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Abstract 
 

The cooperation between commercial-off-the-shelf 
(COTS) software and in-house software within larger 
software systems is becoming increasingly desirable. 
Unfortunately, COTS software packages typically are 
standalone applications that do not provide information 
about changes to their data and/or state to the rest of the 
system. Furthermore, they typically use their own, 
proprietary data formats, which are syntactically and 
semantically different from the system. 

We developed an approach that externalizes data and 
state changes of COTS software instantly and 
incrementally. The approach uses a combination of 
instrumentation and reasoning to determine when and 
where changes happen inside the COTS software. It then 
notifies interested third parties of these changes. The 
approach is most useful in domains where the system has 
to be aware of data and state changes within COTS 
software but it is computationally infeasible to poll it 
periodically (i.e., large-scale data). The approach has 
been validated on several COTS design tools with large, 
industrial models (e.g., over 34,000 model elements) for 
effectiveness and scalability. 
 
1. Introduction 
 

Incorporating COTS software into software systems is 
a desirable albeit difficult challenge. It is desirable 
because COTS software typically represents large, reliable 
software that is inexpensive to buy. It is challenging 
because software integrators have to live with an almost 
complete lack of control over the COTS software products 
[2].  

We define a COTS-based system to be a software 
system that includes COTS software [3]. From a software 
architecture perspective, a software system consists of a 

set of interacting software components. We thus also refer 
to COTS software used within a COTS-based system as 
COTS components. A COTS-based system may include 
one or more COTS components among the set of its 
software components. 

Incorporating COTS software into new and existing 
COTS-based systems has found strong and widespread 
acceptance in software development [1]. For example, a 
very common integration case is in building web-based 
technologies on well-understood and accepted COTS web 
servers. Indeed, COTS integration is so well accepted in 
this domain that virtually no web designer would consider 
building a web server or a database anew. 
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 While there are many success stories that point to the 

seaming ease of COTS integration there are also many 
failures. We believe that many failures are the result of not 
understanding the role the COTS software is supposed to 
play in the software system. In other words, the main 
reason of failure is architectural.  

Many software systems, such as the web application 
above, use the COTS software as a back-end; its use is 
primarily that of a service-providing component. Only 
some form of programmatic interface (API) is required for 
COTS software to support this use. COTS software 
vendors have become increasingly good at providing 
programmatic interfaces to data and services of their 
products. 

COTS integration is less trivial if the COTS software 
becomes (part of) the front end; e.g., with its native user 
interface exposed and available to the user. These cases 
are rather complex because the COTS software may 
undergo user-induced changes (through its native user 
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interface) that are not readily observable through the 
programmatic interface. In other words, the challenge of 
COTS integration is in maintaining the state (e.g. data 
model, configuration, etc) of the COTS software 
consistent with the overall state of the system even while 
users manipulate the system through the COTS native user 
interface. 

This paper discusses this issue from the perspective of 
using COTS design tools such as IBM Rational Rose, 
Mathwork’s Matlab, or Microsoft PowerPoint.  These de-
sign tools are well-accepted COTS software products. 
They exhibit commonly understood, graphical user 
interfaces. This paper shows how to use these COTS 
products, with their accepted user interfaces, to build a 
functioning software system where the architectural 
integration problem is more like this: 
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2. Data Consistency and State Synchronicity 

 
Most COTS software products initiate interaction with 

other software products they are explicitly designed to 
interact with. This is problematic because there are 
integration scenarios where COTS software is required to 
interact with software it was not explicitly designed to 
interact with. Moreover, while it is true in some cases that 
COTS software is fully proactive (with respect to changes 
to its internal state and data), we found that COTS 
software with user-driven GUIs (graphical user interface) 
tend to be less proactive. This raises the severe problem of 
maintaining the consistency and synchronicity of shared 
data and state between such a COTS component and its 
system while a user is manipulating it. The challenges are: 

 
1) Data Inconsistency: Data captured in COTS software 

may be consumed by other components in a system. If 
a user manipulates the data within the COTS software 
then this may introduce inconsistency in the shared 
data. The problem is that COTS software typically 
does not know or care about notifying other 
components of internal changes. 

2) State Synchronicity: User actions in COTS software 
may have system relevance in some cases. COTS 
software does not understand the needs of a system it 
is part of and consequently does not recognize user 
actions the system must be notified about. System 
relevant user actions may get lost if they are done 
through the native user interface of the COTS 
software. 

In an ideal world, COTS software is configurable to 
notify other components of relevant internal changes (data 
and state). In such an ideal world, the COTS software 
becomes an active participant in the COTS-based system 
into which it is being integrated. Today it is rare for 
COTS software to have these capabilities built-in. For 
integration, this creates a major challenge of how such 
COTS software can be augmented from the “outside” so 
that internal activities (state and data changes) relevant to 
other components are proactively communicated to them. 
The next sections discusses how this can be accomplished 
using a combination of instrumentation and reasoning. 

 
3. Batch Change Detection 
 

Batch notification is to externalize all relevant COTS 
state information (e.g., by exporting design data from 
Rational Rose) so that it becomes available to other 
components. This is probably the easiest solution but has 
one major drawback in that it is a loose form of 
incorporating COTS software into software systems. State 
information has to be replicated with the drawback that 
even minor state changes to the COTS software cause 
major synchronization activities (e.g., complete re-export 
of all design data from Rational Rose). 
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Batch notification is computationally expensive and 

only then feasible if the integration between the COTS 
software and the rest of the system is loose or the amount 
of data/state information is small.  

The following will present our approach to incremental 
notification. Our approach wraps COTS software to 
identify changes as they occur with several beneficial side 
effects: 

 
• Only changes are forwarded  
• Changes are forwarded instantly  
• Change detection is fully automated 
 

4. Incremental Change Detection 
 
To understand COTS changes one has to be aware of 

when and where the COTS software undergoes changes. 
This problem does not exist with in-house developed 
components because they can be programmed to notify 
other, affected components of a system. However, the lack 
of access to the source code makes this approach 
impossible for COTS software. Therefore, to incorporate 



COTS software into systems the COTS software must be 
observed to identify and forward all relevant events to the 
system. 

 
4.1. The When and Where of Change Detection 

 
There is a trivial albeit computationally infeasible 

approach to observing changes in COTS software by 
caching its state and continuously comparing its current 
state with the cached state. Unfortunately, this approach 
does not scale well if the COTS state consists of large 
amounts of data (e.g., design data in tools such as IBM 
Rational Rose, Mathwork’s Matlab, or Microsoft 
PowerPoint). To better observe changes in COTS 
software it has to be understood where and when changes 
happen.  

Take, for example, IBM Rational Rose. In Rose a user 
creates a new class element by clicking on a toolbar 
button (“new class”) followed by clicking on some free 
space in the adjacent class diagram. A class icon appears 
on the diagram and the icon is initially marked as selected. 
By then clicking on the newly created, selected class icon 
once more, the name of the class may be changed from its 
default or class features such as methods and attributes 
may be added. These changes could also be done by 
double-clicking on the class icon to open a specification 
window. There are two patterns worth observing at this 
point: 

 
• Changes happen in response to mouse and 

keyboard events only 
• Changes happen to selected elements only 
 
The first observation is critical in telling when changes 

happen. It is not necessary to perform (potentially 
computationally expensive) change detection while no 
user activity is observed. The second observation is 
critical in telling where changes happen (Egyed and 
Balzer 2001). It is not necessary to perform (potentially 
computationally expensive) change detection on the entire 
COTS design data (state) but only on the limited data that 
is selected at any given time. 

Both observations are the key for scalable and reliable 
change detection in GUI-driven COTS software.  

 
4.2. Caching and Comparison 

 
Changes are detected by comparing a previous state of 

a COTS software with its current state. Generally, this 
implies a comparison of the previously cached state with 
the current one. Knowing the time when changes happen 
and the location where changes happen limits what and 
when to compare.  

 

Basic Change Detection 
After every mouse/keyboard event, we ask Rose what 

elements are selected (via its programmatic interface) to 
compare these elements with the ones we cached 
previously. If we find a difference (e.g. a changed name, a 
new method) between the cached elements and the 
selected ones then we notify other components (e.g., in-
house developed components) about this difference. Thus, 
our approach notifies other components on the behalf of 
the COTS software. If we find a difference then we also 
update the cache to ensure that differences are reported 
once only. Obviously, the effort of finding changes is 
computationally cheap because a user tends to work with 
few design elements at any given time only. 

Our approach uses the programmatic interface of the 
COTS software to elicit and cache state information. For 
example, in IBM Rational Rose this includes design data 
such as classes, relationships, etc. The caching is limited 
to “relevant” state information that is of interest to other 
components of the system. For example, if it is desired to 
integrate some class diagram analysis tool with Rose, then 
change detection may be limited to class diagrams only 
(i.e., ignoring sequence diagrams, state chart diagrams). In 
summary, basic change detection is as follows: 

 
1. download and cache data when first selected 
2. re-download data and compare with cached data 

when de-selected 
3. update cache 
4. no need to cache selected element a second time if it 

was selected previously because the cache stays up-
to-date 

 
This approach detects changes between the cached and  

the current state. However, there are two special cases: 1) 
new elements cannot be compared because they have 
never been cached and 2) deleted elements cannot be 
compared because they do not exist in the COTS software 
any more. 

The creation and deletion problem can be addressed as 
follows. If we cannot find a cached element for a selected 
one then this implies that it was newly created (otherwise 
it would have been cached earlier1). We then notify other 
components of the newly created element and create a 
cached element for future comparison. In reverse, if an 
element in the cache does not exist in the COTS software 
then it was deleted. Other components are thus notified of 
this deletion and the cached element is deleted as well. 
Note that a deletion is only detected after de-selection 
(i.e., a deleted element is a previously selected element 

                                                 
1 Note: we pre-cache all data identifications initially to 
understand the difference between newly created data and 
old data that was never selected. 



that was deleted) and a creation can only be detected after 
selection. 

 
Ripple Effect of Change Detection 

Until now, we claimed that changes happen to selected 
elements only. This is not always correct. Certain changes 
to selected elements may trigger changes to “adjacent”, 
non-selected elements. For example, if a class X has a 
relationship to class Y then the deletion of class X also 
causes the deletion of the relationship between X and Y 
although the latter is never selected.  

There are two ways of handling this ripple effect. The 
easiest way is to redefine selection to include all elements 
that are affected by a change. For example, if a class is 
selected then we define that all its relationships are 
selected also. Change detection then compares the class 
and its relationships. This approach works well if the 
ripple effect does not affect many adjacent elements (e.g., 
as in this example) but it could become computational 
expensive.  

A harder but more efficient way of handling the ripple 
effect is to implement how changes in selected elements 
affect other, non-selected elements. For example, we 
implemented the knowledge that the deletion of a class 
requires its relationships to be deleted also. In this case, 
neither the creation of a class nor its change does have the 
same ripple effect.  

 
Anomalies 

We found that basic change detection and their ripple 
effects cover most scenarios for change detection. 
However, there are exceptions that cannot be handled in a 
disciplined manner. We found only few scenarios in Rose 
that had to be handled differently. 

For example, the state machines in Rose have a 
peculiar bug in that it is possible to drag-and-drop them 
into different classes while the programmatic interface to 
Rose does not realize this. If, in the current version of 
Rose, a state machine is moved from class A to class B 
then, strangely, both classes A and B believe they own the 
state machine although only one of them does. We thus 
had to tweak our approach to also consider the qualified 
name of a state machine (a hierarchical identifier) to 
identify the correct response from Rose. Obviously, this 
solution is very specific to this anomaly. Fortunately, not 
many such anomalies exist.  

 
5. Change Detection Infrastructure 

 
Figure 1 depicts our infrastructure for augmenting COTS 
software schematically [5]. The center of the figure holds 
the actual COTS software. Since no source code is 
available, it cannot be changed from within. 
Instrumentation [6] is used to monitor outside stimuli 

directed towards the COTS software (shaded frame 
around the COTS software). For example, we use 
instrumented wrapper technology to observe interactions 
between a software component and its environment (e.g., 
mouse and keyboard events). A customized Reasoning 
component within the framework then uses information 
made available through instrumentation and from 
inspection of the COTS component’s state and data (via 
its programmatic interface) to infer what internal changes 
this activity caused. It essentially implements Caching and 
Comparison discussed above.  
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Figure 1. Augmenting a COTS Component from the 

Outside through Mediation, Translation, 
Instrumentation, and Reasoning [5] 

Mediation and translation is used to construct 
alternative interfaces for COTS products to facilitate their 
use as components in larger systems. Mediators and 
translators [6] augment native interfaces of COTS 
software (i.e., wrappers or glue code). The purpose of 
translation is to make COTS-specific data and control 
information available in a format that is understood by 
other components of the COTS-based system (e.g., to 
impose a standardized interface on a COTS software). 
The purpose of mediation is to bridge middleware 
platforms (e.g., COM [15], CORBA [9,13], DLL, RMI 
[11]) between COTS software and other components of 
the system. Other components of that system then do not 
use the COTS native interface directly but instead use the 
new, augmented interface. Using an augmented interface 
has the advantage that the appearance of COTS software 
is “altered” without changing the COTS software itself 
(see also Figure 1). The services of the COTS software 
are then provided in the alternative format without other 
components and the COTS software being aware of this.  

The optional data store is required to save cached data 
and other information. 

 
6. Validation 

 
The integration framework was validated on three 

major COTS products of different vendors (IBM’s 
Rational Rose, Mathwork’s Matlab/Stateflow, and 
Microsoft PowerPoint). Each COTS product was 
consequently integrated with different in-house and third-



party systems. In total, over ten integration case studies 
were performed that tested the validity of our approach. 
For example, Rose was integrated with the UML/Analyzer 
system for automated consistency checking between UML 
class diagrams and C2 architectural descriptions [12]; it 
was integrated with an automated class diagrams 
abstraction software [4], the SDS Simulator for executing 
UML-like class and statechart diagrams [7], the 
Boeing/MoBIES Translator and Exporter for modeling 
embedded systems [10], and several other systems. 
Similarly, Matlab/Stateflow and Microsoft PowerPoint 
were integrated into yet other systems like the Design 
Editor for modeling user-definable notations [8] or the 
survey authoring system [14].   

Scalability is key to our approach. The largest model 
our approach was tested on was an Avionics design model 
from Boeing with over 43,000 model elements. While the 
initial pre-caching takes about 20 seconds, the subsequent 
caching and comparison done with every mouse or 
keyboard event is unnoticeable to human users. Boeing 
engineers and other groups have used our change 
detection approach without scalability issues. 

Although our case studies demonstrated a wide range 
of applicability of our integration infrastructure, it cannot 
be considered proof of its general applicability. To date, 
our focus was primarily on COTS software with graphical 
user interfaces that do externalize significant parts of their 
internal data. In the context of these systems, we have 
repeatedly demonstrated that it is possible to integrate 
COTS software in a scalable and reliable fashion. The 
quality of the COTS-based systems was evaluated through 
numerous scalability and usability tests. To date, our 
infrastructure has been used by several companies (e.g., 
Boeing, Honeywell, and SoHaR) and universities (e.g., 
Carnegie Mellon University, University of Southern 
California, Western Michigan University). 

 
7. Approximation 

 
It is generally easier to maintain consistency between 

COTS software and the system it is being integrated with 
if the semantics of the COTS data is similar to the 
semantics of the system data. For example, we integrated 
Rational Rose design information with UML-compatible 
design information and both are conceptually similar. 
Unfortunately, consistency becomes more complicated if 
the data of COTS software is re-interpreted into a 
semantically different domain. This is not uncommon. For 
example, many applications exist that use Rose as a 
drawing tool. In those cases, the meaning of boxes and 
arrows may differ widely.  

This section discusses how to “relax” change detection 
depending on the difficulty of the integration problem. 
This problem was motivated by our need to having a 

domain-specific component model, called the ESCM 
(Embedded Systems Component Model) [10], integrated 
with Rational Rose. While it is out of the scope to discuss 
the ESCM, it must be noted that its elements do not 
readily map one-to-one to Rose elements. As such, there 
are cases where the creation of an element in Rose may 
cause deletions in ESCM and there are cases where 
overlapping structures in Rose may relate to individual 
ESCM elements. This integration scenario is problematic 
because it is very elaborate to define how changes in Rose 
affect the ESCM.  

Previously, we solved the integration problem by 
comparing Rose data with cached data. User actions, such 
as mouse and keyboard events, triggered partial re-
transformations to compare the current Rose state with the 
cached copy. The comparison itself was trivial; so was up-
date. The key was transformation.  

The main difficulty of integrating the ESCM is in 
determining what to re-transform and what to compare. 
This is a scoping problem and it becomes more severe the 
more complex the relationship between system data (e.g., 
ESCM) and COTS data becomes. While we implemented 
a very precise, incremental change notification mechanism 
for Rose->ESCM (its discussion is out of the scope), we 
found that it is often good enough to approximate change 
detection.  

Thus, we simplified the problem by implementing 
change detecting with the possibility of reporting false 
positives (Rose change is reported that does not change 
the ESCM) but the guarantee of not omitting true 
positives (Rose change that changes the ESCM). In case 
of integrating ESCM with Rose, it was not problematic to 
err on the side of reporting changes that actually did not 
happen since they only led to some unnecessary but 
harmless synchronization tasks. The ability to relax the 
quality of change detection (i.e., false positives) strongly 
improved computational complexity in this case.   
 
8. Conclusion 
 

Consistency between commercial-off-the-shelf 
software (COTS), their wrappers, and other components is 
a pre-condition for many COTS-based systems. Our 
experience is that it is possible to observe data and state 
changes in GUI-driven COTS software even if the COTS 
software vendor did not provide a (complete) 
programmatic interface for doing so. This paper discussed 
several strategies for adding change detection mechanisms 
to COTS software. 
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