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Abstract. In situations in which developers are not familiar with a
system or its documentation is inadequate, the system’s source code be-
comes the only reliable source of information. Unfortunately, source code
has much more detail than is needed to understand the system, and it
disperses or obscures high-level constructs that would ease the system’s
understanding. Automated tools can aid system understanding by iden-
tifying recurring program features, classifying the system modules based
on their purpose and usage patterns, and analyzing dependencies across
the modules. This paper presents an iterative, user-guided approach to
program understanding based on a framework for analyzing and visual-
izing software systems. The framework is built around a pluggable and
extensible set of clues about a given problem domain, execution envi-
ronment, and/or programming language. We evaluate our approach by
providing the analysis of our tool’s results obtained from several case
studies.

1 Introduction

Adding new functionality to an existing software system starts with a process
of understanding the system’s architecture, i.e., its structure, behavior, and key
non-functional properties [12, 13]. This becomes difficult in the case of large
systems for which the documentation does not exist or is outdated. Many low-
level details in the source code obstruct the process of creating a system’s high-
level, architectural abstraction, which aids in reasoning about the system.

A number of software “clustering” techniques have been developed to cope
with this problem [9, 10, 11, 14] but these techniques fail to provide much ratio-
nale behind the architecture. This becomes particularly important if we consider
that the source code may actually contain accidental or emergent functionality
and relationships which are not intended by the system’s developers. Further-
more, clustering approaches are not always effective tools for performing ar-
chitectural recovery. For example, our experience [9] has shown that in layered
systems these approaches do not actually recover the layers, but tend to “slice”
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across them since the clustering is usually based on the existence of strong cou-
pling (inter-layer) relationships.

For this reason, we posit that architectural recovery, and software cluster-
ing in particular, need to be accompanied by a system understanding activity,
which includes the use of semantic information before any syntactic dependen-
cies are considered, and whose goal is to help engineers control the architectural
recovery process, and identify and correct any inconsistencies therein. Various
representations can be used to describe successive levels of system’s abstractions.
Incited by Perry and Wolf’s observation [12] that the key architectural elements
of a software system are (1) processing, (2) data, and (3) connecting, we have
developed ARTISAn, a tool-supported, pluggable framework intended to aid
program understanding and, ultimately, architectural recovery.1 Our approach
is based on both structural and semantic analysis, where various design- and
implementation-level constructs, termed clues, are used to classify, label, and
collapse the system’s elements (e.g., classes) into the three major categories.

The ARTISAn framework is tailorable. It comprises replaceable components
to accommodate the exact programming environment. For example, the frame-
work is instantiated with different components for various programming lan-
guages or off-the-shelf “utility” technologies such as middleware. ARTISAn pro-
vides a rich, interactive web of information to an engineer, allowing her to add,
remove, or change both the clues and other analysis rules (and then reapply
them), manually relabel any analysis results (and then observe how that new
information is affecting the rest of the system), enact “what if” scenarios to
identify key relationships and dependencies in the system, all the while being
able to “undo” any changes. ARTISAn can also be further tailored for situations
in which the division of system elements into processing, data, and connection
may be overly general.

We have developed a prototype of ARTISAn targeted at Java systems. The
tool is integrated with IBM Rational Rose r©. We have applied ARTISAn on a
number of third-party software applications to date, and report on those results.

This paper is organized as follows. Section 2 introduces an example applica-
tion used to explain the approach, which is described in Section 3. In Section 4
we provide an evaluation of our approach. Section 5 presents related work and
Section 6 summarizes our contributions and opportunities for future work.

2 Case Study

In this paper we are using a case study to illustrate our approach. The ANTS
case study (Autonomous Negotiating agent TeamS) is an embedded agent ne-
gotiation system in which multiple, intelligent (software) agents negotiate over
the best use of available resources (radars) to track a series of targets [2, 3]. The
system was implemented in Java, and comprises over 200 classes developed by

1 ARTISAn stands for Architectural Recovery via Tailorable, Interactive Source-code
Analysis.
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Fig. 1. UML class diagram for the ANTS Visualizer system

several organizations. The main components of the system are Agent, GTServer,
CPAPI and a real-time Visualizer. While we used the entire ANTS system to
evaluate our approach, the illustrations used in this paper are limited to its non-
trivial visualization subsystem. Figure 1 depicts the class diagram of the ANTS
Visualizer subsystem, where Agent, GTServer, and CPAPI components are de-
picted as single classes due to their complexity. These components communicate
over the network via TCP/IP. There are three different types of input devices:
Sensor, Target, and Tracker. While sensors track targets, trackers use sensor
data to estimate targets’ locations. Each data item is stored in a new Device
instance and it is the responsibility of the Scenario class to keep track of both
the current state and the change history of all devices. Finally, TrackFrame is
used with other GUI-based classes to process and visualize the data.

3 Approach

Our approach (Figure 2) comprises three steps that are initially performed se-
quentially but may then be revisited in any order by the user. The first step,
termed initial labeling, results in a classification of individual elements into pro-
cessing (P), data (D), and communication (C) [12] based on ARTISAn’s clues.
The result obtained during the initial labeling phase and a pluggable set of prop-
agation rules provide input to the propagation labeling step. During this phase,
some non-labeled elements become labeled (i.e,. classified as P, D, or C), based
on the recognition of structural patterns and relationships with other, already
labeled elements. Furthermore, this step also identifies possible structural incon-
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sistencies among labeled elements and alerts the user about them. Initial labeling
and propagation labeling result in an interpretation of the system that suggests
the purpose of each of the system’s individual elements.

Finally, during the def-use
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Fig. 2. The ARTISAn framework

analysis phase, regions of re-
lated elements are identified
based on invocation and in-
heritance relationships. The
obtained regions distinguish
between elements that are
shared across regions and
those that are exclusive to a
region. The result of this
phase is a system’s usage
view representation, which
provides information on parts
of the system that could be
grouped together based on
their usage scenarios.

Individually, the purpose and usage views provide the user with a classifica-
tion of elements and their grouping based on usage analysis, respectively. These
two views also complement each other. For example, if some unlabeled elements
from the purpose view end up belonging to the same region with labeled elements
of a single type, then one can surmise the purpose of the unlabeled elements.
In total, our approach gives the user a better understanding of the system, and
an opportunity to faster locate its parts that are of particular interest (e.g., for
maintenance purposes).

The remainder of this section provides the rationale of our approach and
describes each of the steps depicted in Figure 2 in more detail.

3.1 ARTISAn Clues and Initial Labeling

At the most general level, software systems integrate processing elements that ex-
change data via communication (connecting) elements [12]. By determining the
type of a system element, one can distinguish elements with application-specific
functionality from those with application-independent functionality. Typically,
processing elements provide application-specific functionality as they implement
the system’s requirements. On the other hand, communication elements typi-
cally provide application-independent interaction facilities. In Java, for example,
classes interact by invoking each other’s methods and/or sharing data through
public variables, regardless of the classes’ functionality. In addition, a number
of off-the-shelf communication elements (e.g., middleware) are available. A use-
ful starting point in understanding the source code of a system is thus in the
reusable, application-independent nature of its communication elements. Simi-
larly, data elements only contain the information that is used or transformed by
processing elements. Therefore, by identifying and then abstracting away data
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package Visualizer;

import java.net.Socket;

public class ClientHandler{
    Socket _socket;
    DataInputStream _instream;

    ...

}

communication
channel

Fig. 3. Communication clue

ClientHandler

java.net.Socket

 

Fig. 4. An excerpt from the
ANTS Visualizer class diagram

elements, the reasoning about the system is improved (e.g., applications built
using the pipe-and-filter architectural style).

Software systems are generally described by their design or implementation
models (e.g., class diagrams). Often, the models are too detailed, so that their
understanding becomes obscured. In ARTISAn, constituent elements of these
models (e.g., classes) are at first classified into the three aforementioned cate-
gories (Processing, Communication, and Data), providing an engineer the op-
portunity to quickly gain an overview on the purpose of individual elements and
the structure of their composition. The process of classifying system elements
into one of the three categories is termed labeling. The labeling is based on var-
ious design and implementation snippets, termed clues. Clues carry syntactic,
semantic, and possibly domain-specific information, which is searched for in a
system’s model.

Figure 3 depicts a segment of Java source code from the ANTS system that
illustrates how clues are identified. In the example, there is an attribute socket
that declares a use of the standard network socket library java.net.*. This infor-
mation is a clue to the existence of a communication channel, which is directly
used by this class. We should note that clues could also be identified from a
system’s graphical model representation (e.g., its class diagrams), which enables
the potential easy integration of our approach with already available visualiza-
tion tools. For example, the same communication clue exists in Figure 4, which
represents an excerpt from the ANTS Visualizer class diagram.

Each clue is represented as a 4-tuple: (1) Impact : if found, what is the meaning
of a clue, i.e., is the element of type P, or C, or D? (2) Base: describes the software
artifact in which we expect to find a clue (e.g., method, class, procedure); (3)
Condition: a condition that must be satisfied for a clue to be found (e.g., a class
whose name starts with “java.net”); (4) Language: the programming language
to which clue applies. For example, the Java “Socket” clue, described above, is
defined as (C, class, class.name = “java.net.Socket”, Java).

Although it is difficult to automatically understand the exact purpose of a
processing element, it is possible to recognize such an element’s existence through
source code declarations. There are several clues that could be used in the detec-
tion of processing elements. For example, all classes that implement the static
method main, or inherit from the library class java.lang.Thread, or implement
the java.lang.Runnable interface are likely to be processing elements. Applied
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Table 1. Domain-independent clues

Impact Base Condition

P

class.method name=“main”

class
implements=“java.lang.Runnable”
extends=“java.lang.Thread”
extends.startsWith(“java.awt”)

C class
name.startsWith(“java.io”)
name.startsWith(“java.net”)

D class

parent.type=“D”
no methods other than constructor(s)
extends=“java.lang.Exception”
name=“java.util.Vector”, “java.util.Hashtable”, . . .
implements=“java.net.Serializable”

to our case study example, this means that all classes in a model that have the
“main” method are classified as processing classes, such as TrackFrame, Agent,
and GTServer in Figure 1. In a similar way, ClientHandler is labeled as a pro-
cessing element since it implements the Runnable interface. Additionally, system
elements that provide the GUI functionality are considered as a subcategory of
processing elements. They are easily recognized based on the use of dedicated
GUI libraries (e.g., java.awt.* ). Similarly, ARTISAn defines data-element clues.
For example, all classes with only a constructor method and non-empty attribute
list are likely to serve as data stores.

The clues described above all belong to ARTISAn’s extensible and pluggable
set of clues. We expect each programming paradigm and language, domain,
and/or application to have their own set of clues. Those clues would be identi-
fied by language and domain experts and integrated into the framework. ARTI-
SAn distinguishes between the following clue categories: (1) Domain-independent
clues, such as the Socket class being classified as C, or a class with no meth-
ods being recognized as D; (2) Domain-specific clues, e.g., in case a system is
built on top of a known middleware platform (e.g., an element of the Siena
middleware is classified as C and the classes having access to the Siena are ap-
propriately marked); and (3) Application-specific clues, such as a class of name
“jigsaw.Resource” in the Jigsaw Web server being recognized as D.

Table 1 lists the Java-based clues that we have used to evaluate our approach.
All the clues listed in Table 1 fall into the category of domain-independent
clues. They can be applied to a wide range of (Java) software systems and
can be naturally complemented by the more narrowly applicable domain- or
application-specific clues.

We should note that, in general, ARTISAn does not require application-
specific source code to follow any pre-defined naming conventions. However,
ARTISAn provides support for using naming conventions in situations where
such a collection of rules is available, such as with standardized libraries.

ARTISAn uses different colors to represent different classes’ labels on the
class diagram, or combinations of these colors if a class has more than one label.
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Fig. 5. The resulting diagram after the initial labeling step

Unlabeled classes remain transparent. However, in order to increase the read-
ability of the illustrations in this paper, we additionally edited the diagrams
by gray-scaling the labeled classes and drawing filled boundaries around classes
of the same color. Figure 5 depicts the ANTS Visualizer diagram obtained af-
ter the initial labeling step is performed. Classes such as Agent, TrackFrame,
or GTServer, which are inside the medium-gray boundary, indicate processing
components. Classes such as DataOutputStream or Socket, inside the dark-grey
boundary, indicate communication-based connectors. Finally, classes bounded
by the light-grey shape indicate GUI elements, i.e., a subcategory of processing
elements.

It should be noted that the clues are designed in such a way that applying
them may identify one or more categories that an element belongs to, but also
one or more categories to which the element does not belong. We refer to the
former as an inclusion set, and to the latter as an exclusion set. For example,
the Socket class will have C in its inclusion set, and P and D in its exclusion
set. In other words, while this element is labeled as communication element, we
also know that it cannot be processing or data. This information is of particular
importance during the propagation labeling phase.

3.2 ARTISAn Rules and Propagation Labeling

It is very likely that not all elements in a system can be labeled based on AR-
TISAn clues. However, the existing knowledge about a system could be used to
reason additionally about the system. Information obtained from clues can be
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propagated from labeled elements to their neighboring elements (both labeled
and unlabeled) when certain conditions are satisfied.

For example, as a result of an application of a communication clue, the ANTS
DataOutputStream class is labeled as C, while no clue could be applied to the In-
strumentation class (5). However, vital to the understanding of Instrumentation
is its relationship to DataOutputStream. This relationship is a UML association
and it indicates that Instrumentation uses DataOutputStream. Based on this ob-
servation we can deduce that Instrumentation cannot be a data element because
a data element, by its definition, is not capable of such processing (i.e., a data
element is perhaps allowed to do minor processing such as data checking, con-
version, and storage, but not application-wide communication). Furthermore,
Instrumentation is not an off-the-shelf communication element because we do
not expect two such elements in a domain-independent system, such as ANTS,
to be able to integrate and call each other directly. Thus, it follows that Instru-
mentation must be a processing element.2

We refer to this kind of reasoning as clue propagation. Clue propagation serves
as a basis for the ARTISAn propagation rules. The pluggable set of propagation
rules and the result obtained during the initial labeling phase provide input to
the propagation labeling step (Figure 2). During this phase, some non-labeled
elements become labeled, based on the application of the propagation rules.
Propagation rules are derived from structural and interaction patterns involving
different types of elements. Figure 6 illustrates these patterns.

The left-hand side of Figure 6 shows that a processing (P) element could call
other processing, communication (C), and data (D) elements. In other words,
there are no restrictions on what type of elements might be called by a pro-
cessing element. On the other hand, our experience has shown that in case of
domain-independent applications off-the-shelf communication elements usually

2 This discussion is based on the understanding that there are no application-specific
communication elements in the ANTS system. If there are, then they would be
recognized as processing elements using ARTISAn’s existing clues.
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do not invoke any other element (e.g., socket-based communication) but if they
do, the invoked elements could only be processing elements (e.g., COM-based
communication element). We should note here that some technologies that are
used to bridge across different computing platforms (e.g., the Java to COM
bridge) may involve communication elements calling other communication ele-
ments. However, in those cases we would be dealing with specialized solutions
that would allow us to recognize such situations on a case-by-case basis. Fur-
thermore, these cases would be amenable to capture by specialized domain- or
application-specific propagation clues and rules, which would result in an ap-
propriate identification and labeling of all such elements. Finally, data elements
are expected to be passive entities that may perform some rudimentary internal
processing, but are otherwise not interacting with processing or communication
elements. To describe the propagation rules in a more formal way, we will use
the right-hand side of Figure 6, which is a transpose of its left-hand side (e.g.,
only P or C can call P).

Based on the caller-callee relationships in Figure 6, we can deduce six prop-
agation rules, which are depicted in Figure 7. For example, rule 1 in Figure 7
states that if an element is known to be a processing element (denoted by +P
in the middle box), then all elements that call it (its callers) cannot be data el-
ements (denoted by D). The rationale for this is as follows: from the right-hand
side of Figure 6 we know that either a P or a C can call another P. This implies
that the caller cannot be D. Since we do not know whether the actual caller is
P or C, we only write that it is not D. In this way we avoid having to make
an early (but possibly incorrect) decision. The question mark in the right-hand
column of rule 1 indicates that we cannot say anything about the elements being
called by that element (its callees). Similarly, if an element is known not to be
a processing element (-P), as in rule 4, then neither the caller nor the elements
being called can be communication elements. This rule is again derivable from
Figure 6. If an element is not P then it is either C or D. We know that C can
be called only by P, and that D can be called by P or D. It follows that C or D
can be called by at most the union of their callers, which is P or D. Since we do
not know whether it is P or D, we simply write that it is not C. All other rules
can be derived in a similar way.

As a result of the propagation labeling step, two additional classes in the
ANTS Visualizer were recognized as processing elements: Instrumentation and
CPAPI.

The algorithm for applying propagation rules is based on the changes in the
inclusion and the exclusion sets for each of the system’s elements. All elements
are being processed, and as long as there are changes in any of the two sets
(e.g., an unlabeled element becomes labeled, or a processing element becomes
classified as non-connecting element), an appropriate propagation rule is run.
Since the inclusion and exclusion sets for each element are finite, it is obvious
that this algorithm terminates. Its running time is linear, because no decisions
are ever undone (no backtracking).
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This step also provides support for identifying any potential rule conflicts. For
example, if a class is identified as a processing element through one propagation
rule, but also as not a processing element using another rule, then either the clue
or one of propagation rules was erroneous. Conflicts are easily identifiable due to
their simple implementation representation (+P and -P) and ARTISAn reports
all inconsistencies to the user. At that point, the user has the choice to manually
label the elements if they are of a known type, ignore the discovered conflict
(e.g., in case when a helper class of known functionality has conflicting labels),
or use that information to modify the set of clues, and rerun the propagation
labeling step. In the last case, both the user and the tool are “learning” about
new clues that could be used for other systems.

3.3 Def-Use Analysis

The next step in our approach is the identification of regions, i.e., groups of
system elements that are closely related, or independent of other parts of the
system. To this end, we adapt def-use analysis. Def-use analysis is an approach
that has already been used in literature and illustrates the use of dominance
analysis for identification of regions of related modules [8, 10]. These regions
indicate parts of a system that are exclusively used by its other part(s) and
those that are shared. Each of the identified regions has an entry point, which is
a module where processing starts (e.g., a class with the main() method). Entry
points in ARTISAn are obtained from the initial labeling step (Figure 2). Those
are all elements that satisfy the “main” clue, but also include elements that are
able to create a new processing thread. The rationale for this lies in the fact
that systems often spawn their own subsystems by creating separate processing
threads. We can identify spawning using clues which were discussed previously.

In addition, ARTISAn supports a richer set of relationships among elements
by analyzing class inheritance together with class association and dependency
relationships. For example, the Tracker class inherits from the Device class,
which makes the Tracker able to invoke the methods of the Device. Furthermore,
if there is a class that declares a variable of type Device, that variable is then
able to hold either an instance of Device or any of its subclasses (e.g., Tracker).
This means that the variable holder class can invoke any of subclasses’ methods,
which is interpreted in ARTISAn as another type of calling relationship.

The information about regions enables an engineer to more easily recognize
system elements that belong together. The usage view thus complements the
purpose view by combining information about high-level functionality of indi-
vidual elements with information about regions of related elements.3

3.4 Intervention of a Knowledgeable User

Since program understanding is an activity that inherently involves humans, it
is vital for a tool such as ARTISAn to provide support for user intervention. AR-

3 The example is omitted due to space limitation and can be found in [5].
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TISAn is built with the premise that the information about the system provided
by the user can be used by the tool to provide a richer set of results.

For example, in the case of the ANTS Visualizer system, the labeling phases
were unable to classify the classes Tracker, Target, Sensor, Scenario, and Device.
The result of a def-use analysis shows that these classes form a region, but the
purpose of this entire region is still unknown (Figure 5). Yet, if a user knows
that Device is a data class then she may provide this information to the AR-
TISAn tool. This information is then instantly propagated to other elements of
the system that have a relationship with the Device class, which results in all
subclasses of the Device class (Tracker, Target, Sensor) being labeled as data
classes. Furthermore, since the Scenario invokes data elements, we know that it
cannot be a communication element (because its exclusion set contains C).

Moreover, the users have an opportunity to add/remove clues, and update
the elements’ labels (both inclusion and exclusion sets) as well as information
about entry points. All the changes are performed immediately, i.e., the tool
does not expect the user to restart and repeat the whole analysis. In addition,
changes can be undone to further support “what if” scenarios.

4 Evaluation

This section evaluates our approach by discussing our tool’s ability to label all
the classes in a system (recall rate) and do so correctly (precision rate).

Table 2 lists a representative subset of several case studies (applications) that
we have used to evaluate the approach to date. The meaning of each column
header and value is described throughout the section. Since our tool currently
supports the object-oriented paradigm, we chose to analyze various Java ap-
plications that span different domains, including middleware, such as MobiKit,
which is built on top of Siena [15]. The first two case studies listed in the table
have already been described in the paper. The Jigsaw web server was built by
a third party and is available as open source. In all cases we either used the
existing design model, if it was available, or reverse engineered its class diagram
from the implemented system.

Table 2. Evaluation results

Case study Classes
Initial labeling Propagation labeling

Initial recall
rate

FP Total
recall rate

Total
FP

Inconsistencies

Visualizer 37 75% 0 81% 0 0
ANTS 211 67% 0 69% 0 0
DeSi 64 68% 0 93% 0 0
TimeWeaver 120 55% 4 60% 4 0
MobiKit 34 32% 3 58% 3 0
Jigsaw 1009 25% ? 47% ? 4
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There are two columns in the table that show the measure of completeness of
our approach, one for each of the two labeling steps (initial and total recall rate).
The values in these columns range from 25% (initial labeling in the Jigsaw case
study) to more than 90% (after the propagation labeling in DeSi case study).

To validate the correctness of labeled classes we looked at the number of false
positives produced (denoted by FP in the table), for each of the two steps. All
system classes being labeled incorrectly are considered to be false positives. As a
reference set to which we compared the ARTISAn-generated labels, we used the
labels obtained from the programming environment’s chief developer (in case
such a person was available), or the results obtained by conducting a survey. We
created a collection of over 50 randomly chosen Java source code classes from
4 of the case studies, and asked 20 graduate-level computer science students
who are proficient in Java to manually inspect and label the classes into the
four categories: P, D, C, and “don’t know”. Each of the classes had 12 votes on
average and we found that our tool produced a low number of false positives (0
to 4), and that their number did not increase from one labeling step to another.
ARTISAn correctly labeled 72% of classes that were given to students. We also
asked the students to provide a rationale for their decisions. We noticed that
the classes for which the students’ answers were unanimous and which our tool
was unable to label were predominately application-specific processing classes.
For example, the classes identified by the students as processing elements had
implemented complex algorithms internally, or had mnemonic names (including
method names), which all served as a rationale for classifying them. This type
of information is currently outside ARTISAn’s scope, but can be embedded in
additional (domain- or application-specific) clues and rules.

The propagation labeling phase added a significant advantage to labeling
as the total recall rate rose to an average of 68% compared to 53% of initial
labeling. To validate the set of propagation rules, we compared the ARTISAn’s
results to the students’ responses and also observed the number of inconsistencies
discovered by the tool after the propagation-labeling step (the last column in the
table). Our results showed that, except in one case, there were no inconsistencies
in any of the conducted case studies.

While we believe that these results are already encouraging, we found that
several of the identified problems could be avoided to a large degree through bet-
ter reverse engineering. We relied on the off-the-shelf IBM Rational Rose tool
for analyzing the source code, but found early on that it did not discover all
class relationships well. Therefore, in some cases we had to manually investigate
the code to add missing relationships, which is a labor-intensive and error-prone
activity. We also found that Rose did not distinguish between class invocations
and class references. This caused inconsistencies in Jigsaw where variable refer-
ences and calling references did not always coincide. Finally, we found that Rose
did not capture calling relationships among methods that belong to different
classes. This was a problem whenever a class was identified as, say, both a pro-
cessing and a data element, i.e., in cases when some of its methods indicated it
to be a processing and other methods a data element. This problem then led to
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inconsistencies within the “data is not allowed to call processing” rule since our
tool could not distinguish whether the processing methods of the class invoked
the other class or the invocations originated from the data methods.

It should also be noted that we only used a set of domain-independent clues
(Table 1) in our case studies. This is because we wanted to use only the clues
that are applicable to all case studies and keep their number as small as prac-
tical. We found that we could have improved the total recall measure if we had
extended our set of clues with other domain- or application-specific clues, such
as those based on the use of middleware solutions and naming convention. For
example, this way the jigsaw.Resource or Siena.Notification classes (and all their
subclasses) could be recognized as data elements. However, since we were not
involved in the development of, nor are we intimately familiar with, any of the
mentioned domain-specific case studies, we decided to present results obtained
only from using the domain-independent clues.

5 Related Work

Among the numerous program understanding techniques that have been pro-
posed in the literature (i.e., inspection, visualization [6, 7], reading), our work is
mostly related to those that achieve the goal of better program understanding
and visualization through various architecture recovery methods. This section
focuses on this area.

X-ray [10] is an exploratory reverse engineering approach which aids pro-
grammers in recovering architectural runtime information from existing software
artifacts of a distributed system. Similarly to ARTISAn’s notion of clues, X-ray
allows the definition of syntactic program patterns, and an associated pattern-
matching mechanism. Although the search of program patterns in X-ray would
result in the recognition of a more abstract program feature, there is an obvi-
ous trade-off in terms of the generality of the approach, the richness of its set
of rules, precision, and hit rate. For example, unlike ARTISAn, an interaction
mechanism in the form of shared data might not be able to be recognized by
X-ray. Furthermore, the lower abstraction level of clues in ARTISAn resulted
in its inherent support for “what if” scenarios. The main similarity between
ARTISAn and X-ray is in the recognition of program entry points, followed by
the application of the study of the dominance relation (usage or reachability
analysis), which is well-known and has been used elsewhere in the literature [8].

Similarly to ARTISAn, Lanza and Ducasse [7] propose a categorization of
classes, based on class blueprints, as a way to visualize the internal structure of
classes. All methods and attributes are distributed among five layers (initializa-
tion, interface, implementation, accessor, and attribute) and categorized based
on their blueprints. However, this categorization does not try to understand the
functionality of a class, but just its static structure.

ManSART [4, 17] is a Software Architecture Recovery Tool that uses special
query language routines, called recognizers, to extract and analyze style infor-
mation from an abstract syntax tree representation of the source code. Similarly
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to ARTISAn, the result is given as a collection of different architectural views.
Architectural representation in ManSART is obtained by manipulating and com-
bining (e.g., merging) different views or, like in ARTISAn, by finding connected
subsets of a view.

ACT [1] is an architecture recovery method that combines clustering with
pattern-based techniques. Similarly to ARTISAn, it proposes the use of architec-
tural clues that serve as footprints of the high-level design of a system. However,
the clues in ACT are small structural patterns (e.g., Façade) that refer to archi-
tectural patterns (e.g., Client-Server), which makes them less frequently present
and more difficult to recognize, mainly because of their higher complexity and
granularity.

Rigi [14] is a program-understanding tool that provides support for the dis-
covery and hierarchical representation of subsystems. Subsystem composition,
based on artifacts that are extracted and then stored in an underlying repository,
depends on the purpose, audience, and domain [11]. For program understand-
ing purposes, the approach uses low coupling and strong cohesion; alternatively,
components can be identified by maintenance personnel based on their experi-
ence or qualifications. Unlike ARTISAn, the composition criterion depends on
the application that is being re-documented. The use of domain knowledge is
unavoidable and the recovery is usually done by persons who are familiar with
the application (e.g., its developers).

DiscoTect [16] is a technique for solving the problem of dynamic architectural
recovery by mapping low-level implementation style constructs to more abstract
architectural operations when predefined run time patterns are recognized. How-
ever, the patterns used for search, unlike in ARTISAn, are often very specific,
and depend on the application or the environment under inspection.

6 Conclusion and Future Work

This paper discussed ARTISAn, an exploratory and tailorable framework that
helps in program understanding tasks. The framework comprises replaceable
components to accommodate the exact programming environment and supports
developers in understanding large-scale, multi-language source code. The ap-
proach is twofold: it provides both a high-level functionality view (i.e., purpose)
and a usage view of system elements. In tandem, these views provide the user
with a better understanding of the system, and an opportunity to faster locate
the parts that are of particular interest (e.g., for maintenance purposes). The
first two steps of our approach are evaluated by providing the analysis of the
tool’s results obtained from several case studies. To evaluate the def-use anal-
ysis step, or the correctness of the resulting set of rules, more formal methods
are needed. For example, the former can be achieved by comparing the usage
view with results of other similar approaches). Finally, determining the overall
correctness of the approach requires a deep understanding of the functionality
and behavior implemented by each element of a system, which is beyond the
capabilities of a light-weight approach, such as ARTISAn.
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There are numerous ways to improve our technique. Some of them include
the use of reliability metrics that would depend on the reliability of each of the
clues and rules applied, and then be used to (automatically) resolve any of pos-
sible inconsistencies that result from the labeling process. The other direction of
improvement is in providing a richer set of domain- and application-independent
clues. For example, the fact that delegating classes act as facades or wrappers
to other classes, might turn up to be useful in recognizing communication-
processing relationships. Furthermore, the presented rule set can be extended by
additional rules that support subcategories of the three major element groups
(P, C, and D), such as GUI (P) and interruptible communication (C) type ele-
ments. Such a richer propagation rule set would lead to a better understanding
of the purpose of a system’s elements.

References

1. M. Bauer and M. Trifu, “Architecture-Aware Adaptive Clustering of OO Systems,”
in Proc. of the Eighth European Conference on Software Maintenance and Reengi-
neering (CSMR 2004), Tampere, Finland, March 24-26, 2004

2. A. Egyed, “Compositional and Relational Reasoning During Class Abstraction,” In
Proceedings of the 6 th International Conf. on the UML, Oct. 2003, San Francisco.

3. A. Egyed, B. Horling, R. Becker, and R. Balzer, “Visualization and Debugging
Tools,” Distributed Sensor Networks: A multiagent perspective, pp. 33 - 41, editors:
Victor Lesser, Charles Ortiz, and Milind Tambe, Kluwer Academic Publishers, 2003

4. D. R. Harris, A. S. Yeh, and H. B. Reubenstein, “Extracting Architectural Features
from Source Code,” In Automated Software Engineering 3, 1996, pp. 109-138.

5. V. Jakobac, A. Egyed, and N. Medvidovic, “ARTISAn: An Approach and Tool for
Improving Software System Understanding via Interactive, Tailorable Source Code
Analysis”, TR USC-CSE-2004-513, December 2004, USC, USA

6. D.F. Jerding and S. Rugaber, ”Using Visualization for Architectural Localization
and Extraction,” In Proc. of the Fourth WCRE, pp. 56-65, Oct. 1997

7. M. Lanza and S. Ducasse, “A Categorization of Classes based on the Visualization
of their Internal Structure: the Class Blueprint,” In Proceedings of the 2001 ACM
OOPSLA, October 14-18, 2001, Tampa, Florida, USA

8. T. Lengauer and R. E. Tarjan, “A Fast Algorithm for Finding Dominators in a
Flowgraph,” ACM Trans. on Programming Languages and Systems, Vol. 1, No. 1,
pp. 121-141, July 1979

9. N. Medvidovic and V. Jakobac, ”Using Software Evolution to Focus Architectural
Recovery,” In J. of Automated Software Engineering, To appear. 2005

10. N. Mendonca and J. Kramer, “An Approach for Recovering Distributed System
Architectures,” In J. of Automated Software Engineering, vol. 8, pp. 311-354, 2001

11. H. A. Müller, K. Wong, and S. R. Tilley “Understanding Software Systems Using
Reverse Engineering Technology,” In The 62nd Congress of L’Association Cana-
dienne Francaise pour l’Avancement des Sciences Proceedings (ACFAS), 1994

12. E. Perry and A. L. Wolf, “Foundations for the Study of Software Architecture,“
ACM SIGSOFT SOFTWARE ENGINEERING NOTES, vol 17 no 4 Oct 1992

13. M. Shaw and D. Garlan, “Software Architecture: Perspectives on an Emerging
Discipline“ Prentice-Hall, 1996



268 V. Jakobac, A. Egyed, and N. Medvidovic

14. K. Wong, S. Tilley, H. A. Müller, and M. D. Storey, “Structural Redocumentation:
A Case Study,” IEEE Software, Jan. 1995, pp. 46-54.

15. Siena: A Wide-Area Event Notification Service, http://serl.cs.colorado.edu/
∼carzanig/siena/

16. H. Yan, D. Garlan, B. Schmerl, J. Aldrich, and R. Kazman, “DiscoTect: A System
for Discovering Architectures from Running Systems,” In Proc. Intl’l Conf. Soft.
Eng., Edinburgh, Scotland, United Kingdom, May 23-28, 2004

17. S. Yeh, D. R. Harris, and M. P. Chase, “Manipulating Recovered Architecture
Views,” In Proc. Intl’l Conf. Soft. Eng.,May 17-23, 1997 Boston, pp. 184-194.


	Introduction
	Case Study
	Approach
	ARTISAn Clues and Initial Labeling
	ARTISAn Rules and Propagation Labeling
	Def-Use Analysis
	Intervention of a Knowledgeable User

	Evaluation
	Related Work
	Conclusion and Future Work

