
Consistent Architectural Refinement and Evolution using
the Unified Modeling Language

Alexander Egyed
Teknowledge Corporation

4640 Admiralty Way, Suite 231
Los Angeles, CA 90292, USA

aegyed@acm.org

Nenad Medvidovic
University of Southern California

941 W. 37th Place, Suite 327
Los Angeles, CA 90089-0781, USA

neno@usc.edu

ABSTRACT
Architecture Description Languages (ADLs) comprise a sizeable
set of modeling techniques that are aimed at bridging the gap
between requirements engineering and low-level design and code.
ADLs excel in their ability to model high-level functional and
non-functional aspects of software systems and have demonstrated
increasing support for trade-off analyses (i.e., requirements
feasibility) and simulation. On the downside, ADLs are highly
specialized and tend to rely on abstract notions such as roles and
responsibilities. This creates problems when it comes to refining
software artifacts into platform-specific programming constructs
and combining solutions derived via different ADLs. Over the last
years, we have devised mechanisms for transforming architecture
models into implementation code by leveraging the Unified
Modeling Language (UML). This paper presents an overview of
our approach which is accompanied by extensive tool support.

Keywords
Refinement, Transformation, Consistency, Evolution, ADL, UML

1. INTRODUCTION
The basic promise of software architectures is that better software
systems can result from modeling their important aspects during,
and especially early in the development. Architecture-based
development has received a lot of attention in academia and
industry as evidenced by numerous languages, techniques, and
tools [13]. A part of the software architecture research community
has focused on analytic evaluation of architectural descriptions,
resulting in large numbers of architecture description languages
(ADLs). Each ADL embodies a particular approach to the
specification and evolution of an architecture, with specialized
modeling and analysis techniques that address specific system
aspects in depth. On the downside, highly specialized architecture
description languages (ADLs) only address specific modeling and
analysis issues (e.g., architectural structure), rarely focusing on
the broader development picture.

With the emergence and widespread acceptance of the Unified
Modeling Language (UML) [2], it has become obvious that
another parts of the software engineering community is interested

in broader modeling languages that address a wide range of
concerns that arise in software development. Those modeling
languages span families of models and relate them under a
common umbrella (i.e., meta model). The generic nature of UML
makes is more suitable for addressing general software modeling
problems. However, by emphasizing breadth over depth allows
many problems and errors to go potentially undetected. One such
set of problems deals with consistency across related UML
models [4].

In our work on combining general-purpose modeling (i.e., UML)
with specific-purpose modeling (i.e., ADLs), we have found that
the two approaches complement one another [10]. Thus, for
instance, UML emphasizes modeling practicality and breadth,
while ADLs emphasize rigor and depth. Both these perspectives
are needed to address the broad spectrum of rapidly changing
situations that arise in software development.

This paper discusses our attempts at unifying UML and ADLs that
also aid in the automated refinement of architectures to
implementation and in the baselining of different architectural
modeling languages. Towards refinement, we use UML as a
bridge to transform architectural elements into design elements
that are more easily refined into code. Towards baselining, we use
UML as a common foundation for multiple ADLs, to be used for
data exchange or consistency checking. Thus, we discuss here two
issues – architectural refinement and ADL baselining to ensure
model consistency – in the remained of the paper.

2. ARCHITECTURAL REFINEMENT
Architectures focus on abstract concepts such as software

components roles, responsibilities, and interaction protocols,
whereas source code emphasizes concrete concepts such as
iterations, variables, and method calls. We have found that design

Architecture
(ADL)

Implementation
(middleware, bus

technolgies)

Design
(UML)

Object-Oriented

Programming Language (OOPL)
D/COM

CORBAC++

Java

Visual Basic

JEDI

Java Beans

C2

Figure 1. From Architecture to Implementation [1]

Proceedings of the 1st Workshop on Describing Software
Architecture with UML, co-located with ICSE 2001, Toronto,
Canada, May 2001, pp. 83-87.



models such as those enabled by the UML can serve as a useful
bridge in refining architectural models to code. Specifically, UML
allows one to represent architectural concepts with design-level
constructs, which are conceptually closer to the implementation.
Thus, the design supplements the architecture by modeling added
details on how roles, responsibilities, and interaction protocols
may be realized. The design typically also extends the architecture
by further subdividing architectural components into smaller
elements and providing additional details for them as well.

For our purposes, the starting point of refinement is an
architecture composed of coarse-grained components and
connectors, and their configurations [1]. The architecture adheres
to some architectural style (e.g., client-server, pipe-and-filter,
layered) and its representation may be formalized using an ADL.
That architecture is refined into a design, and eventually, an
implementation. Given that architectures are intended to describe
systems at a high-level of abstraction, directly refining an
architectural model into a design or implementation may not be
possible. One reason is that the design space rapidly expands with
the decrease in abstraction levels, as shown in Figure 1. A
solution to this problem is to bound the target (implementation)
space by employing specific middleware technologies. A more
general refinement approach includes design as an intermediate
step. During design, constructs such as classes with attributes,
operations, and associations, instances of objects collaborating in
a scenario, and so forth, are identified. These are more effectively

expressed in a notation such as UML than in an ADL. However,
various problems might arise. First, the design may no longer be
faithful to the rules of the selected architectural style. Second,
maintaining traceability is inherently difficult, because of the
possible many-to-many mappings from the elements in the
problem domain to the elements in the solution space [5]: a given
element from one space can map to zero, one, or more elements in
the “lower level” space. Third, some architectural elements, such
as connectors, are given first class status in architectures [15], but
may not have direct design or implementation counterparts.
Typically, connectors are “designed away” into various class
associations and object interactions or are “coded away” into
programming language statements distributed across different
components. In [10], we discuss various refinement strategies that
can be taken in refining ADLs to UML:
• Strategy #1 consists of using standard UML constructs to

simulate modeling architectural concerns as would be done in
an ADL [12].

• Strategy #2 consists of using UML’s built-in extension
mechanisms (stereotypes and tagged values) [2] and the Object
Constraint Language (OCL) [17] to constrain the semantics of
meta-classes to those of ADL constructs [9].

• Strategy #3 consists of augmenting the UML meta-model to
directly support architectural concerns. Although this is a
potentially effective approach, it would result in a notation that
is incompatible with standard UML. Since one of our goals for

IncomingShipmentHandler :
IncomingShipmentHandlerComponent

CargoRouter :
CargoRouterComponen

DelPort :
DeliveryPort

Clock :
ClockComponen

Vehicles :
VehiclesComponent

Warehouses :
WarehousesComponent

DeliveryPortArtist :
DeliveryPortArtistComponent

WarehouseArtist :
WarehouseArtistComponent

VehicleArtist :
VehicleArtistComponent

GraphicsB
inding

ClockConn :
ClockConn

BindingConn :
BindingConn

RouterConn :
RouterConn

StateConn :
StateConn

ArtistConn :
ArtistConn

18: request

16: notification
17: notification

15: request

14: notification

8: request

9: request 10: request

7: notification

6: request

3: request
4: request 5: request

2: notification

1: request

12: notification
13: notification

11: notification

ITopDeliveryPortsComponentComponent
<<Interface>>

IBottomDeliveryPortsComponentComponent

<<out>> newShipmentCompleted()
<<out>> getDeliveryPortsCompleted()
<<out>> unloadShipmentCompleted()
<<in>> newShipment()
<<in>> getDeliveryPorts()
<<in>> unloadShipment()

<<Interface>>

DeliveryPort

ports : DeliveryPortType_SET

unloadShipment()

(from Logical View)

DeliveryPortsComponent

state_var : DeliveryPortsComponent

<<C2-Component>>

Figure 2. Partial UML model of CargoRouter architecture (using Rational Rose)



this work is conformance with standard UML and
corresponding tools, we do not pursue this strategy currently.

It is out of the scope of this paper to discuss refinement strategies
in detail; in [1] we demonstrated all three in the context of an
example. Although, all three refinement strategies have respective
advantages and disadvantages, we have found Strategy #2 to be
the least intrusive and most expressive option. In [12] we describe
this strategy and discuss how we use UML stereotypes to
represent modeling constructs of several ADLs in UML.
Specifically, we created a development environment called
SAAGE which automates this transformation in context of the
C2SADEL specification language [16].

The UML specification resulting from this transformation is
stored as a Rational RoseTM model [14]. A portion of the Rose
model for an application architecture describing a cargo router is
depicted in Figure 2: it depicts a part of the C2 architecture as a
UML collaboration diagram (left) and the attributes of and class
diagram corresponding to the DeliveryPort component (right).

The details of how our refinement approach are outside the scope
of this paper, however, it must be noted that the automatically
generated Rose model is consistent with the C2 architectural
model and is used as the basis for further, possibly manual
refinement. For instance, we could now use Rational Rose’s code
generation capabiltiy to generate skeleton code.

3. CONSISTENCY
The refinement mechanism discussed above is adequate for
representing architectures in UML. The only major limitation is
that refinement comes up short in fully integrating UML views
with each other since both refinement and abstraction may evolve
independently of one another thereafter: Although UML and its
meta-model define notational and semantic aspects of individual
views in detail, inter-view relationships are not captured in
sufficient detail. Without this information, the (UML) model is
nothing more than a collection of loosely coupled (or even
unrelated) views. The lack of view integration extends beyond
existing UML views [4,5] to non-UML views represented in
UML (e.g. ADLs) [7]. For instance, if architectural models are
refined via UML then we need to make sure that those

refinements remain consistent with the original architecture.
Furthermore, if multiple ADLs are represented in UML (as
proposed in Section 2) then we also need to also make sure that
those different architectural views are consistent with one another.

Take, for instance, the separately created object diagram (Figure 2
right) which depicts a refinement of the architecture from Figure 1
(note that Figure 2 replicates a part of the architecture from Figure
1 for ease of comparison). By themselves, views do not constrain
one another unless constraints are somehow defined. In Figure 2,
we thus depict various mappings of relationships between the two
views; mappings (traces) from UML objects to C2
components/connectors are shown with dotted lines. Thus, we see
that the objects theStorage, RefrigeratedStorage, and aWarehouse
belong conceptually to the architecture component Warehoue (see
Figure 2 left) and we can see similar mappings for other elements.
Basically, C2 components and connectors may be seen as the
interfaces for compact, self-sustaining sections of the
implementation. Since C2 elements (components and connectors)
are often coarse grain, it is reasonable to assume that a collection
of objects is needed to implement a single C2 element.

Because of the fact that a C2 element is a black box, nothing
can be said about how objects part of a single element are
supposed to interact. However, the interactions of objects
belonging to different C2 elements are constrained by the C2
style. For instance, if the design-object aWarehouse corresponds
to the C2 component Warehouse, and if the design-object aPort
corresponds to the C2 component Port, then the interaction
between the two groups of objects needs to be consistent with the
interaction of the corresponding C2 architectural elements. For
instance, in C2, components at the same “level” are not allowed to
communicate (i.e., Warehouse cannot communicate with
DelPort). In the design, we find that this is violated since
aSurplus is part of aWarehouse and aPort is part of aSurplus.
Transitively, we can thus infer that aPort is part of aWarehouse
(this reasoning is discussed in more detail in [6]). Likewise, we
find that in the design there is no connection between aClock and
other design objects, thus again violating the architecture which
specifies that the component Clock may interact with components
DelPort and Vehicle (via a connector).

Our approach to automated consistency checking, called
IViTA (inter View Transformation and Analysis), can detect such

...

aRouteCollection

theTimeNeeded

aDeficiency

theWarehouseCollection

theStorage

RefrigeratedStorage

aWarehouse

aSurplus

availableGoods

aPort

aClock

Potential Mismatch:
Link between components
Warehouse and DelPort
violates C2 architectural

constraints
DelPort

Warehouse

Clock

Clock :
ClockComponen

Vehicles :
VehiclesComponent

Warehouses :
WarehousesComponent

ClockConn :
ClockConn

18: request

16: notification
17: notification

6: request

3: request
4: request 5: request

DelPort :
DeliveryPort

Potential Mismatch:
Link between component

Clock and connector
clock conn not reflected

in design view

Figure 2. C2 and corresponding Class View plus Mismatches



inconsistencies. IViTA is a conceptual framework for
transformation-based consistency checking [5]. In context of
UML and C2, IViTA has been automated in a tool called
UML/Analyzer [4]. IViTA combines consistent transformation and
consistency comparison. Consistent transformation ensures
consistency via well-defined transformation steps where source
models are transformed into target models in a manner that
guarantees consistency. Consistency comparison, on the other
hand, detects inconsistencies via well-defined comparison steps.
Our approach is conceptually similar to consistency checking
approaches like VisualSpecs [3] or JViews [8], both of which use
transformation to convert graphical models into either a formal
language (VisualSpecs) or a data repository (JViews) in which
they perform consistency analyses. There is, however, one major
distinguishing factor in that we do not belief that either a single
formal language or a single meta-model can be found that
represents the vast variety of modeling languages available today.
Even in cases like the Unified Modeling Language (UML), where
a single meta-model is available, comparing model elements in
that language is still non-trivial and can often not be done in a
simple manner.

We thus use transformation to convert source models into the
types of target models we wish to compare to. For instance, if we
would like to compare the class diagram in Figure 2 with the
architecture diagram in Figure 1, our approach would either
reverse engineer the class diagram to yield an architecture
followed by comparing both architectures; or our approach would
generate another class diagram out of the architecture followed by
comparing both versions of the class diagrams. It is our emphasis
to bring models closer to one another to simplify comparison.
Abstraction and refinement is only one dimension of
transformation. In our investigation on how to bridge models, we
have identified other transformation methods as outlined in [11].

4. CONCLUSION
This paper discussed highlights of our research in architectural
modeling, refinement, and consistency checking. As part of
refinement, we use UML as an intermediate language to simplify
the mapping between architecture and code. For consistency
checking, we use UML’s ability to provide a common modeling
baseline to compare those models. To date, we have automated
many of the concepts discussed in this paper and created two tool
suites: SAAGE to enable architectural modeling and refinement;
and UML/Analyzer (also integrated with Rose) to enable
automated transformation and consistency checking. It is our
long-term vision to further extend the automation support to other
parts of the software life cycle and other architecture description
languages.

5. REFERENCES
1. Abi-Antoun, M. and Medvidovic, N.: "Enabling the Refinement

of a Software Architecture into a Design," Proceedings of the
2nd International Conference on the Unified Modeling
Language (UML), October 1999.

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling
Language User Guide. Addison Wesley, 1999.

3. Cheng, B. H. C., Wang, E. Y., and Bourdeau, R. H.: "A
Graphical Environment for Formally Developing Object-
Oriented Software," Proceedings of IEEE International

Conference on Tools with AI, November 1994.

4. Egyed, A.: "Heterogeneous View Integration and its
Automation," PhD Dissertation, University of Southern
California, Los Angeles, CA, August 2000.

5. Egyed, A.: "Taming Ambiguity to Overcome the Model
Consistency Barrier," submitted to European Conference on
Software Engineering and Foundations of Software Engineering
(ESEC/FSE), Vienna, Austria, September 2001.

6. Egyed, A. and Kruchten, P.: "Rose/Architect: a tool to visualize
architecture," Proceedings of the 32nd Hawaii International
Conference on System Sciences (HICSS), January 1999.

7. Egyed, A. and Medvidovic, N.: "Extending Architectural
Representation with View Integration," Proceedings of the 2nd
International Conference on the Unified Modeling Language
(UML), October 1999.

8. Grundy J., Hosking J., and Mugridge R.: Inconsistency
Management for Multiple-View Software Development
Environments. IEEE Transactions on Software Engineering
(TSE) 24(11), 1998.

9. Medvidovic, N., Oreizy, P., and Taylor, R. N.: "Reuse of Off-
the-Shelf Components in C2-Style Architectures," Proceedings
of the 1997 Symposium on Software Reuseability (SRR'97) and
Proceedings of the 1997 International Conference on Software
Engineering (ICSE'97), Boston, MA, May 1997.

10. Medvidovic, N., Egyed, A., and Rosenblum, D.: "Round-Trip
Software Engineering Using UML: From Architecture to
Design and Back," Proceedings of the 2nd Workshop on
Object-Oriented Reengineering (WOOR) , September 1999,
pp.1-8.

11. Medvidovic, N., Gruenbacher, P., Egyed, A., and Boehm, B.:
"Software Lifecycle Connectors: Bridging Models across the
Lifecycle," accepted at the International Conference on
Software Engineering and Knowledge Engineering (SEKE
2001), June 2001.

12. Medvidovic, N. and Rosenblum, D. S.: "Assessing the
Suitability of a Standard Design Method for Modeling Software
Architectures," Proceedings of the First Working IFIP
Conference on Software Architecture (WICSA1), February
1999 , pp.161-182.

13. Medvidovic N. and Taylor R. N.: A Classification and
Comparison Framework for Software Architecture Description
Languages. IEEE Transactions on Software Engineering 26(1),
2000, 70-93.

14. Rational Corporation, Rational Rose, http://www.rational.com/.

15. Shaw, M.: "Procedure Calls are the Assembly Language of
Software Interconnections: Connectors Deserve First-Class
Status," Workshop on Studies of Software Design, 1993.

16. Taylor R. N., Medvidovic N., Anderson K. N., Whitehead E. J.
Jr., Robbins J. E., Nies K. A., Oreizy P., and Dubrow D. L.: A
Component- and Message-Based Architectural Style for GUI
Software. IEEE Transactions on Software Engineering 22(6),
1996, 390-406.

17. Warmer, J. and Kleppe, A.: The Object Constraint Language.
Reading, MA, Addison Wesley, 1999.


