between COTS software and other components of the system. Other components of
that system then do not use the COTS native interface directly but instead use the new,
augmented interface. Using an augmented interface has the advantage that the appear-
ance of COTS software is “altered” without changing the COTS software itself (see also
figure 2). The services of the COTS software are then provided in the alternative format
without other components and the COTS software being aware of this. An optional data
store may be required if the augmented interface provides extended services.

The UML/Analyzer (Egyed, 2001) also serves as a good example for the need of an
augmented interface to Rational Rose. Although Rational Rose supports the drawing
of UML diagrams, its native interface does not describe those diagrams according to
the UML standard. We thus created an alternative interface for Rose that conforms to
the UML 1.3 standard. The alternative interface translates requests to and from Rational
Rose. The UML/Analyzer software uses the alternative interface that behaves as expected
by the system. This also has the advantage that the augmented COTS applications become
more interchangeable. After we also built a UML interface for Matlab/Stateflow we
were able to interchange Rational Rose with Matlab/Stateflow and vise-versa in several
COTS-based systems (e.g., the simulator discussed later).

The alternative interface also mediates between two communication standards. Ratio-
nal Rose provides its native interface through the Microsoft COM middleware (common
object model, (Williams and Kindel, 1994)) whereas the UML/Analyzer, implemented
in Java, prefers access to a Java UML library. The alternative interface was thus imple-
mented in Java to “hides” the platform-dependent Microsoft COM middleware of Rose
completely.

4. Rational rose augmentation infrastructure (RAI)

This section discusses a concrete example on how we augmented IBM Rational Rose.
The two primary purposes of the augmentation were (1) to provide a UML-compliant
interface for accessing Rational Rose data (UML model elements) and (2) to provide
change notification whenever its UML design data was modified. The later also included
change notifications in response to model loading or Rational Rose shutting down since it
affected the availability of data. The Rational Rose Augmentation Infrastructure (RAI),
depicted in figure 4, refines the schematic COTS integration architecture from figure 2.
The RAI has an augmented programmatic interface, called the Data Manager, that
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Figure 4. Rational Rose Augmentation Infrastructure (RAI).

implements the UML meta Model 1.3 completely. The Data Manager provides classes
and methods that reflect the 150+ types of model elements in UML; in particular, it
provides a class for every type of UML model element and it provides class methods
for the attributes and relationships of those elements (over a thousand methods in total).
The most basic use of the Data Manager is to create and maintain UML model elements,
and to translate Rose design data into them. Other software components may use the
provided, augmented classes and methods to create and maintain UML model elements
in Rose. The Data Manager is the reactive part of the RAI as it responds to requests only
(Egyed, 2002a).

The proactive part of the RAI is the Change Manager. The Change Manager acts as
a broker between Rational Rose and the potentially large set of client components that
may be interested in its activities. Figure 4 shows the use of observers that, coupled
with the Change Manager, forward change notifications from IBM Rational Rose to
other software components. Specifically, observers are registered to change managers
to indicate interest in being notified about changes within the COTS software (see also
observer design pattern (Gamma et al., 1994)). Observers are built to satisfy system-
specific interaction needs of the components interested in COTS software’s activities.
The evaluation of what to notify and how to notify is left to the observers (i.e., filtering
and syntactic/semantic transformations like data type conversions). If components reside
on distributed nodes (e.g., different machines) then the observers also have to manage
transportation issues (e.g., remote method invocations, (Sun (Microsystems, 2001)).
The Change Manager utilizes caching and partial comparison as its primary means of
detecting data changes within Rational Rose. This requires access to Rational Rose
and the Data Manager. As was described earlier, some instrumentation was required to
capture user stimuli (mouse and keyboard events) and other low-level activities that are
associated with shutting down Rose.

With 30,000 lines of Java code, the size of the Data Manager is quite large because it
implements the UML meta model completely. The Data Manager optimizes data caching
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so that the same data is never translated twice from Rose to UML. The Change Manager
uses roughly 1500 lines of Java code and is very efficient due to its caching and partial
comparison approach. The instrumentation consumes less than 100 lines of C code. The
RAI is lightweight and fast due to efficient instrumentation and reasoning. Even on very
large models, its existence is mostly unnoticeable to human users. It was tested on over
a dozen Rose models with up to 37,000 model elements.

The RAI encapsulates IBM Rational Rose through a well-defined and sound archi-
tectural framework. The use of a sound architectural framework in turn makes it easier
to plug COTS software, such as Rose, into larger COTS-based systems. The framework
thus improves the “plugability” of COTS software; the lack of which is generally seen
as a significant reason for failures during component-based development (Boehm et al.,
2000; Garlan et al., 1995). The next section will demonstrate the RAI on various inte-
gration scenarios that add simulation capabilities to Rose. We will show that using RAI
is quite powerful since it enables the integrator to exert a great degree of control over
the COTS-based system. Adding pro-active behavior to an otherwise reactive COTS
software makes it possible to integrate this COTS software in ways that are impossible
otherwise. Examples were discussed earlier. The next section will demonstrate this by
discussing three different integration scenarios where the limits of integrating reactive
COTS software are explored and the benefits of integrating proactive COTS software
are presented. Later, Section 6 will summarize similar lessons learned while integrating
other COTS software such as Mathwork’s Matlab/Stateflow and Microsoft PowerPoint.

5. SDS simulator and rational rose case study

This section illustrates the use of the RAI for integrating the COTS software IBM Rational
Rose with an in-house developed simulation software called SDS Simulator (Boehm and
Basili, 2001). IBM Rational Rose provides a powerful modeling environment for UML-
like designs and it is widely used. The SDS Simulator provides simulation capabilities for
“executing” UML-like designs. The goal was to create a seamlessly integrated modeling
and simulation environment that used Rose and the SDS Simulator as its components.
A particular emphasis of the integration was on reliability and performance.

This section discusses three integration scenarios that were implemented and evalu-
ated. The first two scenarios integrated the SDS Simulator with a reactive IBM Rational
Rose. Both solutions have reliability and performance problems, and they did not satisfy
all functional goals. The third and final integration scenario used instrumentation and
reasoning to synchronize modeling and simulation. It satisfied all functional and quality
goals.

5.1. Scenario 1: Simulator accessing data in reactive rose

The SDS Simulator required access to UML class and statechart diagrams. Since Rose
did not provide an UML-compliant interface to access its class and statechart data, the
SDS Simulator used the RAI Data Manager to translate Rose data into UML data. The
first integration scenario, discussed in this section, integrated the SDS Simulator with
Rational Rose using the RAI Data Manager only. Figure 5(a) shows this integration
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Figure 5. Reactive COTS Software Integration (a), (b); and Proactive COTS Software Integration (c).

scenario where UML models are created in Rose and accessed directly by the SDS
Simulator through the RAI Data Manager.

Although this integration scenario was straightforward to implement, it was also very
fragile and slow in performance. The performance of the simulator was slow mainly be-
cause of frequent, inter-process interactions between the simulator (the State Machine
Interpreter) and the COTS software. The problem was that both, Rose and SDS Sim-
ulator, were executing in different processes and communicating through Microsoft’s
Common Object Model (COM). Inter-process COM calls are known to be computation-
ally expensive because of marshalling activities. Since the simulator required frequent
access to the modeling software (often to same or similar data) the interaction cost be-
came significant. Independent of the performance problem and more severely was the
reliability problem. Complex synchronicity issues were the result of both, Rose and
SDS Simulator, executing concurrently and both having individual user interfaces. Syn-
chronicity problems occurred whenever users made changes to the UML models in Rose
while simulating them at the same time. For example, fixing a modeling defect during
simulation caused such synchronicity problems because it resulted in inconsistencies
between the simulator’s internal data and Rose. In other words, the simulator was not
aware of data changes in Rose. Abnormal and undesirable program exceptions were
typically the response.

Although the RAI Data Manager itself was fast and reliable, the choice of architectural
style on how to integrate Rational Rose and SDS Simulator through the Data Manager
led to a fragile system with serious data synchronicity and performance problems.
User caution was required to ensure proper functioning of the system. We encountered
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similar integration problems with other COTS software like Microsoft PowerPoint and
Matlab/Stateflow.

5.2. Scenario 2: Simulator caching data of reactive rose

The second integration scenario reduced the performance and reliability problems but
did not eliminate them. This scenario also sacrificed some of the desirable seamless
integration yet improved upon the performance by (partially) caching the data model of
Rose before commencing simulation. Figure 5(b) depicts this somewhat better solution
and shows that the SDS simulator maintained of its own, local copy of the Rose model
(the UML model) which was downloaded, translated, and maintained by the RAI Data
Manager. This solution was an improvement in terms of performance because accessing
the model via the cached local copy (once established) was faster than the inter-process
COM calls and translations with Rose (i.e., data accessed multiple times need not be
downloaded and translated again). The RAI Data Manager supported both incremental
caching and full caching, both of which had drawbacks in this integration scenario:
caching takes time, it is still not (fully) reliable since model changes may happen during
that time, and even minor changes require re-caching to simulate them. All these issues
were undesirable but the last one also changed the functionality of the integrated system
since the user needed to be aware of the current state of the modeling data in the simulator.
New models could only then be simulated if the user told the simulator to download
the latest version from Rational Rose. Advanced features, such as fixing defects during
simulation, could not be implemented.

5.3. Scenario 3: Simulator interacting with proactive rose

While the second scenario improved performance and reliability somewhat, the remain-
ing problems were architectural in nature and could not be improved upon by integrating
a reactive COTS software. To provide better integration between the SDS Simulator and
Rose, three major challenges had to be resolved:

• Prevent users from making changes to Rose while caching is in progress
• Update the local UML model whenever the Rose model changes
• Update the current simulation state (while running) whenever the Rose model changes

Architecturally, to resolve all these challenges, Rose had to become an proactive
component in communicating changes of its model data to its neighbor component,
the SDS Simulator. Instrumentation and reasoning enabled an architectural framework
for doing exactly that (figure 5(c)). As was discussed in Section 4, instrumentation
and reasoning can detect changes to data within Rose (by comparing selected parts of
the Rose model with the UML model). Information about changes is then forwarded
to registered observers. In case of the SDS Simulator, the role of the observer was to
interpret changes within Rose to ensure synchronicity and consistency between it and
the simulator. The SDS Simulator observer thus used change information (1) to update
the local UML model and (2) to update the simulation state. For example, the deletion
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Figure 6. Pseudocode for Proactive SDS Simulator/Rational Rose Integration (this figure is a refinement of
figure 5 (c)).

of a simulated object caused its termination if it was being simulated at that time; or the
change of a state name caused the simulator to instantly update the new state name in
its own display.

Figure 6 describes in more detail the interactions among Rose, its instrumentation
and reasoning, and the SDS Simulator. Hooks (Balzer and Goldman, 1999) monitored
operating system interactions with Rational Rose including mouse and keyboard events.
It required very little code (roughly 100 lines of C code) to built hooks for Rational Rose
to intercept keyboard and mouse events and to invoke the detectChange method in the
Change Manager when these events occurred. The detectChange method, in turn, was
responsible for reading selected design data from Rose and, if they differed from the
cached design data in the UML model, updating the UML model. DetectChange also
called notify to communicate the change to other components.

It was the responsibility of the observer to actually realize how to send change no-
tifications to interested components; i.e., possibly filtering unimportant messages and
performing syntactic and semantic transformations. In figure 6 the observer was a COM
object and COM handled all communications. The observer called model synchroniza-
tion methods of the simulator once the Change Manager notified it about data changes.
Observers were not created automatically as part of a component’s interface to Rose.
Instead, only a template was provided for constructing such observers so that their in-
terfaces conformed to our framework’s architecture for interfacing with the Change
Manager. In case of the SDS Simulator, updating the simulator’s user interface was one
of two synchronization tasks that the observer had to perform. The second task was
to update the running simulation if it was currently active. For instance, guard condi-
tions could be updated while the simulation unfolded. Changes could also occur that
invalidated the simulation (i.e., the current state of simulated object is deleted). In such
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cases, the observer either shut down the current simulation or proceeded with a defined
recovery process. Augmenting proactive behavior to Rose solves two out of the three
integration goals outlined earlier. It does not yet resolve the reliability problem. To sat-
isfy integration reliability, it was imperative to prevent changes to design data in the
Rose during certain critical periods (e.g., during caching). This capability was achieved
by using instrumentation yet again (hooks) to actively block user input to the COTS
software during these critical periods. Instrumentation simply issued a “beep” sound to
let the user know that their input was being blocked temporarily.

The above discussion demonstrated that (1) we were able to convert a reactive COTS
software product (IBM Rational Rose) into a proactive software component able to
communicate with the simulator and that (2) it made a difference in the quality and
functionality of the integration (e.g., avoided serious data consistency and state syn-
chronicity problems). The contribution of our work is an infrastructure for augmenting
the behavior of IBM Rational Rose (and other reactive COTS software).

6. Discussion

6.1. Cost effectiveness

Our approach showed that it is technically feasible to convert reactive COTS software
into proactive ones. Of course, the cost and effort of doing so may be high. Here, a
management decision is needed which depends on factors such as: (1) is there an alter-
native COTS software product that could be integrated more easily; (2) is it cheaper/less
time consuming to re-built needed functionality in-house instead of using the COTS
software; (3) is it possible to integrate the needed COTS software product reactively and
still accomplish all integration goals; (4) is it possible to change (relax) integration goals
to make it more cost effective. All these questions have nothing to do with the technical
feasibility of using our approach and thus answering these questions is outside the scope
of this paper.

It must be noted that in case of integration IBM Rational Rose and other COTS prod-
ucts it was clearly cost effective to use our approach. While our integration framework is
large, it is small in comparison with the COTS products. We found that instrumentation
tended to be simple, cheap, and computationally insignificant while reasoning tended to
be complex and expensive to build (although still computationally efficient) (Boehm and
Basili, 2001). In terms of development cost and effort, we found that reuse was clearly
better and cheaper than re-development in all our case studies although we found it frus-
trating at times to work around COTS software limitations (Maiden and Ncube, 1998).
There is a non-obvious trade-off between the cost of re-development and reuse. Given the
diverse nature of COTS software there is no simple way of predicting which is better. Un-
fortunately, many potential integration problems are discovered late in the development.
We had several cases of late requirements changes because of this. Existing literature
explores this trade-off in more detail (Lawlis et al., 2001; Sedigh-Ali et al., 2001).

Although this paper only described the augmentation infrastructure for Rational Rose,
it should be noted that only a few details of this infrastructure were specific to this COTS
product. Over 95% of the code of the Rational Rose Augmentation Infrastructure was
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identical with the equivalent one for Matlab/Stateflow. The differences were entirely in
their instrumentation and translation code.

6.2. Improved plugability

Software components become exchangeable if their structure and behavior is consistent.
The structure of a software product is defined by its programmatic interface. We discussed
that the programmatic interface of COTS software can be augmented by implementing
an alternative interface. For example, we implemented a Data Manager consistent with
the RAI Data Manager for Matlab/Stateflow. Similarly, we discussed that the behavior
of COTS software can be augmented also. For example, we also implemented a Change
Manager consistent with the RAI Change Manager for Matlab/Stateflow.

Having a Data Manager and a Change Manager for Matlab/Stateflow consistent with
the RAI made it possible to exchange IBM Rational Rose with Matlab/Stateflow arbitrar-
ily. As such, the SDS simulator can use either IBM Rational Rose or Matlab/Stateflow
as its graphical front-end with no changes to its code because both COTS software prod-
ucts have identical access and notification interfaces. This form of “plugability” makes
it possible to replace COTS software in COTS-based systems with only minimal impact
on other components. Our framework thus improves the plugability of COTS software
because newly developed components, like the SDS Simulator, can be built under the
assumption that it is being integrated with idealized COTS components. The simulator
can thus be made insensitive to the particular choice of COTS product (Rational Rose,
Matlab/Stateflow, or some other software) being used as its graphical front-end.

To date, we used the framework presented in this paper to integrate several large-scale
COTS products (e.g., IBM Rational Rose, Matlab/Stateflow, and Microsoft PowerPoint)
with a wide variety of other software components.

6.3. Augmented notation and semantics

This paper emphasized on augmenting COTS software access and notification without
changing COTS software notation and semantics. However, especially in the context of
UML, numerous examples exist (Hofmeister et al., 1999; Medvidovic et al., to appear)
on how to augment the notation and semantics of UML by overloading the meaning of
its existing model elements. In support of the MoBIES project (DARPA’s Model-Based
Integration of Embedded Systems), we were asked to provide an integration framework
for COTS software commonly used in that community. The lack of integration was seen
as a major deterrent to model-based development supported by multiple perspectives.
The challenge to overcome was that the MoBIES program defined a language (nota-
tion and semantics) for Embedded System Component Modeling (ESCM) to describe
a challenge problem provided by Boeing. Due to some similarity between the ESCM
and UML, it was decided to model the ESCM in IBM Rational Rose to benefit from the
generic modeling software. Differences between the ESCM and UML were modeled in
Rose using some of its extensibility mechanisms (e.g., tagged values and stereotypes).
Additionally, an ESCM access and notification mechanism was created, similar to the
one discussed in this paper, to translate Rose UML elements into ESCM elements. This
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case study showed that it was possible to change the “appearance” of a COTS notation
and semantics without actually changing the COTS software itself. Although Rose be-
lieved it was modeling UML diagrams, other MoBIES software components integrated
with Rose believed that it was modeling ESCM diagrams. Mediation, translation, instru-
mentation, and reasoning ensured a seamless integration of both perspectives by bridging
their differences. The only limitations were that the augmented notation and semantics
could not be less restrictive than the COTS notation and semantics. For example, Ra-
tional Rose does not allow circular class inheritances and this restriction could not be
removed.

6.4. Validation and limitations

The integration framework presented in this paper has been applied to three major
COTS products produced by different vendors. In addition to IBM’s Rational Rose and
Mathwork’s Matlab/Stateflow, the technique was also applied to Microsoft PowerPoint.
Each COTS product was consequently integrated with different in-house and third-party
systems. In total over ten integration case studies were performed that tested the validity
of our approach. For example, Rose was integrated with the UML/Analyzer system
for automated consistency checking between UML class diagrams and C2 architectural
descriptions (Taylor et al., 1996); it was integrated with an automated class diagrams
abstraction software (Egyed, 2002), the SDS Simulator for executing UML-like class
and statechart diagrams (Egyed and Wile, 2001) the Boeing/MoBIES Translator and
Exporter for modeling embedded systems (Schulte, 2002), and several other systems.
Similarly, Matlab/Stateflow and Microsoft PowerPoint were integrated into yet other
systems like the Design Editor for modeling user-definable notations (Goldman and
Balzer, 1999) or the survey authoring system (Wile, 2001). The SDS Simulator was
the only system that was integrated with all three COTS products at some point in its
development. Table 1 lists a variety of COTS-based systems we built to date.

While it is out of the scope to discuss the systems in Table 1 in detail, it must be noted
that most of them required proactive COTS software to satisfy integration goals. The SDS
Simulator discussed in Section 4 is one such example. Only a few of the COTS-based
systems we’ve built could be satisfied with a purely reactive COTS software product.
For example, we built a Java code generator for UML that generated Java code out of
UML class diagrams. Due to the simple batch usage of this software, a reactive Rose was
sufficient. Nonetheless, even in this simple case study, instrumentation was necessary to
block user input to prevent model changes during code generation.

Although our case studies demonstrated a wide range of applicability of our integration
infrastructure, it cannot be considered proof of its general applicability. To date, our
focus was primarily on COTS software with graphical user interfaces that do externalize
significant parts of their internal data. In the context of these systems, we have repeatedly
demonstrated that it is possible to integrate COTS software in a scalable and reliable
fashion. The quality of the COTS-based systems was evaluated through numerous tests.
For example, large-scale models (data) with up to 37,000 model elements were used to
test the performance of data synchronicity and forced concurrent access was used to test
integration reliability.
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Table 1. COTS Software integration case studies.

Rational Rose UML/Analyzer (Egyed and Medvidovic, 2000)

UML Class Abstraction (Egyed, 2002)

SDS Simulator (Egyed and Wile, 2001)

Boeing/MoBIES ACL Property Translator and XML Exporter (Schulte, 2002)

UML Model Browser

UML Code Generator

Mathwork’s SDS Simulator

Matlab/Stateflow UML Model Browser

Boeing/MoBIES Change Event Analyzer

Microsoft PowerPoint Design Editor (Goldman and Balzer, 1999)

Survey Authoring (Wile, 2001)

SDS Simulator (early version) (Egyed and Wile, 2001)

To date, our infrastructure has been used by several companies (e.g., Boeing, Honey-
well, and SoHaR) and universities (e.g., Carnegie Mellon University).

6.5. Integration styles and architectures

Our framework encapsulates COTS software. In a way, the framework and the COTS
software together form a single software component to be used in any system although
it is more than a component since it also includes interface and behavior for interact-
ing with other components within the system. This work does not propose or suggest
appropriate integration styles or architectures. However, the framework is based on an
“access and notification style.” This abstract style can be refined in one of many con-
crete integration styles or communication mechanisms. Thus, the architectural style that
our framework is based upon does not significantly limit the reusability of our frame-
work. For instance, architecture description languages (Medvidovic and Taylor, 2000)
(ADLs) often use distinct interaction technologies and protocols. As such, components
may use synchronous calls (i.e., Main-Subroutine Style), asynchronous calls (i.e., RMI),
events (Luckham and Vera, 1995), shared memory, explicit data connectors (Medvidovic
et al., 1999), middleware platforms (i.e., COM or CORBA) or other communication
methods. This abundance of interaction methods implies many different architectural
styles.

The role of our integration framework is to identify internal activities within COTS
software but this framework can be extended to define any computation necessary to
interact with other software components in response to these internal activities. This
includes event passing, remote procedure calls, sockets, etc.

6.6. Open issues

Our work does not address the versioning problem that is inevitable with COTS products.
New versions of COTS software may not be compatible with previous augmentations.
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While we have so far only experienced minor, easily resolvable incompatibilities with
new versions of COTS products, it is certainly possible that major incompatibilities
could arise in future releases. This possibility would make it more difficult and resource
consuming to upgrade those COTS products. This issue is out of the scope of this work.

Finally, while our integration framework might be applicable to any COTS software,
we have focused solely on COTS software with user-driven, graphical interfaces (GUI).
This has limited our experience with the broader set of COTS software integration
somewhat. Future work will investigate this issue further.

7. Conclusion

Some requirements cannot be satisfied if a system’s software components do not behave
as intended. Augmenting COTS software with proactive behavior makes it technically
feasible to change the behavior of COTS software. This paper presented an approach
for augmenting COTS software. It is useful only if the COTS software is not sufficiently
proactive and these deficiencies are not acceptable to achieve the functional and/or
quality goals of integrating it into a larger software system.

Our approach uses instrumentation and reasoning to realize system-specific, proactive
behavior for COTS software, and mediation and translation to implement alternative,
system-specific interfaces for COTS software. While the augmentation of interfaces of
COTS software is common practice today, it alone is not sufficient for building COTS-
based systems. It is our observation that augmenting the behavior of COTS software is
vital for systems where the COTS software itself should become an active component
in the system; i.e., this is usually the case in COTS software with user interfaces (GUI).

COTS software reuse is only then practical if the cost of building the infrastructure
(mediation, translation, instrumentation, reasoning, etc.) is significantly lower than the
cost of implementing needed parts of the COTS software itself. We can confirm that
in all our case studies it would have been significantly more expensive to implement
COTS-compliant components rather than implementing the augmentation infrastructure.
This is in part because reasoning only had to duplicate small parts of the COTS soft-
ware functionality; other functionality was either not of interest or it could be accessed
reasonably well through the native interfaces of the COTS software.

We have conducted over a dozen case studies to validate our approach. We found that
our framework is most useful in cases where (1) the observable state and data of a COTS
product changes in response to external stimuli (e.g., user input) and (2) changes are
restricted to an observable subset at the time of the stimuli (e.g., selected data).
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