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ABSTRACT 
Inconsistencies in design models should be detected immediately 
to save the engineer from unnecessary rework. Yet, tools are not 
capable of keeping up with the engineers’ rate of model changes. 
This paper presents an approach for quickly, correctly, and 
automatically deciding what consistency rules to evaluate when a 
model changes. The approach does not require consistency rules 
with special annotations. Instead, it treats consistency rules as 
black-box entities and observes their behavior during their 
evaluation to identify what model elements they access. The 
UML/Analyzer tool, integrated with IBM Rational Rose™, fully 
implements this approach. It was used to evaluate 29 models with 
tens-of-thousands of model elements, evaluated on 24 types of 
consistency rules over 140,000 times. We found that the approach 
provided design feedback correctly and required, in average, less 
than 9ms evaluation time per model change with a worst case of 
less than 2 seconds at the expense of a linearly increasing memory 
need. This is a significant improvement over the state-of-the-art. 

Categories and Subject Descriptors 
D.2.10 [Design]: Validation 

General Terms 
Measurement, Documentation, Design, Languages, Verification. 

Keywords 
Incremental Analysis, Consistency, Design Feedback. 

1. INTRODUCTION 
The UML [19] is a collection of loosely-connected, diagram-
centric design notations. It allows engineers to explore the design 
of a software system through independent views. However, our 
work with engineers from industry (e.g., Boeing Company, SwRI) 
has shown that it is all too easy to make contradictory design 
decisions and that it is hard to recognize these inconsistencies.  

After decades of progress on model consistency [8] and 
consistency rules [18], this revelation is disturbing. Some are 
quick to blame industry for its failure to adopt existing solutions. 
Yet, we observed that the problem was not the lack of consistency 
checking but the timeliness and quality of its feedback. 
Consistency checking on the larger models took hours and was 

thus performed occasionally only. At the end, the engineers were 
presented with many inconsistencies (the worst industrial model 
we investigated contained 1650 inconsistencies) but were not told 
all the model elements that were involved in any given 
inconsistency (needed for fixing it or living with it [7]). To fix the 
inconsistencies, engineers then had to interrupt their work flow 
and recollect all the concerns that had affected the inconsistencies 
made hours, days, or weeks earlier. But the engineers were most 
frustrated by also having to revisit and change follow-on 
decisions that were based on inconsistent data.  

The engineers’ frustration is easy to understand. It used to be 
common for programmers to be presented with syntax and 
semantic errors in their algorithms after the fact. Today, 
programmers benefit from instant compilation and programming 
environments point out many (if not all) syntax and semantic 
errors within seconds of making them – usually in a non-intrusive 
manner. Instant error feedback of any kind is a fundamental best 
practice in the software engineering process.  

This paper presents an approach to the instant consistency 
checking of UML models, which is an adaptation to incremental 
consistency checking. While incremental consistency checking is 
typically much faster than batch consistency checking, it is not 
necessarily instant [13]. Moreover, most techniques for 
incremental consistency checking require consistency rules with 
additional declarations [15]. 

We demonstrate that our approach keeps up with an engineer’s 
rate of model changes, even for very large-scale industrial models 
with tens of thousands of model elements. Furthermore, our 
approach treats consistency rules given by the engineers as black 
boxes (no special declarations are required) and works together 
with existing commercial modeling tools such as IBM Rational 
Rose™ (no special modeling tools are required). Yet, our 
approach fully automatically, correctly, and efficiently decides 
what consistency rules to evaluate when the model changes. It 
does so by observing the behavior of consistency rules during 
validation (i.e., what model elements were accessed during the 
evaluation of a rule). To this end, we developed the equivalent of 
a profiler for consistency checking. The profiling data is used to 
establish a correlation among model elements, consistency rules, 
and inconsistencies. Based on this correlation, we can decide 
when to re-evaluate consistency rules and when to display 
inconsistencies - allowing the engineers to quickly identify all 
inconsistencies that pertain to any part of the model of interest at 
any time (i.e., living with inconsistencies [7]).   

Even though our approach (or any approach) is not guaranteed to 
be instant for any consistency rule, this paper presents empirical 
evidence that our approach is instant for the 24 consistency rules 
we studied (these rules were chosen based on the needs of our 
industrial partners). The evaluation showed that 99% of the model 
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changes were evaluated within less than 50ms each (with an 
average of 9ms), even on the largest industrial models we had 
available. It is truly instant. On the downside, our approach 
required additional memory for storing the profiling data – a 
memory need that rose linearly with the size of the model and the 
number of consistency rules.  

While the tool and its evaluation were based on the UML 1.3 
notation, we believe that the infrastructure applies equally to other 
modeling languages (i.e., UML 2.0) because every consistency 
rule has to access model elements and thus can be profiled. The 
consistency rules may change but the infrastructure for evaluating 
them instantly remains the same. To date, our approach was 
implemented on top of a concrete consistency rule language, 
consistency checker, and modeling tool. If a different modeling 
tool is used then the profiler needs to be customized to that tool 
and the consistency rules have to be customized to a 
language/checker available for that tool. Doing so does not 
necessarily require access to the source code of the modeling tool 
or the consistency checker.  

Our approach can be used to provide consistency feedback in an 
intrusive or non-intrusive manner. It may also be coupled with 
inconsistency actions to resolve errors automatically. These issues 
are deferred to future work due to space limitations. 

2. RELATED WORK 
While researchers generally agree on what consistency means, the 
methods on how to detect (in)consistencies vary widely. In 
essence, we see a division between those who compare design 
models directly and those who transform design models into some 
intermediate, usually formal, representation to compare there. 

For example, Tsiolakis-Ehrig [18] check the consistency between 
class and sequence diagrams by converting both into a common 
graph structure. VisualSpecs [3] uses transformation to substitute 
the imprecision of OMT (a language similar to UML) with 
algebraic specifications. Conflicting specifications are then 
interpreted as inconsistencies. Belkhouche-Lemus [2] also follow 
along the tracks of VisualSpecs in their use of a formal language 
to substitute statechart and dataflow diagrams. Streaten et al. [20] 
explore the use of description logic to detect inconsistencies 
between sequence and statechart diagrams. Using an intermediate 
representation has many advantages. Yet, for instant consistency 
checking it has the disadvantage of also having to implement 
instant transformation in addition to instant consistency checking. 

While it is important to know about inconsistencies, it is often too 
distracting to resolve them right away. The notion of “living with 
inconsistencies” [1,7] advocates that there is a benefit in allowing 
inconsistencies in design models on a temporary basis. While our 
approach provides inconsistencies instantly, it does not require the 
engineers to fix them instantly. Our approach tracks all presently-
known inconsistencies and lets the engineers explore 
inconsistencies according to their interests in the model. This is a 
non-trivial problem because the scope of an (in)consistency is 
continuously affected by model changes. Our approach may also 
be used for lazy consistency checking which has been explored in 
[16] but is out of the scope of this paper.  

xLinkIt [13] is a XML-based environment for evaluating the 
consistency of “documents.” Such documents could be anything 
including UML design models. xLinkIt is capable of checking the 

consistency of an entire UML model and it also handles 
incremental consistency by only evaluating changes to versions of 
a document. However, it is not meant to support instant 
consistency checking with frequent model changes. Instead, it is 
most useful for the occasional exchange of models and for 
enforcing consistency constraints in a uniform manner across 
different modeling languages. 

ArgoUML also detects inconsistencies in UML models [15] but it 
requires annotated consistency rules to enable incremental 
consistency checking. ArgoUML implements two consistency 
checking mechanisms: a “warm queue” and a “hot queue”. 
Consistency rules for which no annotations are provided are 
placed into the warm queue. This queue is continuously evaluated 
at 20% CPU time. Consistency rules in the hot queue have 
annotations as to what types of model elements they affect. If a 
model element changes then all those consistency rules are 
evaluated that are affected by that element’s type. We will 
demonstrate that type-based consistency checking produces good 
performance but it is not able to keep up with an engineer’s rate 
of model changes in very large models. Also, it requires 
additional annotations which are not required by our approach. 
The evaluation of the warm queue is essentially batch consistency 
checking and thus not scalable for even moderately large models. 
Yet, ArgoUML is an excellent tool for visually presenting instant 
consistency feedback in a non-intrusive manner. This aspect of 
ArgoUML is directly applicable to our approach. 

Current approaches to consistency checking also borrow from 
programming environments such as Centaur or Gandalf [9] that 
incrementally evaluate syntactic or even semantic [6] consistency 
rules within source code. These approaches use grammar 
information to generate programming environments and 
incremental consistency checker. In the UML domain, 
consistency rules and checkers often already exist and are not 
generated. While engineers in industry (e.g., Boeing Company) 
do create their own consistency rules, they do not use grammar-
based languages or formal languages. Yet, this work is of interest 
because it also investigated decentralized consistency checking 
[11] and consistency checking among different languages [17] 
which is outside the scope here. 

Our work is loosely related to the constraint satisfaction problem 
(CSP). CSP deals with the combinatorial problem of what choices 
best satisfy a given set of constraints. Since this problem is 
computationally expensive, certain optimizations have been 
developed. In particular, the AC3 optimization [12] defines a 
mapping between choices and the constraints they affect. 
Constraints are only then re-evaluated if their choices change. We 
borrowed this concept in our use of scopes. A key difference is 
that CSP uses “white-box constraints.” It is thus known, in 
advance, what choices a constraint will encounter. Consistency 
rules in UML typically are black-box constraints. This is the main 
reason why most approaches to incremental consistency checking 
require additional annotations in the UML domain. 

Viewpoints [10] is a classical approach to consistency checking. 
It emphasizes on “upstream” modeling techniques and it 
addresses issues such as how to resolve inconsistencies [14] and 
how to tolerate them. These aspects are not discussed in this paper 
but are very relevant to consistency checking. It is future work to 
discuss how our approach handles these aspects. 



3. INSTANT CONSISTENCY CHECKING 
The following describes consistency rules and outlines the 
problem of how to evaluate them incrementally. The discussion in 
this paper is accompanied by a simple model illustration.  

3.1 Consistency Rules and Illustration 
The illustration in Figure 1 depicts three diagrams created with 
the UML [19] modeling tool IBM Rational Rose™. The given 
model represents an early design-time snapshot of a real, albeit 
simplified, video-on-demand (VOD) system [4]. The class 
diagram (top) represents the structure of the VOD system: a 
Display used for visualizing movies and receiving user input, a 
Streamer for downloading and decoding movie streams, and a 
Server for providing the movie data. 
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Figure 1.  Simplified UML Model of the VOD System 

In UML, a class’s behavior can be described in the form of a 
statechart diagram. We did so for the Streamer class (middle). 
The behavior of the Streamer is quite trivial. It first establishes a 
connection to the server and then toggles between the waiting and 
streaming mode depending on whether it receives the wait and 
stream commands. 

The sequence diagram (bottom) describes the process of selecting 
a movie and playing it. Since a sequence diagram contains 
interactions among instances of classes (objects), the illustration 
depicts a particular user invoking the select method on an object, 
called disp, of type Display. This object then creates a new object, 
called st, of type Streamer, invokes connect and then wait. When 
the user invokes play, object disp invokes stream on object st. 

Consistency rules for UML describe conditions that an UML 
model must satisfy for it to be considered a valid UML model 
(e.g., syntactic well-formedness, coherence between different 
diagrams, and even coherence between different models). Figure 
2 describes three such consistency rules on how UML sequence 
diagrams (objects and messages) relate to class and statechart 
diagrams. These rules are implemented in a language provided by 
the UML/Analyzer, a tool discussed later in detail. A consistency 
rule may be thought of as a condition that evaluates a portion of a 
model to a truth value. Note that rules 2 and 3 are not standard 
UML well-formedness rules but they are examples of coherence 
rules between two diagrams. 

Rule 
1 

Name of message must match an operation in receiver’s class 
operations=message.receiver.base.operations 
return (operations->name->contains(message.name)) 

Rule 
2 

Calling direction of message must match an association  
in=message.receiver.base.incomingAssociations; 
out=message.sender.base.outgoingAssociations; 
return (in.intersectedWith(out)<>{}) 

Rule 
3 

Sequence of object messages must correspond to events  
(definition sketched) 
startingPoints = find state transitions equal first message name 
startingPoints->exists(object sequence equal reachable sequence 
from startingPoint) 

Figure 2.  Sample Consistency Rules 
For example, consistency rule 1 states that the name of a message 
must match an operation in the receiver’s class. If this rule is 
evaluated on the 3rd message in the sequence diagram (the wait 
message) then the condition first computes operations = 
message.receiver.base.operations where message.receiver is the 
object st (this object is on the receiving end of the message; see 
arrowhead), receiver.base is the class Streamer (object st is an 
instance of class Streamer), and base.operations is {stream(), 
wait()} (the list of operations of the class Streamer). The 
condition then returns true because the set of operation names 
(operations->name) contains the message name wait.  

The model also contains inconsistencies. For example, there is no 
connect() method in the Streamer class although the disp object 
invokes connect on the st object (rule 1). Or, the disp object calls 
the st object (arrow direction) even though in the class diagram 
only a Streamer may call a Display (rule 2). Or, the sequence of 
incoming messages of the st object (connect -> wait -> stream) is 
not supported by the statechart diagram which expects a stream 
after a connect (rule 3). 

It is generally true that consistency rules are stateless and 
deterministic. Our approach certainly presumes this. That is, if a 
rule is evaluated on the same portion of the model twice then it 
will perform the exact same actions and determine the same truth 
value. In the following, we define a model element to be an 
instance of an UML type. For example, all messages (e.g., wait) 
are model elements of the UML type Message; and all objects 
(e.g., st) are model elements of the UML type Object. The UML 
types are defined according to the UML 1.3 notation1.  

Note that consistency rules are typically expressed from a 
particular point of view to ease their design and maintenance. For 
example, consistency rule 1 is expressed from the view of a 
message (i.e., given a message, is it consistent?). We refer to the 
message as the root element of the rule. Yet, the consistency rules 
are not only affected by changes to their root elements. One of the 
most severe problems of incremental consistency checking is in 
correctly identifying the true scope of model elements that affect 
the truth value of any given consistency rule. 

3.2 Understanding Change 
Since consistency rules are conditions on a model, their truth 
values change only if the model changes (or if the condition 
changes but this is typically not the case and not considered here). 
Instant consistency checking thus requires an understanding of 

                                                                 
1 We used UML 1.3 because of the needs of our partners.  



when, where, and how the model changes. Our approach is based 
on an UML 1.3 infrastructure we previously developed and 
integrated with IBM Rational Rose™ and other COTS modeling 
tools [5]. This infrastructure exposes the modeling data of the 
COTS modeling tool in a UML-compliant fashion. It also 
employs a sophisticated change detection mechanism. For 
example, if an engineer (i.e., while using Rose) creates a message 
between two objects then this change is recognized as: 
New model element: 102 UML.Message 
Modified model element: 100 UML.Object [outgoingMessages] 
Modified model element: 101 UML.Object [incomingMessages] 
 

The first change notification tells about the creation of a model 
element of UML type Message with an id that uniquely identifies 
the model element. Since a message was created between two 
existing objects, both these objects are modified in that one now 
owns a new incoming message and the other a new outgoing 
message. The infrastructure thus describes changes in terms of 
their impact on the model but not the actual activities performed 
by the engineers. For example, an engineer may create a message 
in Rose by invoking a menu item or by dragging a toolbar icon, 
yet the result, the creation, is the same.  

3.3 The “What Happens If…” Solution 
It is intuitive to think of instant consistency checking in terms of 
what happens if a model element changes. For example, we know 
that the message wait in the sequence diagram is consistent with 
respect to rule 1 (i.e., the Streamer class has a method with the 
same name). This truth is violated if the engineer changes the 
name of the message, say, from wait to suspend (i.e., the Streamer 
class does not have the method suspend). A change to a message 
name thus requires the evaluation of the consistency rule 1.   

However, a change to the message name is not the only way the 
message wait can be made inconsistent with respect to rule 1. For 
example, if the engineer instead renames the class method wait 
into suspend then there is no longer a method that matches the 
message name. This change also invalidates rule 1. And there are 
many other changes that invalidate the consistency rule 1.  

Given that there are potentially many ways on how a model 
change affects consistency rules, it is difficult to identify all of 
them. The issue of correctness is hard to guarantee although such 
a solution is likely very efficient. While we found it intuitive to 
think of instant design feedback in terms of “what happens if,” we 
found that it is too complex to correctly support a large rule base.  

3.4 The Type-Based Scope to Consistency 
Approaches such as the ArgoUML [15] rely on a type-based 
scope for incremental consistency checking. These approaches 
use the scope to decide when to evaluate a consistency rule. If a 
model element changes then all those rules are evaluated that 
include the type of that model element in its scope. Typically, the 
type-based scope of a consistency rule includes all types of model 
elements it accesses. For example, consistency rule 1, starts at a 
message (type Message), calls the receiver (type Object), then 
calls the base (type Class) and finally its operations (type 
Operation). The type-based scope for rule 1 is thus {Message, 
Object, Class, and Operation}.  

In the case of ArgoUML, the type scope must be provided by a 
human in the form of special annotations to consistency rules. 

Unfortunately, the UML has a limited number of (meta-level) 
classes or class:field pairs that could be used as types. Thus, while 
UML models may increase to arbitrary sizes, their type scope 
stays constant. Figure 3 depicts the result of empirically 
evaluating model changes on 24 consistency rules and 29 sample 
models. It shows that brute-force consistency checking (of all 
rules) is only scalable for small-sized models with less than 1000 
model elements. While type-based consistency checking is 
scalable for larger models with up to 10,000 model elements, the 
figure demonstrates that it cannot support instant consistency 
checking of arbitrary-sized UML models. 
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Figure 3. Evaluation Time per Model Change: the evaluation 

times of batch and type-based scope grow linearly with the size of 
the model (note the exponential scale of the x-axis) and the 

instance-based scope stays constant with the size of the model 

4. Instance-Based Scope to Consistency 
Our approach is similar to the type-based approach to consistency 
checking. However, instead of using types of model element for 
the scope, we use the actual instances. Figure 3 shows that an 
instance-based scope for consistency checking is not only very 
fast (see the tiny evaluation time) but it is also scalable to 
arbitrary model sizes (see constant evaluation time regardless of 
model size). Clearly, an instance-based scope seems ideal, 
however, it is not possible to predict in advance what model 
elements (=instances) are accessed by any given consistency rule.  

4.1 Rule Types and Instances 
During evaluation, a consistency rule requires access to a portion 
of the model (some of its model elements). We define the 
accessed portion of a model as the scope. For example, the 
evaluation of rule 1 on message wait first accesses the message, 
wait then the message’s receiver object st, then its base class 
Streamer, and finally the methods stream and wait of the base 
class (recall 3.1). This is how rule 1 was defined in Figure 2. The 
scope of rule 1 on message wait is thus {wait, st, Streamer, 
stream(), wait()} as illustrated in Figure 4. This scope includes 
instances of model elements and not types. The scope of a 
consistency rule is not constant. For example, the evaluation of 
rule 1 on message play requires access to play, disp object, 
Display class, and its four methods. Its scope is different from the 
scope of rule 1 on message wait even though both evaluations are 
based on the same consistency rule (rule type). 
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Figure 4. Scope for Message Wait evaluated by Rule 1 

We thus must maintain the scope separately for every <rule, root 
element> pair (e.g., <rule1, wait>). Recall that a consistency rule 
is typically written from a particular point of view and starts its 
evaluation at a particular point – the root element. We define a 
<rule, root element> pair as a rule instance2. A rule instance 
defines the type of rule it instantiates (e.g., rule 1), the root 
element (e.g., message wait), and its scope. The evaluation of a 
rule instance accesses all those model elements that are needed to 
determine its truth. All those model elements are in the scope. All 
other model elements are not needed. It follows that a rule 
instance does not require its evaluation if a model element 
changes that is not in its scope. For example, the message play is 
not in the scope of rule instance <rule1, wait> and its change does 
not affect this rule instance. However, the object st is in the scope 
of the rule instance and its change could affect the truth. 

If a model element changes then all rule instances are evaluated 
that include the changed element in their scopes. For example, if 
method wait is renamed then the rule instances <rule1, connect>, 
<rule1, wait>, and <rule1, stream> need to be evaluated because 
they contain the method wait in their scopes. Not evaluated are 
rule instances such as <rule1, play> or <rule1, select>. 

4.2 Scope Detection and Completeness 
Since we treat our consistency rules as non-observable black 
boxes, the first major obstacle is how to identify the instance-
scope of a rule instance even though this scope is not predictable. 
We do so by instrumenting the modeling tool the engineer uses. 
We essentially built a profiler for several commercial modeling 
tools, including IBM Rational Rose. A typical profiler is used 
during testing to log the lines of code executed. Our UML profiler 
is similar in that it observes the evaluation of consistency rules 
and logs the model elements used. Our profiler is based on a 
COTS-incorporation infrastructure (Section 3.2) which exposes 
the model elements of a COTS tool, says Rose, through a UML 
1.3-compliant interface and provides a change detection 
mechanism. The detailed working of this profiler cannot be 
discussed here due to space limitations (see [5]).  

We know from Section 4.1 that the model elements that must be 
in the scope are those model elements accessed during the rule’s 
evaluation. Through the help of the UML profiler, it is simple to 
                                                                 
2 The root element of a rule instance is typically the first model element 

accessed during evaluation. Since every rule accesses at least one model 
element and the evaluation is deterministic, it follows that every 
consistency rule must have a root element.  

detect the scope for any given rule by clearing the log before the 
evaluation, letting the profiler log all model elements accessed 
during the evaluation, and storing the accessed model elements. 

For example, consider again the evaluation of rule 1 on message 
wait. This rule starts its evaluation at the root element – a 
message. It first requests the receiver object for the message by 
invoking the getReceiver() method on the message. The profiler 
logs the use of the message wait. The rule then asks for the base 
class of the object by invoking getBase() on the object st. The 
profiler logs the use of the object st. The rule then accesses the 
operations of the base class (getBehavioralFeatures()) and 
requests the name of each one of them (getName()). The class and 
all its operations are added to the log. The comparison at the end 
does not access any additional model elements. 

The scope of a rule is thus simply the set of model elements 
accessed during the rule’s evaluation. It is computable 
automatically. The questions are: (1) is this scope complete and 
(2) is this scope (close to) minimal. 

The Scope is Complete 

A rule instance’s correctness requires its scope to include at least 
those model elements that affect its truth value. Fortunately, one 
may err in favor of having more elements in the scope than 
needed causing potentially unnecessary evaluation but not 
omitting necessary ones.  

Our premise is that consistency rules are stateless and 
deterministic (recall Section 3.1). The same rule invoked on the 
same model uses the exact same model elements and results in the 
exact same truth value time and time again. Thus, the scope 
inferred through a rule’s evaluation is deterministic, repeatable, 
and includes all model elements required to determine the truth 
value (i.e., because it is stateless, all data must come from the 
model that is being profiled). The profiled scope must thus be 
complete because it accesses at least the model elements needed 
for its evaluation. The scope is complete even though a 
consistency rule may contain AND/OR subconditions that 
influence how and whether model elements are accessed. For 
example, rule 1 from Figure 2 could be rewritten in a way that is 
equivalent in its truth value but uses a slightly different scope: 

Operations=message.receiver.base.operations 
For each operation in operations 
 if (operation.name equals message.name) return true 
end for 
return false 
 

This rewritten rule 1 iterates over the set of operations until the 
first operation is found that matches the method name. This 
expression is equivalent to the logical OR operator. The OR 
operator requires a condition to be evaluated only until the first 
sub-condition is true. For example, if A is true in A or B then B is 
not evaluated. Thus, if rule 1 evaluates to true then not all 
accessible model elements are accessed during its evaluation and 
its scope does not include all accessible elements (e.g., B). Clearly 
this rewritten rule does not have a complete scope if we define a 
complete scope to include all model elements that are potentially 
accessible.  

Fortunately, this level of completeness is not necessary for our 
problem. A logical condition containing an OR operator must 
access at least those model elements that are required to 



determine its truth value. Such a condition cannot change its truth 
value if a model element is changed that is potentially accessible 
although it was not accessed. For as long as A stays true in A or B, 
changes to B do not matter and are not required to be in the scope. 
For example, <rule1, stream> evaluates to true because there is a 
stream() operation in the Streamer class. The rewritten rule does 
not access wait() because it would only access it after stream(). 
Operation stream() is thus in the scope but operation wait() is not. 
This is not a problem because operation wait() does not contribute 
to the truth of this particular rule instance.  

We encounter a similar situation with AND subconditions 
because there a condition must be evaluated only until the first 
subcondition is false to make the truth value false (e.g., if A is 
false in A and B then B is not evaluated). Again, not all 
potentially accessible model elements are accessed if the 
condition evaluates to false but again this level of completeness is 
not required. 

The scope may change over the life of a rule instance. 
Fortunately, the scope of a rule instance only changes if a model 
element in the scope changes. Thus, the re-computation of a rule’s 
scope coincides with the evaluation of its truth value and no 
additional overhead is required. This also implies that the scope of 
affected rule instances must be recomputed every time the model 
changes but this overhead is negligible (i.e., the <50ms evaluation 
time for 99% of all changes already includes this overhead). 

In summary, the scope of a consistency rule cannot be predicted 
ahead of time. We demonstrated that we can use a profiler to 
observe it instead - even for models within commercial modeling 
tools (e.g. IBM Rational Rose). The observed scope is 
automatically computed and the overhead of computing it is very 
small. However, the scope does consume memory. 

The Scope is Not Minimal but Bounded 

A minimal scope guarantees that a rule is evaluated only if its 
truth value changes. Any evaluation that does not change a rule’s 
truth value is unnecessary because it re-computes what is already 
known. We believe that it is infeasible to compute a minimal 
scope because such a scope depends on the current state of the 
model and its potential changes. To illustrate this, consider once 
again the rule instance <rule1, wait>. We know that its scope 
must include the message wait. Yet consider a message name 
change from wait to stream. While this change is alike the 
previously used change example from wait to suspend, this 
change is different in that it does not affect the truth value 
because there is a corresponding method stream(). 

It is infeasible to eliminate all unnecessary evaluation without 
once again introducing manual and error prone change 
expressions as required for the “what happens if” solution in 3.3. 
Yet, we have to be careful in limiting the scope; i.e., bounding it 
to some maximum size. Our approach has this upper bound in 
scope size: we already know that a rule’s evaluation uses at most 
all potentially accessible model elements. The instance-based 
scope is thus bounded to not include model elements that do not 
potentially affect the truth value. We evaluated whether this 
bounded scope is still computationally scalable and Section 6 
presents the empirical evidence based on 29 models, tens of 
thousands of model elements, and over 140,000 rule instances. 
We found that the scope sizes, while not minimal, were small in 

including 20 model elements or fewer for 95% of all rule 
instances. But most significantly, we found that the scope sizes do 
not increase with the size of the model. They are in fact a 
constant. This explains why 99% of all model changes required 
50ms or less evaluation time. Even the worst case was less than 2 
seconds and this worst case occurred extremely rarely in only 
0.000003% of all model changes. 

In summary, our scope is small and bounded and it does not 
increase with the size of the model. However, we did find that the 
evaluation time increases linearly with the number of consistency 
rule types. This is a known scalability issue of consistency 
checking and discussed in more detail later.  

Recognizing Rule Instances  
If a model element changes then all those rule instances are 
affected (i.e., should be evaluated) that contain the changed 
element in their scopes. A simple lookup table is sufficient to 
efficiently locate all affected rule instances for any given changed 
model element: 

processChange(changedElement) 
 for every rule instance where scope contains changedElement 
  evaluate <rule, changedElement> 
 end for 
 

Obviously, a scope is needed to know when to evaluate a rule 
instance. But given that the scope is only available after the first 
evaluation, how does the first evaluation happen (i.e., the chicken 
and the egg problem)? The following discusses how to create and 
first evaluate rule instances; and how to destroy them when they 
are no longer needed. For example, if an engineer creates the 
message connect between two objects in a sequence diagram 
(Figure 5) then there are no rule instances yet that could evaluate 
its truth value. 

disp :st :
Streamer

st : Streamersrv :
Server

1: connect

Another Sequence
Diagram

 
Figure 5. A Message is Created in a Sequence Diagram 

We thus require a mechanism for creating rule instances that is 
based on the types of changes that could happen. The most 
simplistic way of recognizing a new rule instance is through the 
required type of its root element. That is, a new rule instance must 
be created when a model element is created that matches the type 
of the rule’s root element. For example, we know that rule 1 
requires an UML Message as its root element because it was 
written from the perspective of a message (recall Figure 2). Thus, 
once the message connect is created, a new rule instance <rule1, 
connect> is created and evaluated also (top of Figure 6). 

The change notification mechanism of the UML 1.3 infrastructure 
distinguishes between the creation, modification, and deletion of a 
model element. If a model element is created then all rules (such 
as the ones in Figure 2) that have a type of root element equal to 
the type of the changed element must be found. For every rule 
found, a rule instance is created with the changed model element 
as its root element. For example, after the creation of the message 
connect we find that rules 1, 2, and 3 have the same type of root 



element. These rules are then instantiated with the message 
connect as the root element (i.e., resulting in three new rule 
instances). A newly created rule instance is immediately 
evaluated to compute its truth value and scope. The type of the 
root element can be determined introspectively and need not be 
provided in form of additional annotations (Figure 6). 

processChange(changedElement) 
 if  changedElement was created 
  for every rule where type(rule.rootElement)=type(changedElement) 
   ruleInstance = new <rule, changedElement>  
   evaluate ruleInstance 
  end for 
 else if changedElement was deleted 
  for every ruleInstance where ruleInstance.rootElement=changedElement 
   destroy <ruleInstance, changedElement> 
  end for 
 end if 
 for every ruleInstance where ruleInstance.scope contains changedElement 
  evaluate <ruleInstance, changedElement> 
 end for 

Figure 6. Algorithm for Processing a Change Instantly 

Rule instances are destroyed once their root elements are deleted. 
For example the above three rule instances are destroyed once the 
message connect is deleted. Thus, when a model element is 
deleted, we find all rule instances with the same root element as 
the changed element. These rule instances are then destroyed.  

The life of a rule instance is tied to the life of its root element. 
The root element remains constant for any given rule instance 
throughout its life. It is interesting to observe that the creation of 
rule instances is based on type information (types of model 
elements) whereas the evaluation and destruction of rule instances 
are based on instance information (model elements). The 
algorithm above treats the evaluation (bottom) separately from the 
rule creation and destruction (top). This is because the deletion of 
a model element could trigger both the destruction of some rule 
instances and the evaluation of others. 

4.3 Evaluation Buffering  
Our approach initially buffers the evaluation 
of rule instances. The reason for this is that 
single model changes typically cause multiple 
change notifications. For example, if the class 
type (base) of object svr is changed from 
Server to Streamer then this results in three 
change notifications: 

Modified model element: 105 UML.Object [base] 
Modified model element: 106 UML.Class [objects] 
Modified model element: 107 UML.Class [objects] 
 

The first change notifies that the base field of 
the object was changed and the second/third 
ones notify that the objects fields of both 
classes changed (the back pointers) - recall 
3.2. If we were to investigate the three change 
notifications separately then we would 
duplicate the evaluations of rule instances. For 
example, two of the three changed model 
elements are in the scope of <rule1, connect> 
but the rule need only be evaluated once. Our 
approach processes all change notifications 
first before evaluating any rule instance. The 

purpose of the evaluation buffer is thus to avoid adding the same 
rule instance twice. This mechanism also prevents the double 
evaluation of a newly created rule instance (Figure 6 appears to 
evaluate new rule instances twice). 

In summary, the buffering of evaluation rules improves the 
response time. The previously reported response time of less than 
50ms for 99% of all model changes included this buffering. It 
must be stressed that this buffering is not a delay mechanism but 
simply a way of separating the processing of change notification 
from the evaluation of the affected rule instances. The evaluation 
buffer can also be used for consistency rule ordering. UML 
consistency rules are not ordered in their evaluation. However, it 
is possible to write consistency rules with a particular ordering in 
mind. It is out of the scope to discuss this issue further.  

5. UML/ANALYZER TOOL 
The UML/Analyzer tool implements our instant consistency 
checking approach (Figure 7). It is built on top of the UML 1.3 
infrastructure we previously built for IBM Rational Rose to 
access Rose model elements and to receive instant change 
notifications when the Rose model changes. This tool essentially 
automates all the difficulties of instant consistency checking 
discussed in this paper and it was used for the empirical 
evaluation discussed in Section 6. To include new consistency 
rules, the tool provides a consistency rule template which requires 
an evaluation condition and a bit of administrative overhead for 
registration. The rules are currently written in a programming 
language based on the API for accessing model elements through 
our UML 1.3 infrastructure.  

Figure 7 depicts a few screen snapshots of the tool. The left 
depicts IBM Rational Rose. An inconsistency is highlighted. It 
shows that the message connect (in the sequence diagram) does 
not have a corresponding operation in the receiver’s base class. 
This inconsistency (described in the top right) involves 6 model 

Figure 7. UML/Analyzer Tool Depicting an Inconsistency in IBM Rational Rose™ 



elements, which are listed there. As was discussed earlier, the tool 
also helps the engineer in understanding exactly how model 
elements affect inconsistencies. As such, when the engineer 
selects a model element, say the message connect, then the tool 
presents all rule instances that accessed it. The bottom right shows 
that the message connect is actually involved in two 
inconsistencies. This bi-directional navigation is essential for 
understanding and resolving inconsistencies. 

6. VALIDATION 
Instant consistency checking is only then feasible if its 
computational cost is small and its results are correct. We thus 
empirically validated our approach on 29 UML models (26 of 
them were third-party models) ranging from small models to very 
large ones (Table 1). These models were evaluated on 24 types of 
consistency rules (the three given in Figure 2 and 21 additional 
ones). In total, over 140,000 rule instances were evaluated. Figure 
3 previously presented the average response times of our 
approach relative to the model size. It showed that brute-force 
consistency checking was not instant. It also showed that type-
based consistency checking did not scale to very large models 
although it was close to instant for medium-sized models. And it 
showed that our approach was not affected by the model size at 
all. This data was computed by systematically changing all model 
elements of all models. Since there were over 370.000 field 
values affected (most model elements had multiple fields), we did 
so automatically. In 97% of all model changes, the response time 
was less than 10ms; 99% of all rule instances required less than 
50ms with an average of 9ms per change and a worst-case of less 
than 2 seconds.  

Table 1. Study Models used for Empirical Evaluation 

Size3 Model Name Size3 Model Name 
3450 ANTS Visualizer 31478 Insurance Fees&Claims
810 Bank Automat 1899 Inventory and Sales 

6459 Biter Robocup Client 4083 iTalks 
4741 BMS 3366 LCA 

125978 Boeing OEP 3.2 544 Microwave Oven 
65213 Boeing PCES 891 MVC 
6967 Calendarium 2.1 3605 NPI 
1409 Curriculum 2321 NZ Intern. Airport 
4766 DeSI 2.3 38719 OODT 
20554 DSpace 3.2 1729 Teleoperated Robot 
1113 eBullition 1209 UML Tutor 
4298 Game System 3067 Vacation and Sick Leave
2352 HDCP Defect Seeding 230 Video on Demand 
5014 HMS 23016 Wordpad 
1596 Home Appliances & Ctrl   

Initial Cost of Computing All Truth Values and Scopes: The 
cost of a single evaluation of a rule instance is approximately the 
number of fields visited (=scope size Ssize). The number of rule 
instances of a rule type RT# is at most the number of existing 
model elements Msize. The computational complexity for 
evaluating all rule instances is thus O(RT# * Msize * Ssize). This cost 
is a one-time expense.  

Recurring Cost of Computing Changed Truth Values and 
Scopes: For every changed model element, it is necessary to 
                                                                 
3 We only counted fields of model elements that were used during 

consistency checking so that the sizes were not artificially inflated.  

identify all rule instances that are affected. We define the number 
of affected rule instances as ARI. The computational cost for 
evaluating all affected rule instances is thus O(ARI * Ssize). This 
cost is a recurring cost because it applies to every model change. 

We applied our instant consistency checking tool (the 
UML/Analyzer) to the 29 sample models and measured the scope 
sizes Ssize and the ARI by considering all possible model changes4. 
This was done through automated validation by systematically 
changing all model elements. In the following, we present 
empirical evidence that Ssize and ARI are small values that do not 
increase with the size of the model.  

We expected some variability in Ssize because the sample models 
were very diverse in contents, domain, and size. Indeed we 
measured a wide range of values between the smallest and largest 
Ssize (min/max) but found that the averages stayed constant with 
the size of the model. Figure 8 depicts the values for Ssize relative 
to the model sizes of the 29 sample models. The figure depicts 
each model as a vertical range (minimum to maximum). The solid 
dots between the minimum and maximum values are the average 
values. Notice the constant, horizontal line of average scope sizes.  
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Figure 8. Scope Sizes remain constant over Model Size 

The initial, one-time cost of computing the truth values and 
scopes of a model is linear with the size of the model and the 
number of rule types O(RT# * Msizee) because Ssize is a small 
constant and constants are ignored for computational complexity. 

To validate the recurring computational cost of computing 
changed truth values and scopes, we next discuss how many rule 
instances must be evaluated with a single change (ARI). Since the 
scope sizes were constant, it was expected that the ARI would be 
constant also (i.e., the likelihood for rule instances to be affected 
by a change is directly proportional to the scope size). Again, we 
found a wide range of values between the smallest and largest ARI 
(min/max) but confirmed that the averages stayed constant with 
the size of the model (Figure 9) – though the maximum increased 
slightly (consider the logarithmic scale of the x-axis). 

ARI was computed by evaluating all rule instances and then 
measuring in how many scopes each model element appeared. 
The figure shows that in the worst case, over 1000 rule instances 
have to be evaluated. But the average values reveal that most 
                                                                 
4 We only changed model elements but did not create/delete them because 

there would be an infinite number of possible model changes. Also, 
creation/deletion causes changes to the model size only and we will 
demonstrate that our approach’s scalability is not affected by the size. 



changes require few evaluations (between 1-10 depending on the 
model).  

 
Figure 9. Affected Rule Instances (ARI) stays constant 

However, not all changes were equally likely. While we were not 
allowed to observe how the engineers changed the models, we do 
know that rule instances with bigger scopes have a higher 
likelihood of them being re-evaluated. The scalability issue was 
thus the scope size Ssize. We showed that Ssize does not increase 
with the size of the model which is one important factor for 
scalability. The following shows the distribution of Ssize across the 
140,000 rule instances of our 29 models. While there were some 
outliers where Ssize was large, we found that the likelihood of Ssize 
being large decreased drastically.  

Figure 10 depicts for all 29 projects separately what percentage of 
rule instances (y-axis) had a scope of less than 5, 10, 15,… model 
elements (x-axis). The table shows that over 72% of all rule 
instances evaluated less than 6 model elements and only 5% of all 
rule instances evaluated more than 25 model elements. Therefore, 
95% of all 140,000 rule instances evaluated less or equal than 25 
model elements. This data further confirms that even in the worst-
case scenario of over one thousand evaluations per change, most 
of these evaluations are expected to be very cheap.  
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Figure 10. Number of Model Elements Accessed by 

Constraints 
The above data did not consider a changing number of 
consistency rules RT#. Indeed, consistency rules tend to be well-
defined, finite, and stable in most domains. However, as was 
discussed earlier, we worked with engineers who adapted these 

rules and even introduced their own. Clearly, our approach (or 
any approach to incremental consistency checking) is not 
amendable to arbitrary consistency rules. If a rule must 
investigate all model elements then such a rule’s scope is bound 
to increase with the size of the model. However, we demonstrated 
on the 24 consistency rules that rules typically are not global; they 
are in fact surprisingly local in their investigations. 

Our approach even then outperforms a type-based approach if the 
creation of new model elements is the dominant operation. Recall 
that our approach uses type information for the creation of rule 
instances but there can only be as many creations as there are rule 
types (a constant independent of the size of the model). Thus, our 
type-based creation does not have the scalability problems of a 
type-based approach to consistency checking (Figure 3). 

On the downside, our approach does require additional memory 
for storing the scopes. Figure 11 depicts the linear relationship 
between the model size and the memory cost. It can be seen that 
the memory cost rises linearly with the number of rule instances. 
This should not be surprising given that the scope sizes are 
constant with respect to the model size but the number of rule 
instances increases.  
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Figure 11. Memory Cost Increases Linearly with Model Size 

We found that there were about half as many rule instances as the 
number of model elements (given our 24 consistency rule types). 
Thus, there were in average 0.02 rule instances per model element 
and consistency rule. Given that a rule instance had in average 7.6 
scope elements, it followed that the memory cost was 0.15 * 
model size * number of consistency rules (RT#). Or its cost is 
O(RT#*Ssize). This linear memory cost was acceptable to the 
engineers given the vastly superior response time. 

Threats to Validity:  

Internal validity: We investigated 24 consistency rules in the 
context of 29, mostly third-party models. The models were vastly 
different in size and domain. Since our approach performed well 
for all these models, we believe that there are no threats to the 
internal validity of the measured data. However, we were not able 
to directly observe the engineers in their use of our approach and 
could not provide heuristics on likely changes. Yet, in interviews 
with the engineers we were told that at no time they felt delays of 
any kind. In their opinion, the approach was truly instant.  

External validity: We conducted experiments where we changed 
the number of constraint rules and found the basic observations to 
be identical although the values changed. For example, we 
observed that a different number of consistency rules also 
produced a constant ARI although the ARI value was different 
(i.e., half the number of consistency rules resulted in roughly half 

1

10

100

1000

10000

100 1000 10000 100000 1000000
Model Size

A
ffe

ct
ed

 R
ul

e 
In

st
an

ce
 [a

ve
ra

ge
/m

ax
]

(A
R

I)



the ARI). It follows that more consistency rules imply more 
evaluation time. This cost is expected to increase linearly. 
Clearly, we cannot support an infinite number of consistency 
rules but we typically do not have to. For the engineers we 
worked with, the 24 consistency rules covered all relevant 
situations for the consistency of sequence diagrams with class and 
statechart diagrams (in their domains). And there are roughly a 
hundred more known rules for other types of UML diagrams, say 
deployment diagrams or use-case diagrams. Even if these other 
rules were included in our approach, the scopes of these rules 
would overlap mostly with other UML diagrams and thus not 
affect our rules much. This implies that more consistency rules do 
no necessarily imply a longer evaluation time. However, given 
that 99% of all changes required 50ms or less evaluation time, we 
do not foresee scalability issues even with an order of magnitude 
larger RT#.  

7. CONCLUSIONS 
This paper introduced an approach for quickly, correctly, and 
automatically deciding when to evaluate consistency rules. We 
demonstrated that our approach works with black-box consistency 
rules and that these rules do not have to be annotated. Instead, our 
approach used a form of profiling to observe the behavior of the 
consistency rules during evaluation. We demonstrated on 29 
UML models that the average model change cost 9ms, 99% of the 
model changes cost less than 50ms, and that the worst case was 
below 2 seconds.  

It is very significant to understand that our approach maintains a 
separate scope of model elements for every instance of 
consistency rule. This scope is computed automatically during 
evaluation and used to determine when to re-evaluate rules. In the 
case of an inconsistency, this scope tells the engineer all the 
model elements that were involved. Moreover, if an engineer 
should choose to ignore an inconsistency (i.e., not resolve it right 
away), an engineer may use the scopes to quickly locate all 
inconsistencies that directly relate to a part of the model of 
interest. This is important for living with inconsistencies but it is 
also important for not getting overwhelmed by too much feedback 
at once. 

However, we cannot guarantee that all consistency rules can be 
evaluated instantly. The 24 rules of our study were chosen to 
cover the needs for our industrial partners. They cover a 
significant set of rules and we demonstrated that they were 
handled extremely efficiently. But it is theoretically possible to 
write consistency rules in a non-scalable fashion although it must 
be stressed that of the hundreds of rules known to us, none fall 
into this category. 
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