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Abstract. Model-Based Systems Engineering (MBSE) is an emerging
engineering discipline whose driving motivation is to provide support
throughout the entire system life cycle. MBSE not only addresses the
engineering of software systems but also their interplay with physical
systems. Quite frequently, successful systems need to be customized to
cater for the concrete and speci�c needs of customers, end-users, and
other stakeholders. To e�ectively meet this demand, it is vital to have in
place mechanisms to cope with the variability, the capacity to change,
that such customization requires. In this paper we describe our experi-
ence in modeling variability using SysML, a leading MBSE language, for
developing a product line of wind turbine systems used for the generation
of electricity.

1 Introduction

In many domains, software engineering is but one discipline that contributes
to the success of software systems. Indeed, software systems rarely stand alone
but must be integrated into larger systems comprising specialized hardware and
merging the expertise of a wide range of technologies �mechatronics, electrical
engineering, aeronautics, etc. Software-intensive systems characterize such sys-
tems where software interacts with other software, systems, devices, sensors, and
with people [1].

For software engineering, the development of software-intensive systems poses
new challenges = from people who do not have the same technological back-
ground (which hampers their communication), to historical boundaries (devel-
opment roles and responsibilities that have existed for a long time). In particular,
in those domains where software has not been a vital part of a system but is
increasingly becoming one, the introduction of software engineering has become



a source of confusion = as roles and responsibilities must shift but the various
disciplines are not able to individually decide how to best do that. The role of
software engineering is then often one of a �back-end� engineering discipline that
is no longer able to make or a�ect important design decisions.

Model-Based Systems Engineering (MBSE) recognizes the new unifying role
that modeling ought to take for the engineering of software-intensive systems,
namely, providing a �common language� for communication among the multiple
disciplines involved in the development of this type of systems. It should be
noted though that this e�ort is by no means an attempt to replace the rich and
expressive modeling concepts that exist and have proven invaluable in each of
the distinct disciplines. On the contrary, the aim is to foster the understanding
and exchange of information among all stakeholders. SysML is an example of a
modeling language conceived to play that unifying role [2].

There is however one crucial need that has not been addressed in modeling
languages such as SysML. Quite often, software-intensive systems need to be
customized to �t the concrete and particular needs of di�erent clients, users,
developers, etc. The capacity of change that software artifacts must have to
meet all the customization needs is collectively referred to as variability [3], and
thus it must be readily expressed in modeling languages that aim to capture
system customization demands.

In this paper, we present an approach to support variability in SysML and
how it has been applied to an ongoing project on wind turbine systems for the
generation of electricity. We summarize the lessons learned during the modeling
and development of a family of wind turbine systems and what we believe are
new venues of experimentation and research.

2 Systems Engineering

Systems Engineering has as its function to guide the engineering of complex sys-
tems [4]. It di�ers from traditional engineering in that it focuses on a system as
a whole, that is, as a set of diverse and interrelated components that have com-
plex relations amongst them. Next we provide the basic background on MBSE
followed by a short description of the key characteristics of SysML used in our
work.

2.1 Model-Based Systems Engineering

Model-Based Systems Engineering (MBSE) is de�ned by the International Coun-
cil on Systems Engineering (INCOSE), as the formalized application of modeling
to support system requirements, design, analysis, veri�cation and validation ac-
tivities beginning in the conceptual design phase and continuing throughout
development and later life cycle phases [5]. This emerging discipline has evolved
as a result of the increasing reliance on Model-Driven Engineering (MDE) tech-
nologies over the last decade [6]. Following the MDE philosophy, MBSE models



not only serve as documentation but can also be executed for simulations to
further assist with the veri�cation and validation of design decisions.

There has been an extensive research e�ort and applications of MBSE lead by
INCOSE, OMG, and several other organizations. Many di�erent methodologies
have been proposed. A survey by Estefan describes the salient characteristics of
some of them [7]. These surveys highlight the importance that using standards
for the systems engineering modeling brings for tool vendors and users.

Similarly, there are several modeling languages and environments that have
been developed and adopted for di�erent types of application domains and user
communities. An example of a proprietary environment for Model-Based design
for dynamic and embedded systems is Simulink [8]. Another example is Dymola,
used primarily in the automotive, aerospace, and robotics industries [9].

2.2 Systems Modeling Language Overview

The System Modeling Language (SysML) is a general-purpose modeling language
for systems engineering applications [2]. SysML is an extension of a subset of the
Uni�ed Modeling Language (UML) [10]. SysML shares with standard UML the
following behavior diagrams: sequence, state machines, and use case. In struc-
ture diagrams, SysML shares package diagrams and extends UML's activity,
block de�nition, and internal block diagrams. SysML also adds two new types
of diagrams: requirement, and parametric (an extension to internal blocks).

The basic structural units in SysML are blocks. They can represent hard-
ware, software, mechanical parts, or other sorts of element that can constitute
a system. There are two types of blocks: block de�nition diagrams describe the
system hierarchy and system/component classi�cations, and internal block dia-
grams model the internal structure of a system in terms of its parts, ports, and
connectors.

The requirements diagram describes the requirements hierarchies and their
derivation. This diagram provides the means to relate a requirement to its cor-
responding model element(s). The parametric diagram capture constraints on
system property values (e.g. physical constraints like weight) to help the inte-
gration of design models with engineering models.

Multi-View Modeling (MVM) is a common modeling practice that advocates
that multiple, di�erent and yet related models are required to represent the per-
spectives and information needs of diverse system stakeholders throughout the
development process [11,12]. SysML is an example of MVM because of its dis-
tinct diagram types. A crucial issue in MVM is the expression and maintenance
of the semantic relationships that exist amongst the elements in the distinct
views.

3 Wind Turbine Systems and MBSE

The consumption of energy has dramatically increased in the last century, with
the negative e�ect of incrementing pollution and CO2 emissions. Nowadays,



there is evidence that this prolonged consumption has caused signi�cant impact
on the environment. Most notably, the planet is facing a steadily complex prob-
lem derived from the global climate change known as Global Warning [13]. There
are currently worldwide e�orts to produce renewable energy with reduced impact
on the environment. Wind energy is a major player in this market accounting
for a signi�cant rate of the renewable production. In some western European
countries it has reached 20% market penetration with the aid of government
subsidies [14].

The production of wind power is typically achieved by an array of wind tur-
bines put together in a location called wind farm. The locations where wind
farms are installed can vary signi�cantly, for example in the sea, deserts, moun-
tains, etc. Wind turbines are complex engineering systems that are composed of
several mechanical elements and subsystems such as blades, pitch, rotor, genera-
tor, and current inverter. In charge of the turbines there is a control system that
actually manages the entire power production process of a wind turbine system.
The economical and ecological importance of wind power combined with the
technological and engineering challenges of the wind turbine systems presents
an ideal opportunity to exploit the substantial bene�ts of employing MBSE.

3.1 Why use SysML?

Wind turbine systems, as any complex system, have a large number of func-
tional, performance, physical and interface requirements which have to be satis-
�ed during the development process. This implies the need for a comprehensive
requirements engineering and management during the project. The number of
requirements in our systems are counted by the hundreds. The capacity of SysML
to deal with large systems and the mature tool support available were deciding
factors in our selection.

Structurally, wind turbine systems consists of various elements, like tower,
nacelle, rotor, blades, blade pitches, sensors, actuators, generator, inverter, re-
frigeration subsystems, and so on. The control system alone consists of several
main subsystems. These subsystems o�er all kinds of information and interfaces.
Their management alone is challenging because it typically involves teams from
multidisciplinary backgrounds such as aeronautical (wind) engineers, electrical
engineers, and software engineers. Additionally, our project involved geographi-
cally distributed project teams which demanded a common modeling represen-
tation and understanding. In this working environment, the ability to represent
the system structurally, the modeling language expressiveness for all the partic-
ipating engineering disciplines, availability of extensive documentation, and an
increasing community of users were all crucial factors in favor of SysML.

Wind turbine systems, like many complex systems, must promptly adapt to
changing environment conditions; in our case, conditions such as wind speed,
direction, or temperature. This rapid adaption makes behavioral expressiveness
a stringent requirement of a modeling language for this domain. The most re-
markable challenge is the real-time demands imposed to e�ectively control the



conversion of wind energy into AC electricity and its transfer to the electric grid.
SysML can meet these domain needs.

The ability to adapt the system design to respond to the needs of a customer
with a reduced time-to-market is especially challenging in this sector due to the
rapid pace of change in the wind power industry. Next we present the sources that
originate the variability in our wind turbine systems to subsequently describe
how they are addressed.

3.2 Sources of Variability

Wind turbine systems often need to be customized to meet the needs of di�er-
ent clients and locations worldwide. A one-size-�ts-all system is inappropriate
because of the large variability involved. In general, the sources of the variability
in this domain are:

� Di�erent power generation requirements. For instance, typical requirements
range from 850 KW to 3 MW. As expected, to meet the demands on such
a wide range, di�erent topologies, technologies and consequently di�erent
system elements are needed.

� Di�erent controlled elements. As an example, consider the alternatives for
cooling parts of a system: refrigerated air, refrigerated water, or a combina-
tion of both. The existence of alternatives like these implies that the elements
involved most likely di�er.

� Di�erent controlling strategies. For example, a system could be deployed in
geographical locations with extreme weather conditions of cool, heat, hu-
midity, etc. Consequently, the control behavior of the system elements may
vary according to the deployment site.

� Di�erent locations. In this case, countries or regions may have speci�c legal
or environmental regulations that must be ful�lled.

All these sources of variabilities can describe the whole range of wind turbine
systems available in the market. Nonetheless, like most product line systems, it
is unfeasible to attempt at tackling all of them in a single product line. Thus
a careful scoping (selection of which features to include in a product line) is
required.

Figure 1 shows a feature model, rendered as a mind map for simplicity, of
our scoped product line. The focus in this paper is on the generator subsystem
of the wind turbine. For example, in this �gure, Cooling denotes a manda-
tory feature as all generators do require a refrigeration system. The generators
we considered can have three cooling alternatives denoted with the features:
Air_passive-Air_forced, Air_forced-Air_Forced, and Water-Air_forced.
A generator has only one of these alternatives installed, denoted with cardi-
nality 1:1 in the �gure. Next we present how these sources of variability were
handled using variability management for our wind turbine systems.



Fig. 1. Feature model - Partial subsystem

4 Variability Management with SysML

A Software Product Line (SPL) is a set of software-intensive systems that share
a common, managed set of features satisfying the speci�c needs of a particular
market segment or mission and that are developed from a common set of core
assets in a prescribed way [15]. The signi�cant bene�ts of applying SPL practices
have been extensively documented and corroborated both in academia and in-
dustry [15,16,17]. Amongst them, the reduced time-to-market and the increased
reuse of assets throughout the entire development cycle.

SPL approaches can be broadly categorized in two main groups depending on
how they express variability in software artifacts. In compositional approaches,
also known as with positive variability [18], the variable parts are encapsulated
in modular units which are put together according to the features selected for
building a system [19,20]. In integrative approaches, also known as with negative
variability, the artifacts contain both the common and variable parts. Building
a system means keeping the variable parts of the desired features in the artifacts
while removing those parts belonging to unselected features [21,22].

Generally speaking, variation points are the places in the artifacts where
variation can occur [23]. More concisely, a variation point is the representation
of a variability subject within domain artifacts enriched by contextual informa-
tion [17]. The context mentioned in this de�nition refers to the instantiation
logic or mechanism to realize an actual artifact variant. In the case of integra-
tive variability, the variation points and their instantiation logic are commonly
denoted explicitly in the artifacts. An example of this are the #ifdefs macros of
preprocessors.



Fig. 2. Block De�nition Diagram with variation points

4.1 Variation Points in SysML Diagrams

Variability is handled by using the notion of variation point of the BigLever
Gears tool. System modeling is done by using IBM Rational Rhapsody. We
handle variability in the diagrams by using the IBM Rational Rhapsody/Gears
Bridge [24,25]. In short, these bridge tool provides support in three forms:

� Representation of variation points into model elements.
� Mappings among those variation-point-elements and features. These map-
pings are referred to as feature logic, and express the impact of features in
model elements.

� Derivation of speci�c models according to feature selections, a process called
actuation.

Engineering a system using SysML involves representing di�erent diagrams, each
providing a di�erent perspective on the model such as structure or behavior. For
example, Figure 2 shows a simpli�ed block de�nition diagram for the generator
subsystem of the wind turbine system. The upper side of this �gure depicts
the blocks Generator, Bearings, Refrigeration, and Electrical subsystem.
These blocks corresponds to the major constituent elements of the generator
subsystem. Some of these blocks are as well subdivided into further elements.

As highlighted before, our wind turbine systems form a family of products
and as such they ought to be modeled. Consequently, variability must be re-
�ected in the modeling diagrams. An example of this variability is the di�erent
refrigerating strategies; in our case, a system may be cooled using air or water.



Fig. 3. Statechart diagram with variation points

Variability is expressed in SysML using stereotypes that represent the vari-
ation points of the di�erent elements in the diagram. Figure 2 shows in block
Refrigeration an �AttributeVariationPoint� to capture the variability of
refrigeration strategies.

The WaterPump block models the water refrigeration strategy (in Figure 1 is
feature Water-Air_forced), and the block Fan models the air strategy (feature
Air_forced-Air_forced in Figure 1). In both cases, the entire block element is
variable which is denoted with �BlockVariationPoint�.

Next we describe how actuation works. As a �rst step, the features desired
for a particular member of the product line are selected. All common model
elements, those without variation point stereotypes, will be part of the resulting
diagram. The conditions associated to each element with a variation point (fea-
ture logic) are evaluated, if the conditions hold the respective element will be
part of the resulting diagram. For instance, consider a wind turbine system that
is refrigerated with water. For this option, feature Water-Air_forced is selected.
The feature logic of the variation point of attribute type in Refrigeration block
sets the initial value according to the selection. The feature logic of WaterPump,
Sensor, Inlet, and Outlet causes these blocks to be included. In contrast, the
logic of Fan will exclude this block when selecting Water-Air_forced.

Modeling variability at the family level, as opposed to each single system,
fosters the reuse of system diagrams. But most importantly, it empowers the
system designer with an enriched and new global perspective of all the design
decisions and trade-o�s involved. This perspective should not only address the
needs of software engineers, but also those from the multiple disciplines usually
involved in the conception and design of complex systems.



Diagram Element Stereotype

Block De�nition Block BlockVariationPoint
Internal Block Part ObjectVariationPoint

Attribute AttributeVariationPoint
Operation PrimitiveOperationVariationPoint

Port PortVariationPoint

Statechart State StateVariationPoint
Activity Transition TransitionVariationPoint

Action ActionVariationPoint
Table 1. Elements supported in SysML

4.2 Variation Points in Multiple Views

Since SysML has di�erent views, variation points are also available for their
elements. For example, Figure 3 shows a simpli�ed statechart for the refrigeration
subsystem of the wind turbine system. The variation point mechanisms are the
same as to those described for block diagrams. Besides statecharts and block
de�nition diagrams, variability support is also available for internal block and
activity diagrams. Table 1 summarizes the diagrams, their elements and the
stereotypes to represent a variation point.

Note that Figure 3 speci�es the behavior of the Refrigeration block in
Figure 2. Notice here that the operations used within actions or transitions of a
statechart should be de�ned in a block model. Such kind of dependencies among
di�erent views are common and make possible the communication among the
distinct engineering disciplines. Hence the need of checking consistency of the
di�erent diagrams.

4.3 Perspective and Lessons Learned

The development of systems involve the combination of skills from di�erent dis-
ciplines. Wind turbine systems are not an exception. Our team involves over two
dozen engineers from software, embedded systems, mechanical and aeronautical
backgrounds. This is an ongoing project that started two years ago. At present
our focus is code generation from some models targeted to parts of the software
architecture. Our preliminary results indicate an encouraging improvement in
coping with the inherent system complexity. One of the reasons is that systems
are now speci�ed in terms closer to the problem domain, which gives engineers
the ability to detect and resolve problems at that level while separating them
from the software implementation details.

We summarize the lessons learned as follows:

� Design as a continuum. System design is a continuous process where each
discipline focuses on certain design parts most frequently develop in parallel
disciplinary teams. Introducing variability further accelerates this continu-
ous process because changes may have a broader impact on the entire de-



velopment process. Having a common approach to handle variability across
engineering disciplines plays thus a pivotal role.

� Living with inconsistencies. In this paper we assumed that the di�erent sys-
tem views should at anytime be consistent. However, there may be interme-
diate stages during the development in which certain inconsistencies may be
allowed temporarily until some parts are completed by di�erent teams.

� Clearly de�ned system-software boundaries. Recognizing the signi�cance of
separating systems from software engineering seems trivial. However, when
considering the close relationships among di�erent elements, it is far from
obvious. This realization was a turning point in our project, and marked a
�rst-step towards engineering our family of wind turbine systems. Our initial
conception of variability shifted from a software-centric to a broader system
perspective.

� Software design driven by system design. The ability to delay or lately mod-
ify design decisions is relevant in our case since the software have to �t the
system elements it is controlling. Frequent situations of last-minute modi�-
cations in the system are now mitigated by the variability handling.

5 Related Work

There exist an increasing body of literature at the intersection of product lines
and MBSE. In this section we present those pieces of work that most closely
related to our approach and research experience.

Dauenhauer et al. describe an approach to model variability for testbed au-
tomation systems [26]. Contrary to our work, they use a positive variability
approach whereby a models is constructed from a set of models through model
transformations. Additionally, they de�ne their own metamodel to represent and
implement variability.

Beuche et al. present an approach for modeling binding-times using Simulink
[27]. They de�ne a metamodel for representing variation points in models of this
language. In that sense, it follows a similar approach to ours because they also
represent variability in terms of variation points that are made explicit in the
models.

Favaro and Mazzini extend FeatuRSEB, a method for domain modeling, with
SysML constructs [28]. This approach leverages SysML speci�c diagrams as fol-
lows: block diagrams to represent its so called context models and higher level ar-
chitecture, requirements diagrams for its domain requirement models, and para-
metric diagrams to document its business decisions. One of the key di�erences
with our work is that this extension to FeatureRSEB does make variation points
explicit in SysML diagram elements.

6 Conclusions and Future Work

This paper described an approach to cope with variability in SysML modeling.
We reported our experience in applying this approach as part of an ongoing



project on wind turbine systems for electricity generation. This application has
proven successful because it treats system variability in an uniform way; in our
case, this uniform treatment has improved of the overall development process.

Our work has also highlighted the need of mechanisms to ensure the consis-
tency among the di�erent SysML diagrams. We plan to leverage our experience
and tool support in incremental consistency of UML models to address this
pressing need [29,30].
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