
Instant Consistency Checking for the UML
 Alexander Egyed

Teknowledge Corporation
4640 Admiralty Way, Suite 1010
Marina Del Rey, CA 90292, USA

aegyed@teknowledge.com

ABSTRACT
Inconsistencies in design models should be detected immediately
to save the engineer from unnecessary rework. Yet, tools are not
capable of keeping up with the engineers’ rate of model changes.
This paper presents an approach for quickly, correctly, and
automatically deciding what consistency rules to evaluate when a
model changes. The approach does not require consistency rules
with special annotations. Instead, it treats consistency rules as
black-box entities and observes their behavior during their
evaluation to identify what model elements they access. The
UML/Analyzer tool, integrated with IBM Rational Rose™, fully
implements this approach. It was used to evaluate 29 models with
tens-of-thousands of model elements, evaluated on 24 types of
consistency rules over 140,000 times. We found that the approach
provided design feedback correctly and required, in average, less
than 9ms evaluation time per model change with a worst case of
less than 2 seconds at the expense of a linearly increasing memory
need. This is a significant improvement over the state-of-the-art.

Categories and Subject Descriptors
D.2.10 [Design]: Validation

General Terms
Measurement, Documentation, Design, Languages, Verification.

Keywords
Incremental Analysis, Consistency, Design Feedback.

1. INTRODUCTION
The UML [19] is a collection of loosely-connected, diagram-
centric design notations. It allows engineers to explore the design
of a software system through independent views. However, our
work with engineers from industry (e.g., Boeing Company, SwRI)
has shown that it is all too easy to make contradictory design
decisions and that it is hard to recognize these inconsistencies.

After decades of progress on model consistency [8] and
consistency rules [18], this revelation is disturbing. Some are
quick to blame industry for its failure to adopt existing solutions.
Yet, we observed that the problem was not the lack of consistency
checking but the timeliness and quality of its feedback.
Consistency checking on the larger models took hours and was

thus performed occasionally only. At the end, the engineers were
presented with many inconsistencies (the worst industrial model
we investigated contained 1650 inconsistencies) but were not told
all the model elements that were involved in any given
inconsistency (needed for fixing it or living with it [7]). To fix the
inconsistencies, engineers then had to interrupt their work flow
and recollect all the concerns that had affected the inconsistencies
made hours, days, or weeks earlier. But the engineers were most
frustrated by also having to revisit and change follow-on
decisions that were based on inconsistent data.

The engineers’ frustration is easy to understand. It used to be
common for programmers to be presented with syntax and
semantic errors in their algorithms after the fact. Today,
programmers benefit from instant compilation and programming
environments point out many (if not all) syntax and semantic
errors within seconds of making them – usually in a non-intrusive
manner. Instant error feedback of any kind is a fundamental best
practice in the software engineering process.

This paper presents an approach to the instant consistency
checking of UML models, which is an adaptation to incremental
consistency checking. While incremental consistency checking is
typically much faster than batch consistency checking, it is not
necessarily instant [13]. Moreover, most techniques for
incremental consistency checking require consistency rules with
additional declarations [15].

We demonstrate that our approach keeps up with an engineer’s
rate of model changes, even for very large-scale industrial models
with tens of thousands of model elements. Furthermore, our
approach treats consistency rules given by the engineers as black
boxes (no special declarations are required) and works together
with existing commercial modeling tools such as IBM Rational
Rose™ (no special modeling tools are required). Yet, our
approach fully automatically, correctly, and efficiently decides
what consistency rules to evaluate when the model changes. It
does so by observing the behavior of consistency rules during
validation (i.e., what model elements were accessed during the
evaluation of a rule). To this end, we developed the equivalent of
a profiler for consistency checking. The profiling data is used to
establish a correlation among model elements, consistency rules,
and inconsistencies. Based on this correlation, we can decide
when to re-evaluate consistency rules and when to display
inconsistencies - allowing the engineers to quickly identify all
inconsistencies that pertain to any part of the model of interest at
any time (i.e., living with inconsistencies [7]).

Even though our approach (or any approach) is not guaranteed to
be instant for any consistency rule, this paper presents empirical
evidence that our approach is instant for the 24 consistency rules
we studied (these rules were chosen based on the needs of our
industrial partners). The evaluation showed that 99% of the model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

changes were evaluated within less than 50ms each (with an
average of 9ms), even on the largest industrial models we had
available. It is truly instant. On the downside, our approach
required additional memory for storing the profiling data – a
memory need that rose linearly with the size of the model and the
number of consistency rules.

While the tool and its evaluation were based on the UML 1.3
notation, we believe that the infrastructure applies equally to other
modeling languages (i.e., UML 2.0) because every consistency
rule has to access model elements and thus can be profiled. The
consistency rules may change but the infrastructure for evaluating
them instantly remains the same. To date, our approach was
implemented on top of a concrete consistency rule language,
consistency checker, and modeling tool. If a different modeling
tool is used then the profiler needs to be customized to that tool
and the consistency rules have to be customized to a
language/checker available for that tool. Doing so does not
necessarily require access to the source code of the modeling tool
or the consistency checker.

Our approach can be used to provide consistency feedback in an
intrusive or non-intrusive manner. It may also be coupled with
inconsistency actions to resolve errors automatically. These issues
are deferred to future work due to space limitations.

2. RELATED WORK
While researchers generally agree on what consistency means, the
methods on how to detect (in)consistencies vary widely. In
essence, we see a division between those who compare design
models directly and those who transform design models into some
intermediate, usually formal, representation to compare there.

For example, Tsiolakis-Ehrig [18] check the consistency between
class and sequence diagrams by converting both into a common
graph structure. VisualSpecs [3] uses transformation to substitute
the imprecision of OMT (a language similar to UML) with
algebraic specifications. Conflicting specifications are then
interpreted as inconsistencies. Belkhouche-Lemus [2] also follow
along the tracks of VisualSpecs in their use of a formal language
to substitute statechart and dataflow diagrams. Streaten et al. [20]
explore the use of description logic to detect inconsistencies
between sequence and statechart diagrams. Using an intermediate
representation has many advantages. Yet, for instant consistency
checking it has the disadvantage of also having to implement
instant transformation in addition to instant consistency checking.

While it is important to know about inconsistencies, it is often too
distracting to resolve them right away. The notion of “living with
inconsistencies” [1,7] advocates that there is a benefit in allowing
inconsistencies in design models on a temporary basis. While our
approach provides inconsistencies instantly, it does not require the
engineers to fix them instantly. Our approach tracks all presently-
known inconsistencies and lets the engineers explore
inconsistencies according to their interests in the model. This is a
non-trivial problem because the scope of an (in)consistency is
continuously affected by model changes. Our approach may also
be used for lazy consistency checking which has been explored in
[16] but is out of the scope of this paper.

xLinkIt [13] is a XML-based environment for evaluating the
consistency of “documents.” Such documents could be anything
including UML design models. xLinkIt is capable of checking the

consistency of an entire UML model and it also handles
incremental consistency by only evaluating changes to versions of
a document. However, it is not meant to support instant
consistency checking with frequent model changes. Instead, it is
most useful for the occasional exchange of models and for
enforcing consistency constraints in a uniform manner across
different modeling languages.

ArgoUML also detects inconsistencies in UML models [15] but it
requires annotated consistency rules to enable incremental
consistency checking. ArgoUML implements two consistency
checking mechanisms: a “warm queue” and a “hot queue”.
Consistency rules for which no annotations are provided are
placed into the warm queue. This queue is continuously evaluated
at 20% CPU time. Consistency rules in the hot queue have
annotations as to what types of model elements they affect. If a
model element changes then all those consistency rules are
evaluated that are affected by that element’s type. We will
demonstrate that type-based consistency checking produces good
performance but it is not able to keep up with an engineer’s rate
of model changes in very large models. Also, it requires
additional annotations which are not required by our approach.
The evaluation of the warm queue is essentially batch consistency
checking and thus not scalable for even moderately large models.
Yet, ArgoUML is an excellent tool for visually presenting instant
consistency feedback in a non-intrusive manner. This aspect of
ArgoUML is directly applicable to our approach.

Current approaches to consistency checking also borrow from
programming environments such as Centaur or Gandalf [9] that
incrementally evaluate syntactic or even semantic [6] consistency
rules within source code. These approaches use grammar
information to generate programming environments and
incremental consistency checker. In the UML domain,
consistency rules and checkers often already exist and are not
generated. While engineers in industry (e.g., Boeing Company)
do create their own consistency rules, they do not use grammar-
based languages or formal languages. Yet, this work is of interest
because it also investigated decentralized consistency checking
[11] and consistency checking among different languages [17]
which is outside the scope here.

Our work is loosely related to the constraint satisfaction problem
(CSP). CSP deals with the combinatorial problem of what choices
best satisfy a given set of constraints. Since this problem is
computationally expensive, certain optimizations have been
developed. In particular, the AC3 optimization [12] defines a
mapping between choices and the constraints they affect.
Constraints are only then re-evaluated if their choices change. We
borrowed this concept in our use of scopes. A key difference is
that CSP uses “white-box constraints.” It is thus known, in
advance, what choices a constraint will encounter. Consistency
rules in UML typically are black-box constraints. This is the main
reason why most approaches to incremental consistency checking
require additional annotations in the UML domain.

Viewpoints [10] is a classical approach to consistency checking.
It emphasizes on “upstream” modeling techniques and it
addresses issues such as how to resolve inconsistencies [14] and
how to tolerate them. These aspects are not discussed in this paper
but are very relevant to consistency checking. It is future work to
discuss how our approach handles these aspects.

3. INSTANT CONSISTENCY CHECKING
The following describes consistency rules and outlines the
problem of how to evaluate them incrementally. The discussion in
this paper is accompanied by a simple model illustration.

3.1 Consistency Rules and Illustration
The illustration in Figure 1 depicts three diagrams created with
the UML [19] modeling tool IBM Rational Rose™. The given
model represents an early design-time snapshot of a real, albeit
simplified, video-on-demand (VOD) system [4]. The class
diagram (top) represents the structure of the VOD system: a
Display used for visualizing movies and receiving user input, a
Streamer for downloading and decoding movie streams, and a
Server for providing the movie data.

waiting streaming
stream

wait

connect

Display
select()
draw()
stop()
start()

Server
connect()
handleRequest()

Streamer
stream()
wait()

User

disp :
Display
disp :

Display

st : Streamerst : Streamer
1: select

2: connect

3: wait
4: play 5: stream

Class Diagram

Statechart Diagram

Sequence Diagram

Figure 1. Simplified UML Model of the VOD System

In UML, a class’s behavior can be described in the form of a
statechart diagram. We did so for the Streamer class (middle).
The behavior of the Streamer is quite trivial. It first establishes a
connection to the server and then toggles between the waiting and
streaming mode depending on whether it receives the wait and
stream commands.

The sequence diagram (bottom) describes the process of selecting
a movie and playing it. Since a sequence diagram contains
interactions among instances of classes (objects), the illustration
depicts a particular user invoking the select method on an object,
called disp, of type Display. This object then creates a new object,
called st, of type Streamer, invokes connect and then wait. When
the user invokes play, object disp invokes stream on object st.

Consistency rules for UML describe conditions that an UML
model must satisfy for it to be considered a valid UML model
(e.g., syntactic well-formedness, coherence between different
diagrams, and even coherence between different models). Figure
2 describes three such consistency rules on how UML sequence
diagrams (objects and messages) relate to class and statechart
diagrams. These rules are implemented in a language provided by
the UML/Analyzer, a tool discussed later in detail. A consistency
rule may be thought of as a condition that evaluates a portion of a
model to a truth value. Note that rules 2 and 3 are not standard
UML well-formedness rules but they are examples of coherence
rules between two diagrams.

Rule
1

Name of message must match an operation in receiver’s class
operations=message.receiver.base.operations
return (operations->name->contains(message.name))

Rule
2

Calling direction of message must match an association
in=message.receiver.base.incomingAssociations;
out=message.sender.base.outgoingAssociations;
return (in.intersectedWith(out)<>{})

Rule
3

Sequence of object messages must correspond to events
(definition sketched)
startingPoints = find state transitions equal first message name
startingPoints->exists(object sequence equal reachable sequence
from startingPoint)

Figure 2. Sample Consistency Rules
For example, consistency rule 1 states that the name of a message
must match an operation in the receiver’s class. If this rule is
evaluated on the 3rd message in the sequence diagram (the wait
message) then the condition first computes operations =
message.receiver.base.operations where message.receiver is the
object st (this object is on the receiving end of the message; see
arrowhead), receiver.base is the class Streamer (object st is an
instance of class Streamer), and base.operations is {stream(),
wait()} (the list of operations of the class Streamer). The
condition then returns true because the set of operation names
(operations->name) contains the message name wait.

The model also contains inconsistencies. For example, there is no
connect() method in the Streamer class although the disp object
invokes connect on the st object (rule 1). Or, the disp object calls
the st object (arrow direction) even though in the class diagram
only a Streamer may call a Display (rule 2). Or, the sequence of
incoming messages of the st object (connect -> wait -> stream) is
not supported by the statechart diagram which expects a stream
after a connect (rule 3).

It is generally true that consistency rules are stateless and
deterministic. Our approach certainly presumes this. That is, if a
rule is evaluated on the same portion of the model twice then it
will perform the exact same actions and determine the same truth
value. In the following, we define a model element to be an
instance of an UML type. For example, all messages (e.g., wait)
are model elements of the UML type Message; and all objects
(e.g., st) are model elements of the UML type Object. The UML
types are defined according to the UML 1.3 notation1.

Note that consistency rules are typically expressed from a
particular point of view to ease their design and maintenance. For
example, consistency rule 1 is expressed from the view of a
message (i.e., given a message, is it consistent?). We refer to the
message as the root element of the rule. Yet, the consistency rules
are not only affected by changes to their root elements. One of the
most severe problems of incremental consistency checking is in
correctly identifying the true scope of model elements that affect
the truth value of any given consistency rule.

3.2 Understanding Change
Since consistency rules are conditions on a model, their truth
values change only if the model changes (or if the condition
changes but this is typically not the case and not considered here).
Instant consistency checking thus requires an understanding of

1 We used UML 1.3 because of the needs of our partners.

when, where, and how the model changes. Our approach is based
on an UML 1.3 infrastructure we previously developed and
integrated with IBM Rational Rose™ and other COTS modeling
tools [5]. This infrastructure exposes the modeling data of the
COTS modeling tool in a UML-compliant fashion. It also
employs a sophisticated change detection mechanism. For
example, if an engineer (i.e., while using Rose) creates a message
between two objects then this change is recognized as:
New model element: 102 UML.Message
Modified model element: 100 UML.Object [outgoingMessages]
Modified model element: 101 UML.Object [incomingMessages]

The first change notification tells about the creation of a model
element of UML type Message with an id that uniquely identifies
the model element. Since a message was created between two
existing objects, both these objects are modified in that one now
owns a new incoming message and the other a new outgoing
message. The infrastructure thus describes changes in terms of
their impact on the model but not the actual activities performed
by the engineers. For example, an engineer may create a message
in Rose by invoking a menu item or by dragging a toolbar icon,
yet the result, the creation, is the same.

3.3 The “What Happens If…” Solution
It is intuitive to think of instant consistency checking in terms of
what happens if a model element changes. For example, we know
that the message wait in the sequence diagram is consistent with
respect to rule 1 (i.e., the Streamer class has a method with the
same name). This truth is violated if the engineer changes the
name of the message, say, from wait to suspend (i.e., the Streamer
class does not have the method suspend). A change to a message
name thus requires the evaluation of the consistency rule 1.

However, a change to the message name is not the only way the
message wait can be made inconsistent with respect to rule 1. For
example, if the engineer instead renames the class method wait
into suspend then there is no longer a method that matches the
message name. This change also invalidates rule 1. And there are
many other changes that invalidate the consistency rule 1.

Given that there are potentially many ways on how a model
change affects consistency rules, it is difficult to identify all of
them. The issue of correctness is hard to guarantee although such
a solution is likely very efficient. While we found it intuitive to
think of instant design feedback in terms of “what happens if,” we
found that it is too complex to correctly support a large rule base.

3.4 The Type-Based Scope to Consistency
Approaches such as the ArgoUML [15] rely on a type-based
scope for incremental consistency checking. These approaches
use the scope to decide when to evaluate a consistency rule. If a
model element changes then all those rules are evaluated that
include the type of that model element in its scope. Typically, the
type-based scope of a consistency rule includes all types of model
elements it accesses. For example, consistency rule 1, starts at a
message (type Message), calls the receiver (type Object), then
calls the base (type Class) and finally its operations (type
Operation). The type-based scope for rule 1 is thus {Message,
Object, Class, and Operation}.

In the case of ArgoUML, the type scope must be provided by a
human in the form of special annotations to consistency rules.

Unfortunately, the UML has a limited number of (meta-level)
classes or class:field pairs that could be used as types. Thus, while
UML models may increase to arbitrary sizes, their type scope
stays constant. Figure 3 depicts the result of empirically
evaluating model changes on 24 consistency rules and 29 sample
models. It shows that brute-force consistency checking (of all
rules) is only scalable for small-sized models with less than 1000
model elements. While type-based consistency checking is
scalable for larger models with up to 10,000 model elements, the
figure demonstrates that it cannot support instant consistency
checking of arbitrary-sized UML models.

0

500

1000

1500

2000

2500

3000

100 1000 10000 100000

ev
lu

at
io

n
tim

e
in

 m
ill

is
ec

on
ds

model size

batch consistency checking

consistency checking
with type-based scope

consistency
checking with

instance-based
scope

Figure 3. Evaluation Time per Model Change: the evaluation

times of batch and type-based scope grow linearly with the size of
the model (note the exponential scale of the x-axis) and the

instance-based scope stays constant with the size of the model

4. Instance-Based Scope to Consistency
Our approach is similar to the type-based approach to consistency
checking. However, instead of using types of model element for
the scope, we use the actual instances. Figure 3 shows that an
instance-based scope for consistency checking is not only very
fast (see the tiny evaluation time) but it is also scalable to
arbitrary model sizes (see constant evaluation time regardless of
model size). Clearly, an instance-based scope seems ideal,
however, it is not possible to predict in advance what model
elements (=instances) are accessed by any given consistency rule.

4.1 Rule Types and Instances
During evaluation, a consistency rule requires access to a portion
of the model (some of its model elements). We define the
accessed portion of a model as the scope. For example, the
evaluation of rule 1 on message wait first accesses the message,
wait then the message’s receiver object st, then its base class
Streamer, and finally the methods stream and wait of the base
class (recall 3.1). This is how rule 1 was defined in Figure 2. The
scope of rule 1 on message wait is thus {wait, st, Streamer,
stream(), wait()} as illustrated in Figure 4. This scope includes
instances of model elements and not types. The scope of a
consistency rule is not constant. For example, the evaluation of
rule 1 on message play requires access to play, disp object,
Display class, and its four methods. Its scope is different from the
scope of rule 1 on message wait even though both evaluations are
based on the same consistency rule (rule type).

User

disp :
Display
disp :

Display

st : Streamerst : Streamer
1: select 2: connect

3: wait
4: play 5: stream

Sequence Diagram

Display
select()
draw()
stop()
start()

Server
connect()
handleRequest()

Streamer
stream()
wait()

Class Diagram

Figure 4. Scope for Message Wait evaluated by Rule 1

We thus must maintain the scope separately for every <rule, root
element> pair (e.g., <rule1, wait>). Recall that a consistency rule
is typically written from a particular point of view and starts its
evaluation at a particular point – the root element. We define a
<rule, root element> pair as a rule instance2. A rule instance
defines the type of rule it instantiates (e.g., rule 1), the root
element (e.g., message wait), and its scope. The evaluation of a
rule instance accesses all those model elements that are needed to
determine its truth. All those model elements are in the scope. All
other model elements are not needed. It follows that a rule
instance does not require its evaluation if a model element
changes that is not in its scope. For example, the message play is
not in the scope of rule instance <rule1, wait> and its change does
not affect this rule instance. However, the object st is in the scope
of the rule instance and its change could affect the truth.

If a model element changes then all rule instances are evaluated
that include the changed element in their scopes. For example, if
method wait is renamed then the rule instances <rule1, connect>,
<rule1, wait>, and <rule1, stream> need to be evaluated because
they contain the method wait in their scopes. Not evaluated are
rule instances such as <rule1, play> or <rule1, select>.

4.2 Scope Detection and Completeness
Since we treat our consistency rules as non-observable black
boxes, the first major obstacle is how to identify the instance-
scope of a rule instance even though this scope is not predictable.
We do so by instrumenting the modeling tool the engineer uses.
We essentially built a profiler for several commercial modeling
tools, including IBM Rational Rose. A typical profiler is used
during testing to log the lines of code executed. Our UML profiler
is similar in that it observes the evaluation of consistency rules
and logs the model elements used. Our profiler is based on a
COTS-incorporation infrastructure (Section 3.2) which exposes
the model elements of a COTS tool, says Rose, through a UML
1.3-compliant interface and provides a change detection
mechanism. The detailed working of this profiler cannot be
discussed here due to space limitations (see [5]).

We know from Section 4.1 that the model elements that must be
in the scope are those model elements accessed during the rule’s
evaluation. Through the help of the UML profiler, it is simple to

2 The root element of a rule instance is typically the first model element

accessed during evaluation. Since every rule accesses at least one model
element and the evaluation is deterministic, it follows that every
consistency rule must have a root element.

detect the scope for any given rule by clearing the log before the
evaluation, letting the profiler log all model elements accessed
during the evaluation, and storing the accessed model elements.

For example, consider again the evaluation of rule 1 on message
wait. This rule starts its evaluation at the root element – a
message. It first requests the receiver object for the message by
invoking the getReceiver() method on the message. The profiler
logs the use of the message wait. The rule then asks for the base
class of the object by invoking getBase() on the object st. The
profiler logs the use of the object st. The rule then accesses the
operations of the base class (getBehavioralFeatures()) and
requests the name of each one of them (getName()). The class and
all its operations are added to the log. The comparison at the end
does not access any additional model elements.

The scope of a rule is thus simply the set of model elements
accessed during the rule’s evaluation. It is computable
automatically. The questions are: (1) is this scope complete and
(2) is this scope (close to) minimal.

The Scope is Complete

A rule instance’s correctness requires its scope to include at least
those model elements that affect its truth value. Fortunately, one
may err in favor of having more elements in the scope than
needed causing potentially unnecessary evaluation but not
omitting necessary ones.

Our premise is that consistency rules are stateless and
deterministic (recall Section 3.1). The same rule invoked on the
same model uses the exact same model elements and results in the
exact same truth value time and time again. Thus, the scope
inferred through a rule’s evaluation is deterministic, repeatable,
and includes all model elements required to determine the truth
value (i.e., because it is stateless, all data must come from the
model that is being profiled). The profiled scope must thus be
complete because it accesses at least the model elements needed
for its evaluation. The scope is complete even though a
consistency rule may contain AND/OR subconditions that
influence how and whether model elements are accessed. For
example, rule 1 from Figure 2 could be rewritten in a way that is
equivalent in its truth value but uses a slightly different scope:

Operations=message.receiver.base.operations
For each operation in operations
 if (operation.name equals message.name) return true
end for
return false

This rewritten rule 1 iterates over the set of operations until the
first operation is found that matches the method name. This
expression is equivalent to the logical OR operator. The OR
operator requires a condition to be evaluated only until the first
sub-condition is true. For example, if A is true in A or B then B is
not evaluated. Thus, if rule 1 evaluates to true then not all
accessible model elements are accessed during its evaluation and
its scope does not include all accessible elements (e.g., B). Clearly
this rewritten rule does not have a complete scope if we define a
complete scope to include all model elements that are potentially
accessible.

Fortunately, this level of completeness is not necessary for our
problem. A logical condition containing an OR operator must
access at least those model elements that are required to

determine its truth value. Such a condition cannot change its truth
value if a model element is changed that is potentially accessible
although it was not accessed. For as long as A stays true in A or B,
changes to B do not matter and are not required to be in the scope.
For example, <rule1, stream> evaluates to true because there is a
stream() operation in the Streamer class. The rewritten rule does
not access wait() because it would only access it after stream().
Operation stream() is thus in the scope but operation wait() is not.
This is not a problem because operation wait() does not contribute
to the truth of this particular rule instance.

We encounter a similar situation with AND subconditions
because there a condition must be evaluated only until the first
subcondition is false to make the truth value false (e.g., if A is
false in A and B then B is not evaluated). Again, not all
potentially accessible model elements are accessed if the
condition evaluates to false but again this level of completeness is
not required.

The scope may change over the life of a rule instance.
Fortunately, the scope of a rule instance only changes if a model
element in the scope changes. Thus, the re-computation of a rule’s
scope coincides with the evaluation of its truth value and no
additional overhead is required. This also implies that the scope of
affected rule instances must be recomputed every time the model
changes but this overhead is negligible (i.e., the <50ms evaluation
time for 99% of all changes already includes this overhead).

In summary, the scope of a consistency rule cannot be predicted
ahead of time. We demonstrated that we can use a profiler to
observe it instead - even for models within commercial modeling
tools (e.g. IBM Rational Rose). The observed scope is
automatically computed and the overhead of computing it is very
small. However, the scope does consume memory.

The Scope is Not Minimal but Bounded

A minimal scope guarantees that a rule is evaluated only if its
truth value changes. Any evaluation that does not change a rule’s
truth value is unnecessary because it re-computes what is already
known. We believe that it is infeasible to compute a minimal
scope because such a scope depends on the current state of the
model and its potential changes. To illustrate this, consider once
again the rule instance <rule1, wait>. We know that its scope
must include the message wait. Yet consider a message name
change from wait to stream. While this change is alike the
previously used change example from wait to suspend, this
change is different in that it does not affect the truth value
because there is a corresponding method stream().

It is infeasible to eliminate all unnecessary evaluation without
once again introducing manual and error prone change
expressions as required for the “what happens if” solution in 3.3.
Yet, we have to be careful in limiting the scope; i.e., bounding it
to some maximum size. Our approach has this upper bound in
scope size: we already know that a rule’s evaluation uses at most
all potentially accessible model elements. The instance-based
scope is thus bounded to not include model elements that do not
potentially affect the truth value. We evaluated whether this
bounded scope is still computationally scalable and Section 6
presents the empirical evidence based on 29 models, tens of
thousands of model elements, and over 140,000 rule instances.
We found that the scope sizes, while not minimal, were small in

including 20 model elements or fewer for 95% of all rule
instances. But most significantly, we found that the scope sizes do
not increase with the size of the model. They are in fact a
constant. This explains why 99% of all model changes required
50ms or less evaluation time. Even the worst case was less than 2
seconds and this worst case occurred extremely rarely in only
0.000003% of all model changes.

In summary, our scope is small and bounded and it does not
increase with the size of the model. However, we did find that the
evaluation time increases linearly with the number of consistency
rule types. This is a known scalability issue of consistency
checking and discussed in more detail later.

Recognizing Rule Instances
If a model element changes then all those rule instances are
affected (i.e., should be evaluated) that contain the changed
element in their scopes. A simple lookup table is sufficient to
efficiently locate all affected rule instances for any given changed
model element:

processChange(changedElement)
 for every rule instance where scope contains changedElement
 evaluate <rule, changedElement>
 end for

Obviously, a scope is needed to know when to evaluate a rule
instance. But given that the scope is only available after the first
evaluation, how does the first evaluation happen (i.e., the chicken
and the egg problem)? The following discusses how to create and
first evaluate rule instances; and how to destroy them when they
are no longer needed. For example, if an engineer creates the
message connect between two objects in a sequence diagram
(Figure 5) then there are no rule instances yet that could evaluate
its truth value.

disp :st :
Streamer

st : Streamersrv :
Server

1: connect

Another Sequence
Diagram

Figure 5. A Message is Created in a Sequence Diagram

We thus require a mechanism for creating rule instances that is
based on the types of changes that could happen. The most
simplistic way of recognizing a new rule instance is through the
required type of its root element. That is, a new rule instance must
be created when a model element is created that matches the type
of the rule’s root element. For example, we know that rule 1
requires an UML Message as its root element because it was
written from the perspective of a message (recall Figure 2). Thus,
once the message connect is created, a new rule instance <rule1,
connect> is created and evaluated also (top of Figure 6).

The change notification mechanism of the UML 1.3 infrastructure
distinguishes between the creation, modification, and deletion of a
model element. If a model element is created then all rules (such
as the ones in Figure 2) that have a type of root element equal to
the type of the changed element must be found. For every rule
found, a rule instance is created with the changed model element
as its root element. For example, after the creation of the message
connect we find that rules 1, 2, and 3 have the same type of root

element. These rules are then instantiated with the message
connect as the root element (i.e., resulting in three new rule
instances). A newly created rule instance is immediately
evaluated to compute its truth value and scope. The type of the
root element can be determined introspectively and need not be
provided in form of additional annotations (Figure 6).

processChange(changedElement)
 if changedElement was created
 for every rule where type(rule.rootElement)=type(changedElement)
 ruleInstance = new <rule, changedElement>
 evaluate ruleInstance
 end for
 else if changedElement was deleted
 for every ruleInstance where ruleInstance.rootElement=changedElement
 destroy <ruleInstance, changedElement>
 end for
 end if
 for every ruleInstance where ruleInstance.scope contains changedElement
 evaluate <ruleInstance, changedElement>
 end for

Figure 6. Algorithm for Processing a Change Instantly

Rule instances are destroyed once their root elements are deleted.
For example the above three rule instances are destroyed once the
message connect is deleted. Thus, when a model element is
deleted, we find all rule instances with the same root element as
the changed element. These rule instances are then destroyed.

The life of a rule instance is tied to the life of its root element.
The root element remains constant for any given rule instance
throughout its life. It is interesting to observe that the creation of
rule instances is based on type information (types of model
elements) whereas the evaluation and destruction of rule instances
are based on instance information (model elements). The
algorithm above treats the evaluation (bottom) separately from the
rule creation and destruction (top). This is because the deletion of
a model element could trigger both the destruction of some rule
instances and the evaluation of others.

4.3 Evaluation Buffering
Our approach initially buffers the evaluation
of rule instances. The reason for this is that
single model changes typically cause multiple
change notifications. For example, if the class
type (base) of object svr is changed from
Server to Streamer then this results in three
change notifications:

Modified model element: 105 UML.Object [base]
Modified model element: 106 UML.Class [objects]
Modified model element: 107 UML.Class [objects]

The first change notifies that the base field of
the object was changed and the second/third
ones notify that the objects fields of both
classes changed (the back pointers) - recall
3.2. If we were to investigate the three change
notifications separately then we would
duplicate the evaluations of rule instances. For
example, two of the three changed model
elements are in the scope of <rule1, connect>
but the rule need only be evaluated once. Our
approach processes all change notifications
first before evaluating any rule instance. The

purpose of the evaluation buffer is thus to avoid adding the same
rule instance twice. This mechanism also prevents the double
evaluation of a newly created rule instance (Figure 6 appears to
evaluate new rule instances twice).

In summary, the buffering of evaluation rules improves the
response time. The previously reported response time of less than
50ms for 99% of all model changes included this buffering. It
must be stressed that this buffering is not a delay mechanism but
simply a way of separating the processing of change notification
from the evaluation of the affected rule instances. The evaluation
buffer can also be used for consistency rule ordering. UML
consistency rules are not ordered in their evaluation. However, it
is possible to write consistency rules with a particular ordering in
mind. It is out of the scope to discuss this issue further.

5. UML/ANALYZER TOOL
The UML/Analyzer tool implements our instant consistency
checking approach (Figure 7). It is built on top of the UML 1.3
infrastructure we previously built for IBM Rational Rose to
access Rose model elements and to receive instant change
notifications when the Rose model changes. This tool essentially
automates all the difficulties of instant consistency checking
discussed in this paper and it was used for the empirical
evaluation discussed in Section 6. To include new consistency
rules, the tool provides a consistency rule template which requires
an evaluation condition and a bit of administrative overhead for
registration. The rules are currently written in a programming
language based on the API for accessing model elements through
our UML 1.3 infrastructure.

Figure 7 depicts a few screen snapshots of the tool. The left
depicts IBM Rational Rose. An inconsistency is highlighted. It
shows that the message connect (in the sequence diagram) does
not have a corresponding operation in the receiver’s base class.
This inconsistency (described in the top right) involves 6 model

Figure 7. UML/Analyzer Tool Depicting an Inconsistency in IBM Rational Rose™

elements, which are listed there. As was discussed earlier, the tool
also helps the engineer in understanding exactly how model
elements affect inconsistencies. As such, when the engineer
selects a model element, say the message connect, then the tool
presents all rule instances that accessed it. The bottom right shows
that the message connect is actually involved in two
inconsistencies. This bi-directional navigation is essential for
understanding and resolving inconsistencies.

6. VALIDATION
Instant consistency checking is only then feasible if its
computational cost is small and its results are correct. We thus
empirically validated our approach on 29 UML models (26 of
them were third-party models) ranging from small models to very
large ones (Table 1). These models were evaluated on 24 types of
consistency rules (the three given in Figure 2 and 21 additional
ones). In total, over 140,000 rule instances were evaluated. Figure
3 previously presented the average response times of our
approach relative to the model size. It showed that brute-force
consistency checking was not instant. It also showed that type-
based consistency checking did not scale to very large models
although it was close to instant for medium-sized models. And it
showed that our approach was not affected by the model size at
all. This data was computed by systematically changing all model
elements of all models. Since there were over 370.000 field
values affected (most model elements had multiple fields), we did
so automatically. In 97% of all model changes, the response time
was less than 10ms; 99% of all rule instances required less than
50ms with an average of 9ms per change and a worst-case of less
than 2 seconds.

Table 1. Study Models used for Empirical Evaluation

Size3 Model Name Size3 Model Name
3450 ANTS Visualizer 31478 Insurance Fees&Claims
810 Bank Automat 1899 Inventory and Sales

6459 Biter Robocup Client 4083 iTalks
4741 BMS 3366 LCA

125978 Boeing OEP 3.2 544 Microwave Oven
65213 Boeing PCES 891 MVC
6967 Calendarium 2.1 3605 NPI
1409 Curriculum 2321 NZ Intern. Airport
4766 DeSI 2.3 38719 OODT
20554 DSpace 3.2 1729 Teleoperated Robot
1113 eBullition 1209 UML Tutor
4298 Game System 3067 Vacation and Sick Leave
2352 HDCP Defect Seeding 230 Video on Demand
5014 HMS 23016 Wordpad
1596 Home Appliances & Ctrl

Initial Cost of Computing All Truth Values and Scopes: The
cost of a single evaluation of a rule instance is approximately the
number of fields visited (=scope size Ssize). The number of rule
instances of a rule type RT# is at most the number of existing
model elements Msize. The computational complexity for
evaluating all rule instances is thus O(RT# * Msize * Ssize). This cost
is a one-time expense.

Recurring Cost of Computing Changed Truth Values and
Scopes: For every changed model element, it is necessary to

3 We only counted fields of model elements that were used during

consistency checking so that the sizes were not artificially inflated.

identify all rule instances that are affected. We define the number
of affected rule instances as ARI. The computational cost for
evaluating all affected rule instances is thus O(ARI * Ssize). This
cost is a recurring cost because it applies to every model change.

We applied our instant consistency checking tool (the
UML/Analyzer) to the 29 sample models and measured the scope
sizes Ssize and the ARI by considering all possible model changes4.
This was done through automated validation by systematically
changing all model elements. In the following, we present
empirical evidence that Ssize and ARI are small values that do not
increase with the size of the model.

We expected some variability in Ssize because the sample models
were very diverse in contents, domain, and size. Indeed we
measured a wide range of values between the smallest and largest
Ssize (min/max) but found that the averages stayed constant with
the size of the model. Figure 8 depicts the values for Ssize relative
to the model sizes of the 29 sample models. The figure depicts
each model as a vertical range (minimum to maximum). The solid
dots between the minimum and maximum values are the average
values. Notice the constant, horizontal line of average scope sizes.

1

10

100

1000

100 1000 10000 100000 1000000
Model Size

Sc
op

e
si

ze
 [a

ve
ra

ge
/m

in
/m

ax
] (

S
si

ze
)

Figure 8. Scope Sizes remain constant over Model Size

The initial, one-time cost of computing the truth values and
scopes of a model is linear with the size of the model and the
number of rule types O(RT# * Msizee) because Ssize is a small
constant and constants are ignored for computational complexity.

To validate the recurring computational cost of computing
changed truth values and scopes, we next discuss how many rule
instances must be evaluated with a single change (ARI). Since the
scope sizes were constant, it was expected that the ARI would be
constant also (i.e., the likelihood for rule instances to be affected
by a change is directly proportional to the scope size). Again, we
found a wide range of values between the smallest and largest ARI
(min/max) but confirmed that the averages stayed constant with
the size of the model (Figure 9) – though the maximum increased
slightly (consider the logarithmic scale of the x-axis).

ARI was computed by evaluating all rule instances and then
measuring in how many scopes each model element appeared.
The figure shows that in the worst case, over 1000 rule instances
have to be evaluated. But the average values reveal that most

4 We only changed model elements but did not create/delete them because

there would be an infinite number of possible model changes. Also,
creation/deletion causes changes to the model size only and we will
demonstrate that our approach’s scalability is not affected by the size.

changes require few evaluations (between 1-10 depending on the
model).

Figure 9. Affected Rule Instances (ARI) stays constant

However, not all changes were equally likely. While we were not
allowed to observe how the engineers changed the models, we do
know that rule instances with bigger scopes have a higher
likelihood of them being re-evaluated. The scalability issue was
thus the scope size Ssize. We showed that Ssize does not increase
with the size of the model which is one important factor for
scalability. The following shows the distribution of Ssize across the
140,000 rule instances of our 29 models. While there were some
outliers where Ssize was large, we found that the likelihood of Ssize
being large decreased drastically.

Figure 10 depicts for all 29 projects separately what percentage of
rule instances (y-axis) had a scope of less than 5, 10, 15,… model
elements (x-axis). The table shows that over 72% of all rule
instances evaluated less than 6 model elements and only 5% of all
rule instances evaluated more than 25 model elements. Therefore,
95% of all 140,000 rule instances evaluated less or equal than 25
model elements. This data further confirms that even in the worst-
case scenario of over one thousand evaluations per change, most
of these evaluations are expected to be very cheap.

0

5000

10000

15000

20000

25000

30000

<=5 <=10 <=15 <=20 <=25 <=30 <=35
Threshold of Scope Size

N
um

be
r o

f R
ul

e
In

st
an

ce
s

be
lo

w
 T

hr
es

ho
ld

VOD Sample Microwave Oven
Bankautomat MVC
eBullition UML Tutor
Curriculum Home Appliances & Ctrl
Teleoperated Robot Inventory and Sales
NZ International Airport HDCP Defect Seeding
Vacation & Sick Leave LCA
ANTS Visualizer NPI
iTalks Game System
BMS DeSI 2.3
HMS Biter Robocup Client
Calendarium 2.1 Dspace 3.2
Wordpad Insurance Fees & Claims
OODT Boeing PCES
Boeing OEP 3.2

Figure 10. Number of Model Elements Accessed by

Constraints
The above data did not consider a changing number of
consistency rules RT#. Indeed, consistency rules tend to be well-
defined, finite, and stable in most domains. However, as was
discussed earlier, we worked with engineers who adapted these

rules and even introduced their own. Clearly, our approach (or
any approach to incremental consistency checking) is not
amendable to arbitrary consistency rules. If a rule must
investigate all model elements then such a rule’s scope is bound
to increase with the size of the model. However, we demonstrated
on the 24 consistency rules that rules typically are not global; they
are in fact surprisingly local in their investigations.

Our approach even then outperforms a type-based approach if the
creation of new model elements is the dominant operation. Recall
that our approach uses type information for the creation of rule
instances but there can only be as many creations as there are rule
types (a constant independent of the size of the model). Thus, our
type-based creation does not have the scalability problems of a
type-based approach to consistency checking (Figure 3).

On the downside, our approach does require additional memory
for storing the scopes. Figure 11 depicts the linear relationship
between the model size and the memory cost. It can be seen that
the memory cost rises linearly with the number of rule instances.
This should not be surprising given that the scope sizes are
constant with respect to the model size but the number of rule
instances increases.

100

1000

10000

100000

1000000

100 1000 10000 100000

m
em

or
y

co
st

 (t
ot

al
 s

co
pe

 s
iz

e)
an

d
nu

m
be

r o
f r

ul
e

in
st

an
ce

s

model size

memory cost

number of rule
instances

Figure 11. Memory Cost Increases Linearly with Model Size

We found that there were about half as many rule instances as the
number of model elements (given our 24 consistency rule types).
Thus, there were in average 0.02 rule instances per model element
and consistency rule. Given that a rule instance had in average 7.6
scope elements, it followed that the memory cost was 0.15 *
model size * number of consistency rules (RT#). Or its cost is
O(RT#*Ssize). This linear memory cost was acceptable to the
engineers given the vastly superior response time.

Threats to Validity:

Internal validity: We investigated 24 consistency rules in the
context of 29, mostly third-party models. The models were vastly
different in size and domain. Since our approach performed well
for all these models, we believe that there are no threats to the
internal validity of the measured data. However, we were not able
to directly observe the engineers in their use of our approach and
could not provide heuristics on likely changes. Yet, in interviews
with the engineers we were told that at no time they felt delays of
any kind. In their opinion, the approach was truly instant.

External validity: We conducted experiments where we changed
the number of constraint rules and found the basic observations to
be identical although the values changed. For example, we
observed that a different number of consistency rules also
produced a constant ARI although the ARI value was different
(i.e., half the number of consistency rules resulted in roughly half

1

10

100

1000

10000

100 1000 10000 100000 1000000
Model Size

A
ffe

ct
ed

 R
ul

e
In

st
an

ce
 [a

ve
ra

ge
/m

ax
]

(A
R

I)

the ARI). It follows that more consistency rules imply more
evaluation time. This cost is expected to increase linearly.
Clearly, we cannot support an infinite number of consistency
rules but we typically do not have to. For the engineers we
worked with, the 24 consistency rules covered all relevant
situations for the consistency of sequence diagrams with class and
statechart diagrams (in their domains). And there are roughly a
hundred more known rules for other types of UML diagrams, say
deployment diagrams or use-case diagrams. Even if these other
rules were included in our approach, the scopes of these rules
would overlap mostly with other UML diagrams and thus not
affect our rules much. This implies that more consistency rules do
no necessarily imply a longer evaluation time. However, given
that 99% of all changes required 50ms or less evaluation time, we
do not foresee scalability issues even with an order of magnitude
larger RT#.

7. CONCLUSIONS
This paper introduced an approach for quickly, correctly, and
automatically deciding when to evaluate consistency rules. We
demonstrated that our approach works with black-box consistency
rules and that these rules do not have to be annotated. Instead, our
approach used a form of profiling to observe the behavior of the
consistency rules during evaluation. We demonstrated on 29
UML models that the average model change cost 9ms, 99% of the
model changes cost less than 50ms, and that the worst case was
below 2 seconds.

It is very significant to understand that our approach maintains a
separate scope of model elements for every instance of
consistency rule. This scope is computed automatically during
evaluation and used to determine when to re-evaluate rules. In the
case of an inconsistency, this scope tells the engineer all the
model elements that were involved. Moreover, if an engineer
should choose to ignore an inconsistency (i.e., not resolve it right
away), an engineer may use the scopes to quickly locate all
inconsistencies that directly relate to a part of the model of
interest. This is important for living with inconsistencies but it is
also important for not getting overwhelmed by too much feedback
at once.

However, we cannot guarantee that all consistency rules can be
evaluated instantly. The 24 rules of our study were chosen to
cover the needs for our industrial partners. They cover a
significant set of rules and we demonstrated that they were
handled extremely efficiently. But it is theoretically possible to
write consistency rules in a non-scalable fashion although it must
be stressed that of the hundreds of rules known to us, none fall
into this category.

8. REFERENCES
 [1] Balzer, R.: Tolerating Inconsistency, Proceedings of 13th

International Conference on Software Engineering (ICSE),
May 1991, pp.158-165.

 [2] Belkhouche, B. and Lemus, C.: Multiple View Analysis and
Design, Proceedings of the International Workshop on
Viewpoint: Multiple Perspectives in Software Development,
October 1996.

 [3] Cheng, B. H. C., Wang, E. Y., and Bourdeau, R. H.: A
Graphical Environment for Formally Developing Object-

Oriented Software, Proceedings of IEEE International
Conference on Tools with AI, November 1994.

 [4] Movie Player at http://peace.snu.ac.kr/dhkim/java/MPEG/.
 [5] Egyed A. and Balzer B.: Integrating COTS Software into

Systems through Instrumentation and Reasoning. Journal of
Automated Software Engineering (JASE) 13(1), 2006, 41-64.

 [6] Emmerich, W.: GTSL | An Object-Oriented Language for
Specication of Syntax Directed Tools, Proceedings of the 8th
International Workshop on Software Speciation and Design,
1996, pp.26-35.

 [7] Fickas, S., Feather, M., Kramer, J.: Proceedings of the
Workshop on Living with Inconsistency. Boston, USA, 1997.

 [8] Finkelstein A., Gabbay D., Hunter A., Kramer J., and
Nuseibeh B.: Inconsistency Handling in Multi-Perspective
Specifications, IEEE Transactions on Software Engineering
(TSE) 20(8), 1994, 569-578.

 [9] Habermann A. N. and Notkin D.: Gandalf: Software
Development Environments. IEEE Transactions on Software
Engineering, 12(12), 1986, 1117.

 [10] Hunter A. and Nuseibeh B.: Managing Inconsistent
Specifications: Reasoning, Analysis, and Action. ACM
Transactions on Software Engineering and Methodology
7(4), 1998, 335-367.

 [11] Kaplan, S. M. and Kaiser, G. E.: Incremental attribute
evaluation in distributed language-based environments,
Proceedings of the 5th ACM Symposium on Principles of
Distributed Computing, Calgary, Canada, 1986, pp.121-130.

 [12] Mackworth A. K.: Consistency in Networks of Relations.
Journal of Artificial Intelligence, 8(1), 1977, 99-118.

 [13] Nentwich C., Capra L., Emmerich W., and Finkelstein A.:
xlinkit: a consistency checking and smart link generation
service. ACM Transactions on Internet Technology (TOIT)
2(2), 2002, 151-185.

 [14] Nuseibeh, B. and Russo, A.: On the Consequences of Acting
in the Presence of Inconsistency, Proceedings of the 9th
International Workshop on Software Specification & Design,
Ise-Shima, Japan, April 1998, pp.156-158 .

 [15] Robins, J. and others: "ArgoUML," http://argouml.tigris.org/.
 [16] Roussopoulos N.: An Incremental Access Method for

ViewCache: Concept, Algorithms, and Cost Analysis. ACM
Transactions on Database Systems 16(3), 1991, 535-563.

 [17] Taylor, R. N., Selby, R. W., Young, M., Belz, F. C., Clarce,
L. A., Wileden, J. C., Osterweil, L., and Wolf, A. L.:
Foundations of the Arcadia Environment Architecture,
Proceedings of the 4th ACM SIGSOFT Symposium on
Software Development Environments, Irvine, CA, 1998.

 [18] Tsiolakis, A. and Ehrig, H.: Consistency Analysis of UML
Class and Sequence Diagrams using Attributed Graph
Grammars, Proceedings of Workshop on Graph
Transformation Systems (GRATRA), March 2000, pp.77-86.

 [19] Unified Modeling Language (UML) at http://www.omg.org/.
 [20] van Der Straeten, R., Mens, T., Simmonds, J., and Jonckers,

V.: Using Description Logic to Maintain Consistency
between UML Models, Proceedings of 6th International
Conference on the Unified Modeling Language (UML 2003),
October 2003.

