
Constraint-driven Modeling
through Transformation

Andreas Demuth, Roberto E. Lopez-Herrejon, and Alexander Egyed

Institute for Systems Engineering and Automation
Johannes Kepler University (JKU)

Linz, Austria
{andreas.demuth|roberto.lopez|alexander.egyed}@jku.at

Abstract. In model-driven software engineering, model transformations
play a key role since they are used to automatically generate and update
models from existing information. However, defining concrete transfor-
mation rules is a complex task because the designer has to cope with in-
completeness, ambiguity, bidirectionality, and rule dependencies. In this
paper, we propose a vision of Constraint-driven Modeling in which trans-
formation is used to automate the generation of model constraints instead
of generating entire models. Three illustrative scenarios show how this
approach addresses common transformation issues and how designers
can benefit from using model constraints and guidance. We developed a
proof-of-concept implementation that covers an important part of this
vision and thus demonstrates its feasibility. The implementation also sug-
gests that a constraint-driven transformation is efficient and scales even
with increasing numbers of involved models.

1 Introduction

With the increasing use of Model-Driven Engineering (MDE) [1] for complex
software systems, the generation of models from existing artifacts through model
transformation [2] is a vital necessity. Various classifications and taxonomies
have been published to compare the state-of-the-art (e.g., [3, 4]) and rich trans-
formation languages are available, such as ATL [5] or QVT [6], which define
transformation rules that are executed by a transformation engine to generate
models. Since the source models of transformations are likely to be manually
edited during development, re-transformations are necessary to update the cor-
responding generated models. However, such a re-transformation of non-trivial
models can be time expensive and may affect the modeler’s normal workflow
[7, 8]. Hence, incrementality is required to allow partial model updates without
complete re-transformations in order to achieve acceptable performance when
working with large, non-static models [8]. To date, various sophisticated trans-
formation techniques exist that produce excellent results as long as the generated
models are static and there are no uncertainties.

However, problems arise when these requirements are not fulfilled. For ex-
ample, a common issue with re-transformations – even when performed incre-
mentally – is the inevitable loss of manual changes to the generated models. The

issue is similar with bidirectional transformations [9, 10], which are often used
to synchronize models or to keep them consistent, when both involved models
are edited concurrently. Furthermore, there are situations where it cannot be
ensured that traditional approaches will generate the desired models because of
ambiguity, uncertainties, and the fact that certain information neither is avail-
able at the time the transformation rules are written nor can be derived from
the involved models when those rules are executed.

In this paper, we propose Constraint-driven Modeling (CDM), a generic ap-
proach that guides the construction of new models while conserving consistency
with the related models and eliminates issues arising with re-transformations,
uncertainties, and bidirectionality. CDM relies on incremental model transforma-
tions to generate constraints from existing models that represent the invariants
that the generated models should meet. Such constraints, written in a constraint
language (e.g., the Object Constraint Language (OCL) [11]), are validated by a
consistency checker on a given model. The provided guidance, which is derived
from the generated constraints and existing inconsistencies, helps designers to
stepwise transform the initially generated model to a version that matches the
desired characteristics by pointing out inconsistencies (i.e., aspects of the model
that do not satisfy invariants). Such guidance can be either the information which
elements are causing inconsistencies, or suggestions of model changes (options)
that can be performed to restore consistency. To obtain an initial, yet incomplete
version of the desired model to start working with, a traditional batch model
transformation with unambiguous rules can be used to generate a skeleton. Thus,
CDM can be seen as a complement to traditional model transformation.

We evaluated our approach and showed its feasibility by implementing a
prototype that generates constraints, enforces them incrementally, and informs
the user about existing inconsistencies. Performance tests with large industrial
models of up to 162,237 model elements previously showed the scalability of
constraint validation [12]; our tests with these models show that the median
times for incremental transformation and constraint generation are under .07
milliseconds. Thus, the approach scales and provides instant user feedback when
involved models are edited.

2 Running Example

To illustrate our work, we first present two incremental changes that are chal-
lenging for common model transformation approaches.

Let us consider the sequence and class diagrams shown in Fig. 1(a) and
Fig. 1(b) respectively. In Fig. 1(a), the unnamed instance of class LightSwitch
receives a message named activate. According to the semantics of UML se-
quence diagrams, this message requires that the instance of LightSwitch pro-
vides a method also named activate. At first glance, it looks like a simple
transformation can be used to automatically add the method activate to class
LightSwitch in Fig. 1(b) whenever a message is added to a sequence diagram

(a) (b) (c) (d)

Fig. 1. Two UML models (a) and (b), and evolved versions (c) and (d).

whose name does not match any method in the class. An example for such a
transformation rule written in ATL-like syntax is shown in Listing 1.

However, there is an issue with this approach: Should the method activate

be added to LightSwitch or would it make more sense for the system to add it
to the superclass Switch?

Obviously, this question cannot be answered automatically. The only pos-
sibility would be to make an assumption (e.g., always add the method to the
specified class to be on the safe side), which leads to the generation of potentially
unintended models where methods are not declared in the desired place or where
methods are unnecessarily overridden.

3 Constraint-driven Modeling

Common transformation languages usually describe the steps that have to be
performed to generate new models from existing ones. The previous section
illustrated that it can be difficult or even impossible to writing transformation
rules that automate complex decisions or always lead to desired results.

Intuitively, and in contrast with standard model transformations, we propose
to generate constraints on a model (to guide designers) rather than generating
the model itself whenever precise transformation results cannot be derived. For
example, the added message activate on the source model should impose a
constraint that a same named method should be available to class LightSwitch
rather than saying it should be owned by it. If the method is already there then
the constraint is instantly satisfied. If the method does not exist then further

from
s : SequenceDiagram ! Message

to
t : ClassDiagram !Method (

name <− s.name ,
owner <− getC las s (s.receiver.className)

)

Listing 1. Sample transformation to generate methods in class diagrams.

(a) Model transformation. (b) Constraint transformation.

Fig. 2. From ambiguous model transformation (a) to constraint transformation (b).

actions are required to deal with this problem – actions that must either come
from a human or be derivable from other transformations.

When traditional model transformation approaches are used, the transfor-
mation process can be regarded as:

A
Tm−−→ Bg (1)

where A is called the source model, consisting of an arbitrary number of model
elements. Tm is the transformation model, consisting of transformation rules,
that is used to transform A to the generated model Bg.

We expanded this notation and define our approach as:

A
Tc−→ C Br (2)

where the variable A denotes the source model and Tc is a set of model transfor-
mation rules. However, as the solid arrow from A to C and the changed subscript
of T suggest, this set of rules no longer generates a model (i.e., Bg), but instead
it contains transformation rules that are applied to A in order to generate con-
straints (i.e., the constraint model C). This constraint model consists of a set
of constraints that are enforced by an incremental consistency checker on the
model Br, as indicated by the curvy arrow from C to Br. The model Br is no
longer the generated model but is now called the restricted model, as indicated
by the subscript r, that is either consistent or inconsistent with the constraint
model C, and therefore a valid or invalid solution of the modeling problem.

Note that an initial version of Br may be generated through a traditional
transformation (analogous to Bg) or even built manually by a designer. However,
once generated, this proposed approach can detect inconsistencies if both A and
Br are evolved concurrently. Thus, our approach should not be seen as replac-
ing traditional transformation approaches but instead complementing them in
case of co-evolution, uncertainties, complex rule-scheduling issues or even model
merging as will be demonstrated below. Next, we present how it is applied.

3.1 Application: Uncertainties

Let us come back to our running example from Section 2 where we illustrated
that choosing the right class for a required method cannot be fully automated.
The traditional approach shown in Fig. 2(a) automatically generates one of sev-
eral possible models and we could at most use heuristics for deciding on which

Fig. 3. Application of approach to models from Fig. 1(a) and Fig. 1(b).

transformation to use (which never guarantees correctness). However, while the
knowledge contained in Fig. 1(a) is insufficient to generated a correct update to
the class diagram, it is sufficient to generate a correct constraint on said diagram.
Such constraints can be generated by transformation rules that are triggered by
the addition/removal of class instances or messages in sequence diagrams that
can be efficiently validated by state-of-the-art consistency checkers.

To automate constraint generation, we provide two transformation rules that
are triggered by class instances or messages in sequence diagrams and that use
information from the sequence diagram to generate very specific and expressive
constraints. These rules are shown in Listing 2.

rule t1
from

s : SequenceDiagram ! Ins tance
to

t : ConstraintModel ! Constra int (
context <− ”Package” ,
inv <− ” s e l f . c l a s s e s−>e x i s t s (c | c . name=’” + s.className + ” ’) ”

)
rule t2

from
s : SequenceDiagram ! Message

to
t : ConstraintModel ! Constra int (

context <− ”Class ” ,
inv <− ” s e l f . name=’” + s.receiver.className + ” ’ imp l i e s s e l f .

providedMethods−>e x i s t s (m|m. name=’” + s.name + ” ’) ”
)

Listing 2. Transformation rules to generate class (t1) and method (t2) constraints.

Note that, even though we use ATL-like syntax for this example, our approach
can be used with any transformation language. After applying these rules to the
motivating example from Section 2 as illustrated in Fig. 3 and according to (2),
C consists of the following OCL constraints:

c1 context Package inv: self.classes->exists(c|c.name=’LightSwitch’)

c2 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’activate’)

c3 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’turnOff’)

In Fig. 3 we can see that the method required by the constraint c2 is not present
in Br, as indicated by the empty, dashed rectangle in the LightSwitch class,
meaning that this particular model will be marked inconsistent. Note that we
use OCL as the constraint language in our example because it is a well known
and accepted language for writing constraints and we have existing tool sup-
port for incrementally validating OCL constraints. Nonetheless, in principle any
constraint language and consistency checker may be used.

Fig. 2(b) illustrates the basic concept of the constraint-driven modeling ap-
proach. It is noteworthy that the approach does not modify the restricted model.
It simply restricts it. The generated restriction – depicted as partial frame with
rounded corners around the restricted model Br – may be light in that there
are various options on how to change the restricted model. In such as case, the
designer has the freedom to decide which of the options is the desired one (e.g.,
add activate to LightSwitch or Switch) with the knowledge that the approach
notifies/prevents options that are invalid. In the most extreme case, the restric-
tions may be severe enough to allow for one option only. In such a case, the
approach could automatically select this option with the knowledge that it is
the one and only right option (e.g., if LightSwitch had no parent class then
there is a single option only).

3.2 Incremental Constraint Model Management

Let us take a closer look at the transformation that generates the constraint
model C. As shown in (2) and Fig. 3, applying the transformation rules of the
transformation model to the source model generates the constraint model.

Source model update. The transformation approach we use supports in-
crementality to allow updates of the constraint model without performing a
complete re-transformation of the source model. When A is updated to A′, we
can write this as

A
∆A−−→ A′ (3)

where ∆A is a sequence of modifications done to elements in A (e.g., add a new
model element). ∆A is used as input for the transformation model to generate
the set ∆C, as shown in (4).

∆A
Tc−→ ∆C (4)

∆C includes pairs of constraints and actions (i.e., {add, remove}) that define
whether the constraint should be added or removed from the existing constraint
model C. By applying ∆C on C, the updated constraint model C ′ is generated:

C
∆C−−→ C ′ (5)

Let us consider the evolution of the models shown in Fig. 1(a) and Fig.1(b) to
the versions shown in Fig. 1(c) and Fig. 1(d) where the name of the message #2
was updated to deactivate, the message #3 was introduced, and the name of
the method turnOff was changed to switchOff. For the changes in the source
model, the corresponding ∆A is 〈〈Message2, update〉, 〈Message3, new〉〉.

Fig. 4. Update of constraint model after changes in source model.

To build ∆C, the transformation engine executes the applicable transfor-
mation rules for the elements in ∆A (i.e., message #2 and message #3) to
generate the corresponding constraints, as defined in (4) and shown in Fig. 4.
For 〈Message2, update〉, the constraint c3′ is generated and the information
〈c3′, add〉 is added to ∆C.

c3’ context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’deactivate’)

Since the constraint c3 was already generated from the same element as c3′, mes-
sage #2, 〈c3, remove〉 is also added to ∆C in order to remove the now outdated
constraint c3. For 〈Message3, new〉, the transformation rule t2 is executed to
generate a new constraint c4 and 〈c4, add〉 is added to ∆C.

c4 context Class inv:

self.name=’LightSwitch’ implies

self.providedMethods->exists(m|m.name=’dim’)

At this point, ∆C is {〈c3, remove〉, 〈c3′, add〉, 〈c4, add〉}. When these changes are
applied to C = {c1, c2, c3} as defined in (5) and shown in Fig. 4, the resulting
updated constraint model is C ′ = {c1, c2, c3′, c4}. We used dotted lines for re-
moved elements, that is c3 and the corresponding inconsistency in LightSwitch.
As Fig. 4 indicates, the constraints c3′ and c4 are violated by the restricted model
since the class LightSwitch does not provide the required methods deactivate
and dim.

Ultimately, changes of the source model A affect the constraints that are
enforced by the consistency checker:

C ′ Br (6)

Next, we describe how such constraint model changes can affect the consistency
status of the restricted model Br.

3.3 Constraint Validation and Solution Space

We define the solution space of a modeling problem to initially include all pos-
sible instances of a metamodel (there are likely infinite). When a constraint is

validated, it determines whether a model meets those characteristics. Therefore,
applying a constraint decreases the size of the solution space and the validation
result shows whether a specific model is part of the solution space.

We define the validation of a constraint c for a specific model m as val :
(m, c) → {false, true} where false is returned if m violates c, true otherwise.
For a model Br and a constraint model C, the result of a total validation (i.e., a
validation of all available constraints, written as valT) would then be equal to:

valT (Br, C) =
∧

1≤i≤|C|

val(Br, ci) (7)

If at least one constraint validation val(Br, ci) returns false, the overall status of
Br is also false and therefore outside the solution space. It is easy to see that the
order of constraint validation does not affect the final result. However,
the execution order determines when the overall inconsistency of a model Br
is discovered during the validation and the order in which inconsistencies are
corrected can of course be important when deriving stepwise adaptations.

Since constraints are composed of expressions that are evaluated on only
the restricted model, direct dependencies among constraints typically do not
exist and are not considered here. The addition of a new constraint thus does
not affect the validity of existing constraints. This leads us to the conclusion
that constraints are independent of each other. Furthermore, the used
transformation rules do only access the source model to construct constraints
and add the constraint to the constraint model without accessing other constraint
model elements, thus the transformation rules for generating constraints
are independent and dependencies between them that require a certain order
of execution cannot occur. These observations have interesting benefits to model
transformation discussed next.

3.4 Providing Guidance

When an inconsistency is detected, the minimum amount of guidance provided to
the designer is a notification about the inconsistency’s occurrence and its location
(i.e., which model element is violating which constraint). Based on data captured
during constraint validation, the consistency checker can determine which model
elements are actually causing the inconsistency. Hence, it can inform the designer
about the locations of error-causing elements.

Constraint-driven modeling may appear inferior to traditional transformation
in that it never generated model elements in the restricted model. However, there
is currently considerable progress in automatically suggesting repairs to incon-
sistencies in design models. Based on a specific constraint and the inconsistent
parts, it is thus possible to derive modifications – like specialized transforma-
tions – that lead to a consistent model. If such modifications can be derived,
they are proposed to the user as a list of options. If the restrictions are un-
ambiguous, only a single option remains and it could be applied automatically
(much like transformation). For example, the action <add method "dim" to

class "LightSwitch"> is an option for removing the inconsistency caused by
the absence of the method dim in the LightSwitch class and the constraint c4.
Thus, using constraints does not only expose inconsistencies but it also enables
user guidance to help understanding and solving them. Note that incorporating
source model data makes a constraint much more specific and expressive when
presented to the user than a manually written, generic constraint that relies on
metamodel data and functions.

Nevertheless, dependencies between constraints in terms of required model
characteristics and corresponding model elements can occur (e.g., c1 requires
a class LightSwitch and c2 – c3 require specific methods in this class). Cre-
ating additional inconsistencies can therefore be necessary to achieve overall
model consistency. More research in automated fixing of design models based on
constraint violations is needed to automate this. However, we believe that this
problem is solvable and the focus of our future work.

Guidance is however not limited to inconsistencies. For each constraint, its
source as well as the locations where it is validated are available and can be
presented to the user. When the source model is edited during development, the
constraints that are affected by those changes can also be highlighted. When
a designer, for example, adds a new message to a sequence diagram with a
name that already has a matching method in a class diagram, the highlighted
constraint shows him or her the existing method immediately. The designer can
then easily decide whether this existing method should be used (i.e., the message
means the existing method) or if a naming conflict was introduced (i.e., a new
method was planned).

4 Additional Benefits of Constraint-driven Modeling

Now, we want to show several additional scenarios that benefit from constraint-
driven modeling in context of rule-scheduling, model merging, and bidirection-
ality.

Rule-scheduling and race conditions. Now let us consider an example where
two transformation rules tm1 and tm2 are working with the same generated
model and the order of rule execution is important. For example, the sequence
diagram in Fig. 1(a) contains an instance of the class LightSwitch. Therefore,
let us assume that transformation rule tm1 generates a corresponding class if no
such class exists in the diagram in Fig. 1(b). As we have discussed in Section
2, the sequence diagram requires the class LightSwitch to provide a method
activate. Let transformation rule tm2 generate this method in LightSwitch1.
When the transformations are performed, it is crucial that tm1 is executed before
tm2 to ensure that the class LightSwitch exists before the method activate

is added. This issue is illustrated in Fig. 5(a) where the bottom transformation

1 We ignore the fact that such a transformation will not always lead to satisfying
results – as discussed above – for this example.

(a) Model transformation. (b) Constraint transformation.

Fig. 5. From dependent transformation rules (a) to independent ones (b).

encounters an error after the execution of tm2. If the rule tm1 is still executed,
the resulting model B will contain an empty LightSwitch class because only tm1

was executed successfully. If the execution of rules is stopped after the error, no
model is generated at all. Defining the order of rule execution manually is tedious
and a constant source of error. Moreover, support for defining an execution order
is not a standard feature of all transformation languages or systems [3].

The constraining approach, shown in Fig. 5(b), is free of scheduling issues
because constraints cannot directly depend on other constraints and the order
of transformation is not relevant for the transformation results, as discussed in
Section 3.3. Hence, the rules t1 and t2 we have previously defined can be applied
in any order. If a model does not provide the required information for constraint
validation (e.g., the class that should be checked is not present), the validation
fails and an inconsistency is detected.

Bidirectionality and model merging. When models should be synchronized
automatically, transformations are often used to propagate changes from one
model to the other and perform the corresponding changes. Let us assume that
we have established transformation rules that keeps message names and method
names synchronized and that a link between messages and corresponding meth-
ods exists. In Fig. 1(c), the name of the highlighted message has been changed
from turnOff (see Fig. 1(a)) to deactivate. Concurrently, the corresponding
method in the class diagram was changed from turnOff() (see Fig. 1(b)) to
switchOff(), as highlighted in Fig. 1(d). Since both synchronized model ele-
ments were changed (indicated by the bold arrows), there is no way to determine
in which direction the required synchronization should be performed. Perform-
ing a synchronization in this situation will always lead to the loss of the changes
in the generated model (i.e., either B′′ overrides changes in B′ or A′′ overrides
changes in A′ that cannot be used for a transformation in the opposite direc-
tion afterwards). A possible solution would be the concurrent execution of the
transformations followed by a merge of the updated models (A′ and B′) and
the resulting generated models (A′′ and B′′), as illustrated in Fig. 6(a), that
generated A′′′ and B′′′. However, this requires a complex merging strategy and
is likely to produce models that still require manual adaptation.

The solution of the constraint transformation approach is shown in Fig. 6(b).
We can see that our approach still has to decide which change to process first.
However, because only constraint models are updated, the restricted models A′r
and B′r are not changed and can therefore still be processed to perform constraint

(a) Model transformation. (b) Constraint transformation.

Fig. 6. From bidirectionality (a) to unidirectional constraint transformation (b).

updates in the opposite direction, leading both constraint models ca and cb
being updated. With our approach, no immediate merging (either automated
or manual) is required when restricted models are edited and following source
model changes lead to constraint updates.

After the constraint model updating took place in the example, there are two
new constraints: i) message number 2 in Fig. 1(c) should be named switchOff

(from Fig. 1(d)) and ii) the name of the method switchOff in Fig. 1(d) should
be changed to deactivate (from Fig. 1(c)). The designer can then decide which
of the elements should be renamed.

5 Validation

In this section we first discuss various aspects regarding the correctness of our
approach and its results. Then, we present the results of a performance evaluation
and finally discuss possible threats to validity.

5.1 Correctness

Based on the presented scenarios and the properties of constraints we showed
that common transformation issues like rule-scheduling, race conditions, and
model merging do not arise when constraint models are generated through trans-
formation and that those models can be updated easily.

Nevertheless, the correctness of the applied constraints and the provided user
guidance is determined by the correctness of the manually written transformation
rules, the used source models, and the transformation language implementation
– as with traditional approaches.

Errors in both the source models and the applied rules lead to errors in
the generated model. As with traditional approaches, such errors also affect the
generated model (i.e., the constraints) in our approach. However, designers can
inspect arbitrary constraints and decide whether the constraints are correct. By

using a transformation mechanism that creates traceability links between source
model elements, transformation rules and the generated constraints automati-
cally – as we did in our prototype implementation – designers can use faulty
constraints to detect errors in the source model or the transformation rules and
fix them. Moreover, faulty constraints can simply be ignored or deactivated,
which means that contradicting constraints do not prevent designers from con-
structing the desired model. Generally, existing errors are never incorporated in
the restricted model automatically when our approach is used.

5.2 Implementation

To support the vision proposed in this work, we implemented a proof-of-concept
prototype tool and applied it to several domains. The prototype, based on the
Cross-Layer Modeler (XLM) [13], investigates the constraint generation/valida-
tion and the presentation of consistency information and constraints, but not the
inconsistency repair. The latter is future work. The tool employs the Model/-
Analyzer [14] consistency checker to validate constraints that are automatically
generated through incremental transformation from templates and are managed
and updated incrementally. We added components to the XLM to support mul-
tiple different source, constraint and restricted models simultaneously, which
requires the management of multiple, parallel running consistency checkers.

5.3 Performance Evaluation

Basically, our approach has two phases: i) generating constraints, and ii) validat-
ing them. For the latter, the performance of the employed consistency checker
was thoroughly evaluated with 34 large-scale industrial models of up to 162,237
model elements and complex constraints in [12, 15]; it was shown that most
changes in restricted models are processed in less than one millisecond. To show
that also the former is fast and scalable, two different test setups were used:

Test I Replacing ambiguous transformations – as discussed in Section 3
Test II Replacing merges – different sources restrict a single model

Test I simulated simple unidirectional transformations in the scenario we de-
scribed in Section 3 and was performed with 20 of the industrial models we
previously used in [12, 15]. Test II determined the performance of our approach
in scenarios where multiple source models are used to generate various con-
straints that are restricting the same model (i.e., merges of generated models
would be required with traditional approaches). This test shows the behavior of
the approach when complexity is gradually increased and more models become
involved. For Test II, we generated random models and constraints with similar
characteristics as those we used for constraint validation testing because the sce-
nario required multiple, related source models and our industrial models were
designed as independent models.

For all tests, single model elements were added to or removed from a source
model, which forced an incremental constraint model update (i.e., the addition or

Fig. 7. Median processing times for constraint updates.

removal of exactly one constraint). Between 1 and 10 source models were used for
Test II, the required time for processing the source model change and performing
constraint model updates was measured. For the evaluation we used an Intel
Core i5-650 machine with 8GB of memory running Windows 7 Professional. In
Fig. 7 the median times for 1,000 runs per test with a 99% confidence interval
are shown. Note that the increasing number of source models in Test II does
not affect the processing time significantly and that the median times for the
addition of elements are between .01 and .07 milliseconds in both tests. Element
removal takes between .006 and .03 milliseconds and is indeed faster than element
addition because no transformations are required. These numbers show that our
approach can update constraint models instantly and does scale for increasing
numbers of source models. The similar results for Test I and Test II suggest that
our random models for Test II were a valid choice for testing scalability. Note that
bidirectional transformations are split into unidirectional ones in our approach,
thus there was no need for testing bidirectional transformations explicitly.

5.4 Threats to Validity

Although it seems intuitive that decisions made by domain experts in situation
with very specific problems and with guidance are more trustworthy than au-
tomated decisions based on generalized knowledge or heuristics, we have yet to
show that the quality of the resulting models is higher or that our approach
leads to quicker results. Additionally, we have not investigated to which degree
guidance and suggested options reduce the time needed for design decisions or
finding inconsistencies. Another threat to the validity of our vision is the au-
tomated derivation and execution of options to remove existing inconsistencies.
Even though basic traceability information – which is always available – provides
a certain amount of guidance, a key aspect of constraint-driven modeling is the
automated suggestion of valid options to remove inconsistencies. However, this
is still an open research question that we want to address in future work. Finally,
we have yet to develop an efficient strategy for finding contradictions between
constraints and fixing them automatically.

6 Related Work

Model Transformation is a very active field of research and several topics related
to our work have been discussed. Regarding bidirectionality, Sasano et al. [16]
developed a system to perform bidirectional transformations with ATL, and
Stevens [17] focused on bidirectionality for QVT. Cicchetti et al. [18] developed
the bidirectional transformation language JTL that supports the specification
of non-bijective transformations so that one model can be mapped to a set of
other models. We tackle the complexity of bidirectional transformations by using
unidirectional transformations and constraints.

In terms of incrementality and execution speed, Jouault and Tisi [19] pro-
posed an approach to make ATL transformations incremental. They achieve
incrementality by using scopes built during OCL expression execution to deter-
mine which rules have to be re-executed after source model changes. We make
use of automatically created scopes in the same way to determine which con-
straints have to be re-created in our prototype and also for finding constraints
that have to be re-validated by the consistency checker [14]. In [20], Tisi et al.
propose the lazy execution of transformations, which eliminates the need for an
initial transformation of the entire source model to speed up the process for large
source models, which is also the performance bottleneck of our prototype.

Regarding automated design error fixes, the generation of fixing actions was
discussed by Xiong et al. [21]. They developed a language called Beanbag that
allows the definition of constraints and fixing behavior at the same time. With
our approach, such Beanbag programs can be generated automatically. Saxena
and Karsai [22] published a MDE-based approach for design space exploration in
which constraints are used to describe invariants of valid models. Our approach
is ideal to generate constraints for design space exploration algorithms.

7 Conclusions and Future Work

In this paper we presented an incremental and generic approach that uses model
transformation to automatically generate constraint models. We showed that
constraints are independent, and constraint validation does not require a fixed
order of execution. We then discussed how model transformation issues like am-
biguity, rule-scheduling, model merging, and bidirectionality are addressed and
how the approach enables user guidance and encourages the use of domain-
knowledge to solve specific modeling problems. We believe this work contributes
a novel complement to existing state-of-the-art on model transformation.

We validated the approach by developing a prototype implementation. Per-
formance tests showed that our approach is scalable and provides instant guid-
ance for designers. For future work we plan to further investigate the usability of
the approach and to implement the automated derivation of options for removing
inconsistencies and the checking for contradicting constraints.

Acknowledgments

The research was funded by the Austrian Science Fund (FWF): P21321-N15 and
the EU Marie Curie Actions – Intra European Fellowship (IEF) through project
number 254965.

References

1. D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,” IEEE
Computer, vol. 39, no. 2, pp. 25–31, 2006.

2. S. Sendall and W. Kozaczynski, “Model transformation: The heart and soul of
model-driven software development,” IEEE Software, vol. 20, no. 5, pp. 42–45,
2003.

3. K. Czarnecki and S. Helsen, “Feature-based survey of model transformation ap-
proaches,” IBM Systems Journal, vol. 45, no. 3, pp. 621–646, 2006.

4. T. Mens and P. V. Gorp, “A taxonomy of model transformation,” Electr. Notes
Theor. Comput. Sci., vol. 152, pp. 125–142, 2006.

5. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev, “ATL: A model transformation
tool,” Sci. Comput. Program., vol. 72, no. 1-2, pp. 31–39, 2008.

6. Object Management Group, “Query/View/Transformation (QVT).”
http://www.omg.org/spec/QVT/.

7. M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser, and W. Heider, “Flexible
and scalable consistency checking on product line variability models,” in ASE,
pp. 63–72, ACM, 2010.

8. M. van Amstel, S. Bosems, I. Kurtev, and L. F. Pires, “Performance in model
transformations: Experiments with ATL and QVT,” in ICMT, pp. 198–212, 2011.

9. P. Stevens, “A landscape of bidirectional model transformations,” in GTTSE,
pp. 408–424, 2007.

10. K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Terwilliger,
“Bidirectional transformations: A cross-discipline perspective,” in ICMT, pp. 260–
283, 2009.

11. Object Management Group, “Object Constraint Language (OCL).”
http://www.omg.org/spec/OCL/.

12. A. Egyed, “Automatically detecting and tracking inconsistencies in software design
models,” IEEE Trans. Software Eng., vol. 37, no. 2, pp. 188–204, 2011.

13. A. Demuth, R. E. Lopez-Herrejon, and A. Egyed, “Cross-layer modeler: A tool for
flexible multilevel modeling with consistency checking,” in ESEC/SIGSOFT FSE,
pp. 452–455, 2011.

14. A. Reder and A. Egyed, “Model/analyzer: a tool for detecting, visualizing and
fixing design errors in UML,” in ASE, pp. 347–348, ACM, 2010.

15. I. Groher, A. Reder, and A. Egyed, “Incremental consistency checking of dynamic
constraints,” in FASE, pp. 203–217, 2010.

16. I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano, “Toward bidirec-
tionalization of ATL with GRoundTram,” in ICMT, pp. 138–151, 2011.

17. P. Stevens, “Bidirectional model transformations in QVT: Semantic issues and
open questions,” in MoDELS, pp. 1–15, 2007.

18. A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio, “JTL: A bidirectional
and change propagating transformation language,” in SLE, pp. 183–202, 2010.

19. F. Jouault and M. Tisi, “Towards incremental execution of ATL transformations,”
in ICMT, pp. 123–137, 2010.

20. M. Tisi, S. M. Perez, F. Jouault, and J. Cabot, “Lazy execution of model-to-model
transformations,” in MoDELS, pp. 32–46, 2011.

21. Y. Xiong, Z. Hu, H. Zhao, H. Song, M. Takeichi, and H. Mei, “Supporting auto-
matic model inconsistency fixing,” in ESEC/SIGSOFT FSE, pp. 315–324, 2009.

22. T. Saxena and G. Karsai, “MDE-based approach for generalizing design space
exploration,” in MoDELS, pp. 46–60, 2010.

