

Data and State Synchronicity Problems While Integrating
COTS Software into Systems

Alexander Egyed, Sven Johann, and Robert Balzer
Teknowledge Corporation

4640 Admiralty Way, Suite 1010
Marina Del Rey, CA 90292, USA

{aegyed,balzer}@teknowledge.com

Abstract

The cooperation between commercial-off-the-shelf
(COTS) software and in-house software within larger
software systems is becoming increasingly desirable.
Unfortunately, COTS software packages typically are
standalone applications that do not provide information
about changes to their data and/or state to the rest of the
system. Furthermore, they typically use their own,
proprietary data formats, which are syntactically and
semantically different from the system.

We developed an approach that externalizes data and
state changes of COTS software instantly and
incrementally. The approach uses a combination of
instrumentation and reasoning to determine when and
where changes happen inside the COTS software. It then
notifies interested third parties of these changes. The
approach is most useful in domains where the system has
to be aware of data and state changes within COTS
software but it is computationally infeasible to poll it
periodically (i.e., large-scale data). The approach has
been validated on several COTS design tools with large,
industrial models (e.g., over 34,000 model elements) for
effectiveness and scalability.

1. Introduction

Incorporating COTS software into software systems is
a desirable albeit difficult challenge. It is desirable
because COTS software typically represents large, reliable
software that is inexpensive to buy. It is challenging
because software integrators have to live with an almost
complete lack of control over the COTS software products
[2].

We define a COTS-based system to be a software
system that includes COTS software [3]. From a software
architecture perspective, a software system consists of a

set of interacting software components. We thus also refer
to COTS software used within a COTS-based system as
COTS components. A COTS-based system may include
one or more COTS components among the set of its
software components.

Incorporating COTS software into new and existing
COTS-based systems has found strong and widespread
acceptance in software development [1]. For example, a
very common integration case is in building web-based
technologies on well-understood and accepted COTS web
servers. Indeed, COTS integration is so well accepted in
this domain that virtually no web designer would consider
building a web server or a database anew.

User

Web-Application
<<in-house>>

Database
<<COTS>>

 While there are many success stories that point to the

seaming ease of COTS integration there are also many
failures. We believe that many failures are the result of not
understanding the role the COTS software is supposed to
play in the software system. In other words, the main
reason of failure is architectural.

Many software systems, such as the web application
above, use the COTS software as a back-end; its use is
primarily that of a service-providing component. Only
some form of programmatic interface (API) is required for
COTS software to support this use. COTS software
vendors have become increasingly good at providing
programmatic interfaces to data and services of their
products.

COTS integration is less trivial if the COTS software
becomes (part of) the front end; e.g., with its native user
interface exposed and available to the user. These cases
are rather complex because the COTS software may
undergo user-induced changes (through its native user

aegyed
Proceedings of the 4th International Workshop on Adoption-Centric Software Engineering, co-located with ICSE 2004, Edinburgh, Scotland, UK, May 2004.

interface) that are not readily observable through the
programmatic interface. In other words, the challenge of
COTS integration is in maintaining the state (e.g. data
model, configuration, etc) of the COTS software
consistent with the overall state of the system even while
users manipulate the system through the COTS native user
interface.

This paper discusses this issue from the perspective of
using COTS design tools such as IBM Rational Rose,
Mathwork’s Matlab, or Microsoft PowerPoint. These de-
sign tools are well-accepted COTS software products.
They exhibit commonly understood, graphical user
interfaces. This paper shows how to use these COTS
products, with their accepted user interfaces, to build a
functioning software system where the architectural
integration problem is more like this:

User

Component A
<<COTS>>

Component B
<<in-house>>

Component C
<<in-house>>

notifies

uses

2. Data Consistency and State Synchronicity

Most COTS software products initiate interaction with

other software products they are explicitly designed to
interact with. This is problematic because there are
integration scenarios where COTS software is required to
interact with software it was not explicitly designed to
interact with. Moreover, while it is true in some cases that
COTS software is fully proactive (with respect to changes
to its internal state and data), we found that COTS
software with user-driven GUIs (graphical user interface)
tend to be less proactive. This raises the severe problem of
maintaining the consistency and synchronicity of shared
data and state between such a COTS component and its
system while a user is manipulating it. The challenges are:

1) Data Inconsistency: Data captured in COTS software

may be consumed by other components in a system. If
a user manipulates the data within the COTS software
then this may introduce inconsistency in the shared
data. The problem is that COTS software typically
does not know or care about notifying other
components of internal changes.

2) State Synchronicity: User actions in COTS software
may have system relevance in some cases. COTS
software does not understand the needs of a system it
is part of and consequently does not recognize user
actions the system must be notified about. System
relevant user actions may get lost if they are done
through the native user interface of the COTS
software.

In an ideal world, COTS software is configurable to
notify other components of relevant internal changes (data
and state). In such an ideal world, the COTS software
becomes an active participant in the COTS-based system
into which it is being integrated. Today it is rare for
COTS software to have these capabilities built-in. For
integration, this creates a major challenge of how such
COTS software can be augmented from the “outside” so
that internal activities (state and data changes) relevant to
other components are proactively communicated to them.
The next sections discusses how this can be accomplished
using a combination of instrumentation and reasoning.

3. Batch Change Detection

Batch notification is to externalize all relevant COTS
state information (e.g., by exporting design data from
Rational Rose) so that it becomes available to other
components. This is probably the easiest solution but has
one major drawback in that it is a loose form of
incorporating COTS software into software systems. State
information has to be replicated with the drawback that
even minor state changes to the COTS software cause
major synchronization activities (e.g., complete re-export
of all design data from Rational Rose).

User

Component A
<<COTS>>

Component B
<<in-house>>

C
<<File>>

writes to

reads from

Batch notification is computationally expensive and

only then feasible if the integration between the COTS
software and the rest of the system is loose or the amount
of data/state information is small.

The following will present our approach to incremental
notification. Our approach wraps COTS software to
identify changes as they occur with several beneficial side
effects:

• Only changes are forwarded
• Changes are forwarded instantly
• Change detection is fully automated

4. Incremental Change Detection

To understand COTS changes one has to be aware of

when and where the COTS software undergoes changes.
This problem does not exist with in-house developed
components because they can be programmed to notify
other, affected components of a system. However, the lack
of access to the source code makes this approach
impossible for COTS software. Therefore, to incorporate

COTS software into systems the COTS software must be
observed to identify and forward all relevant events to the
system.

4.1. The When and Where of Change Detection

There is a trivial albeit computationally infeasible

approach to observing changes in COTS software by
caching its state and continuously comparing its current
state with the cached state. Unfortunately, this approach
does not scale well if the COTS state consists of large
amounts of data (e.g., design data in tools such as IBM
Rational Rose, Mathwork’s Matlab, or Microsoft
PowerPoint). To better observe changes in COTS
software it has to be understood where and when changes
happen.

Take, for example, IBM Rational Rose. In Rose a user
creates a new class element by clicking on a toolbar
button (“new class”) followed by clicking on some free
space in the adjacent class diagram. A class icon appears
on the diagram and the icon is initially marked as selected.
By then clicking on the newly created, selected class icon
once more, the name of the class may be changed from its
default or class features such as methods and attributes
may be added. These changes could also be done by
double-clicking on the class icon to open a specification
window. There are two patterns worth observing at this
point:

• Changes happen in response to mouse and

keyboard events only
• Changes happen to selected elements only

The first observation is critical in telling when changes

happen. It is not necessary to perform (potentially
computationally expensive) change detection while no
user activity is observed. The second observation is
critical in telling where changes happen (Egyed and
Balzer 2001). It is not necessary to perform (potentially
computationally expensive) change detection on the entire
COTS design data (state) but only on the limited data that
is selected at any given time.

Both observations are the key for scalable and reliable
change detection in GUI-driven COTS software.

4.2. Caching and Comparison

Changes are detected by comparing a previous state of

a COTS software with its current state. Generally, this
implies a comparison of the previously cached state with
the current one. Knowing the time when changes happen
and the location where changes happen limits what and
when to compare.

Basic Change Detection
After every mouse/keyboard event, we ask Rose what

elements are selected (via its programmatic interface) to
compare these elements with the ones we cached
previously. If we find a difference (e.g. a changed name, a
new method) between the cached elements and the
selected ones then we notify other components (e.g., in-
house developed components) about this difference. Thus,
our approach notifies other components on the behalf of
the COTS software. If we find a difference then we also
update the cache to ensure that differences are reported
once only. Obviously, the effort of finding changes is
computationally cheap because a user tends to work with
few design elements at any given time only.

Our approach uses the programmatic interface of the
COTS software to elicit and cache state information. For
example, in IBM Rational Rose this includes design data
such as classes, relationships, etc. The caching is limited
to “relevant” state information that is of interest to other
components of the system. For example, if it is desired to
integrate some class diagram analysis tool with Rose, then
change detection may be limited to class diagrams only
(i.e., ignoring sequence diagrams, state chart diagrams). In
summary, basic change detection is as follows:

1. download and cache data when first selected
2. re-download data and compare with cached data

when de-selected
3. update cache
4. no need to cache selected element a second time if it

was selected previously because the cache stays up-
to-date

This approach detects changes between the cached and

the current state. However, there are two special cases: 1)
new elements cannot be compared because they have
never been cached and 2) deleted elements cannot be
compared because they do not exist in the COTS software
any more.

The creation and deletion problem can be addressed as
follows. If we cannot find a cached element for a selected
one then this implies that it was newly created (otherwise
it would have been cached earlier1). We then notify other
components of the newly created element and create a
cached element for future comparison. In reverse, if an
element in the cache does not exist in the COTS software
then it was deleted. Other components are thus notified of
this deletion and the cached element is deleted as well.
Note that a deletion is only detected after de-selection
(i.e., a deleted element is a previously selected element

1 Note: we pre-cache all data identifications initially to
understand the difference between newly created data and
old data that was never selected.

that was deleted) and a creation can only be detected after
selection.

Ripple Effect of Change Detection

Until now, we claimed that changes happen to selected
elements only. This is not always correct. Certain changes
to selected elements may trigger changes to “adjacent”,
non-selected elements. For example, if a class X has a
relationship to class Y then the deletion of class X also
causes the deletion of the relationship between X and Y
although the latter is never selected.

There are two ways of handling this ripple effect. The
easiest way is to redefine selection to include all elements
that are affected by a change. For example, if a class is
selected then we define that all its relationships are
selected also. Change detection then compares the class
and its relationships. This approach works well if the
ripple effect does not affect many adjacent elements (e.g.,
as in this example) but it could become computational
expensive.

A harder but more efficient way of handling the ripple
effect is to implement how changes in selected elements
affect other, non-selected elements. For example, we
implemented the knowledge that the deletion of a class
requires its relationships to be deleted also. In this case,
neither the creation of a class nor its change does have the
same ripple effect.

Anomalies

We found that basic change detection and their ripple
effects cover most scenarios for change detection.
However, there are exceptions that cannot be handled in a
disciplined manner. We found only few scenarios in Rose
that had to be handled differently.

For example, the state machines in Rose have a
peculiar bug in that it is possible to drag-and-drop them
into different classes while the programmatic interface to
Rose does not realize this. If, in the current version of
Rose, a state machine is moved from class A to class B
then, strangely, both classes A and B believe they own the
state machine although only one of them does. We thus
had to tweak our approach to also consider the qualified
name of a state machine (a hierarchical identifier) to
identify the correct response from Rose. Obviously, this
solution is very specific to this anomaly. Fortunately, not
many such anomalies exist.

5. Change Detection Infrastructure

Figure 1 depicts our infrastructure for augmenting COTS
software schematically [5]. The center of the figure holds
the actual COTS software. Since no source code is
available, it cannot be changed from within.
Instrumentation [6] is used to monitor outside stimuli

directed towards the COTS software (shaded frame
around the COTS software). For example, we use
instrumented wrapper technology to observe interactions
between a software component and its environment (e.g.,
mouse and keyboard events). A customized Reasoning
component within the framework then uses information
made available through instrumentation and from
inspection of the COTS component’s state and data (via
its programmatic interface) to infer what internal changes
this activity caused. It essentially implements Caching and
Comparison discussed above.

proactive

data and
control

User

Instrumentation

Data Cache

Component

reactive

COTS
Component

Mediation
and

Translation

data and
control

data and
control

data and
control

Reasoning

Figure 1. Augmenting a COTS Component from the

Outside through Mediation, Translation,
Instrumentation, and Reasoning [5]

Mediation and translation is used to construct
alternative interfaces for COTS products to facilitate their
use as components in larger systems. Mediators and
translators [6] augment native interfaces of COTS
software (i.e., wrappers or glue code). The purpose of
translation is to make COTS-specific data and control
information available in a format that is understood by
other components of the COTS-based system (e.g., to
impose a standardized interface on a COTS software).
The purpose of mediation is to bridge middleware
platforms (e.g., COM [15], CORBA [9,13], DLL, RMI
[11]) between COTS software and other components of
the system. Other components of that system then do not
use the COTS native interface directly but instead use the
new, augmented interface. Using an augmented interface
has the advantage that the appearance of COTS software
is “altered” without changing the COTS software itself
(see also Figure 1). The services of the COTS software
are then provided in the alternative format without other
components and the COTS software being aware of this.

The optional data store is required to save cached data
and other information.

6. Validation

The integration framework was validated on three

major COTS products of different vendors (IBM’s
Rational Rose, Mathwork’s Matlab/Stateflow, and
Microsoft PowerPoint). Each COTS product was
consequently integrated with different in-house and third-

party systems. In total, over ten integration case studies
were performed that tested the validity of our approach.
For example, Rose was integrated with the UML/Analyzer
system for automated consistency checking between UML
class diagrams and C2 architectural descriptions [12]; it
was integrated with an automated class diagrams
abstraction software [4], the SDS Simulator for executing
UML-like class and statechart diagrams [7], the
Boeing/MoBIES Translator and Exporter for modeling
embedded systems [10], and several other systems.
Similarly, Matlab/Stateflow and Microsoft PowerPoint
were integrated into yet other systems like the Design
Editor for modeling user-definable notations [8] or the
survey authoring system [14].

Scalability is key to our approach. The largest model
our approach was tested on was an Avionics design model
from Boeing with over 43,000 model elements. While the
initial pre-caching takes about 20 seconds, the subsequent
caching and comparison done with every mouse or
keyboard event is unnoticeable to human users. Boeing
engineers and other groups have used our change
detection approach without scalability issues.

Although our case studies demonstrated a wide range
of applicability of our integration infrastructure, it cannot
be considered proof of its general applicability. To date,
our focus was primarily on COTS software with graphical
user interfaces that do externalize significant parts of their
internal data. In the context of these systems, we have
repeatedly demonstrated that it is possible to integrate
COTS software in a scalable and reliable fashion. The
quality of the COTS-based systems was evaluated through
numerous scalability and usability tests. To date, our
infrastructure has been used by several companies (e.g.,
Boeing, Honeywell, and SoHaR) and universities (e.g.,
Carnegie Mellon University, University of Southern
California, Western Michigan University).

7. Approximation

It is generally easier to maintain consistency between

COTS software and the system it is being integrated with
if the semantics of the COTS data is similar to the
semantics of the system data. For example, we integrated
Rational Rose design information with UML-compatible
design information and both are conceptually similar.
Unfortunately, consistency becomes more complicated if
the data of COTS software is re-interpreted into a
semantically different domain. This is not uncommon. For
example, many applications exist that use Rose as a
drawing tool. In those cases, the meaning of boxes and
arrows may differ widely.

This section discusses how to “relax” change detection
depending on the difficulty of the integration problem.
This problem was motivated by our need to having a

domain-specific component model, called the ESCM
(Embedded Systems Component Model) [10], integrated
with Rational Rose. While it is out of the scope to discuss
the ESCM, it must be noted that its elements do not
readily map one-to-one to Rose elements. As such, there
are cases where the creation of an element in Rose may
cause deletions in ESCM and there are cases where
overlapping structures in Rose may relate to individual
ESCM elements. This integration scenario is problematic
because it is very elaborate to define how changes in Rose
affect the ESCM.

Previously, we solved the integration problem by
comparing Rose data with cached data. User actions, such
as mouse and keyboard events, triggered partial re-
transformations to compare the current Rose state with the
cached copy. The comparison itself was trivial; so was up-
date. The key was transformation.

The main difficulty of integrating the ESCM is in
determining what to re-transform and what to compare.
This is a scoping problem and it becomes more severe the
more complex the relationship between system data (e.g.,
ESCM) and COTS data becomes. While we implemented
a very precise, incremental change notification mechanism
for Rose->ESCM (its discussion is out of the scope), we
found that it is often good enough to approximate change
detection.

Thus, we simplified the problem by implementing
change detecting with the possibility of reporting false
positives (Rose change is reported that does not change
the ESCM) but the guarantee of not omitting true
positives (Rose change that changes the ESCM). In case
of integrating ESCM with Rose, it was not problematic to
err on the side of reporting changes that actually did not
happen since they only led to some unnecessary but
harmless synchronization tasks. The ability to relax the
quality of change detection (i.e., false positives) strongly
improved computational complexity in this case.

8. Conclusion

Consistency between commercial-off-the-shelf
software (COTS), their wrappers, and other components is
a pre-condition for many COTS-based systems. Our
experience is that it is possible to observe data and state
changes in GUI-driven COTS software even if the COTS
software vendor did not provide a (complete)
programmatic interface for doing so. This paper discussed
several strategies for adding change detection mechanisms
to COTS software.

Acknowledgement

We wish to acknowledge Neil Goldman, Marcelo Tallis,
and David Wile for their feedback and comments.

References

 [1] Boehm, B., Port, D., Yang, Y., Bhuta, J., and Abts,

C. Composable Process Elements for Developing
COTS-Based Applications. 2002.

 [2] Boehm, B.W., Abts, C., Brown, A. W., et al:
Software Cost Estimation with COCOMO II. New
Jersey, Prentice Hall, 2000.

 [3] Brownsword L. , Oberndorf P., and Sledge C.:
Developing New Processes for COTS-Based
Systems. IEEE Software, 2000, 48-55.

 [4] Egyed A.: Automated Abstraction of Class
Diagrams. ACM Transaction on Software
Engineering and Methodology (TOSEM) 11(4),
2002, 449-491.

 [5] Egyed, A. and Balzer, R.: "Unfriendly COTS
Integration - Instrumentation and Interfaces for
Improved Plugability," Proceedings of the 16th
IEEE International Conference on Automated
Software Engineering (ASE), San Diego, USA,
November 2001.

 [6] Egyed A., Medvidovic N., and Gacek C.: A
Component-Based Perspective on Software
Mismatch Detection and Resolution. IEE
Proceedings Software 147(6), 2000, 225-236.

 [7] Egyed, A. and Wile, D.: "Statechart Simulator for
Modeling Architectural Dynamics," Proceedings of
the 2nd Working International Conference on
Software Architecture (WICSA), August 2001,
pp.87-96.

 [8] Goldman, N. and Balzer, R.: "The ISI Visual Editor
Generator," Proceedings of the IEEE Symposium on
Visual Languages, Tokyo, Japan, 1999, pp.20-27.

 [9] Object Management Group: The Common Object
Request Broker: Architecture and Specification.
1995.

[10] Schulte, Mark. MoBIES Application Component
Library Interface for the Model-Based Integration of
Embedded Software Weapon System Open
Experimental Platform. 2002.

[11] Sun Microsystems: Java Remote Method Invocation
- Distributed Computing for Java. 2001.(UnPub)

[12] Taylor R. N., Medvidovic N., Anderson K. N.,
Whitehead E. J. Jr., Robbins J. E., Nies K. A.,
Oreizy P., and Dubrow D. L.: A Component- and
Message-Based Architectural Style for GUI
Software. IEEE Transactions on Software
Engineering 22(6), 1996, 390-406.

[13] Vinoski S.: CORBA: Integrating Diverse
Applications Within Distributed Heterogeneous
Environments. IEEE Communications Magazine,
1997.

[14] Wile D.: Supporting the DSL Spectrum. Journal of
Computing and Information Technology. Journal on
Computing and Information Technology 9(4), 2001,
263-287.

[15] Williams S. and Kindel C.: The Component Object
Model: A Technical Overview. Dr. Dobb's Journal,
1994.

