
Consistent Adaptation and Evolution of Class
Diagrams during Refinement

Alexander Egyed

Teknowledge Corporation, 4640 Admiralty Way, Suite 1010
Marina Del Rey, CA 90034, USA

aegyed@ieee.org

Abstract. Software models are key in separating and solving independent de-
velopment concerns. However, there is still a gap on how to transition design
information among these separate, but related models during development and
maintenance. This paper addresses the problem on how to maintain the consis-
tency of UML class diagrams during various levels of refinement. We present a
new approach to automated consistency checking called ViewIntegra. Our ap-
proach separates consistency checking into transformation and comparison. It
uses transformation to translate model elements to simplify their subsequent
comparison. Transformation-based consistency checking, in the manner we use
it, is new since we use transformation to bridge the gap between software mod-
els. No intermediate models or model checkers are required; developers need
only be familiar with the models they design with and none other. The separa-
tion of transformation and comparison makes our approach to consistency
checking more transparent. It also makes our approach useful for both propa-
gating design changes among models and validating consistency. This gives de-
velopers added flexibility in deciding when to re-generate a model from scratch
or when to resolve its inconsistencies. Although this paper emphasizes the ad-
aptation and evaluation of class diagrams, we found our technique to be equally
useful on other models. Our approach is tool supported.

1 Introduction

In the past decades, numerous software models were created to support software devel-
opment at large. Models usually break up software development into smaller, more com-
prehensible pieces utilizing a divide and conquer strategy. The major drawback of models
is that development concerns cannot truly be investigated all by themselves since they
depend on one another. If a set of issues about a system is investigated, each through its
own models, then the validity of a solution derived from those models requires that com-
monalities (redundancies) between them are recognized and maintained in a consistent
fashion. Maintaining consistency between models is a non-trivial problem. It is expensive
and labor intensive despite the vast number of past and existing research contributions.

In this work, we introduce a transformation-based approach to consistency checking
called ViewIntegra. This paper describes our approach to automated consistency checking
and shows how to translate models to simplify their comparison. The effect is that redun-
dant information from one model is re-interpreted in the context and language of another

model followed by a simple, one-to-one comparison to detect differences. We limit the
discussion in this paper to the abstraction and refinement of UML-like class diagrams
[24]. We believe our approach to be equally applicable to other kinds of models.

Figure 1 depicts the principle of transformation-based consistency checking. In order to
compare the two (user-defined1) models A and B (e.g., high-level model and low-level
model), we transform one of them into ‘something like the other’ so that the one becomes
easier comparable to the other. For example, our approach transforms the low-level class
diagram into a form that makes the results directly comparable with the high-level dia-
gram. As part of our collaboration with Rational Corporation we created such an trans-
formation technique [9] and, in this paper, we will demonstrate how its results can be used
for direct, one-to-one comparison to detect inconsistencies.

Our approach separates the propagation of design information (transformation) from
the comparing of design information (consistency checking). It follows that transformation
may be used independently from comparison for change propagation. For example, the
above mentioned transformation technique can be used during reverse engineering to
generate a high-level class diagram from a lower-level one; or the transformation tech-
nique can be used during consistency checking to suggest its transformation results as an
option for resolving inconsistencies.

Traceability among model elements is needed to guide transformation and comparison.
We found that it is typically very hard to generate traceability information in detail al-
though developers are capable of approximating it [6]. This would be a problem for any
consistency checking approach but our approach can alleviate this problem significantly.
This paper will thus also demonstrate how our approach behaves with a partial lack of
traceability information.

Because our approach separates transformation from comparison during consistency
checking, it also benefits from reuse of previously transformed, unchanged design infor-
mation. This greatly improves performance because subsequent comparisons require par-
tial re-transformations only. Another benefit is that consistency rules are very generic and
simple since they have to compare alike model elements only.

We evaluated our transformation-based approach to consistency checking on various
types of heterogonous models like class diagrams, state chart diagrams, sequence diagrams
[8], and the C2SADEL architecture description language [10]. Furthermore, we validated
the usefulness of our approach (in terms of its scope), its correctness (e.g., true errors,
false errors), and scalability via a series of experiments using third-party models [1,2] and
in-house developed models. Our tool support, called UML/Analyzer, fully implements

1 User-defined views are diagrams that are created by humans (e.g., Figure 2). Derived views

(interpretations) are diagrams that are automatically generated via Transformation.

Derived

User
Defined

(a) (b)
something
likeB

tra
ns

for
m

A B

co
m

pa
re

A

A
co

m
pa

re transform

B

something
like

map map

Figure 1. View transformation and mapping to complement view comparison

transformation-based consistency checking for class and C2SADEL diagrams. The other
diagrams are partially supported only.

The remainder of this paper is organized as follows: Section 2 introduces an example
and discusses abstraction and refinement problems in context of two class diagrams de-
picted there. Section 3 will highlight consistency checking without transformation and
discusses in what cases it is effective and where it fails. Section 4 introduces a transforma-
tion technique for abstracting class diagrams and discusses how it improves the scope of
detectable inconsistencies. Section 4 discusses how our transformation and consistency
checking methods are also able to interpret incomplete and ambiguous model information.
Section 5 discusses issues like scope, accuracy, and scalability in more detail and Section
6 summarizes the relevance of our work with respect to related work.

2 Example

Figure 2 depicts two class diagrams of a Hotel Management System (HMS) at two lev-
els of abstraction. The top diagram is the higher-level class diagram with classes like
Guest and Hotel, and relationships like “a guest may either stay at a hotel or may have
reservations for it.” This diagram further states that a Hotel may have Employees and that
there are Expense and Payment transactions associated with guests (and hotels). It is also
indicated that a Guest requires a Security deposit. The diagram uses three types of rela-
tionships to indicate uni-directional, bi-directional, and part-of dependencies (see UML
definition [24]). For instance, the relationship with the diamond head indicates aggrega-
tion (part-of) implying that, say, Security is a part of Guest. Additionally, the diagram lists
a few methods that are associated with classes. For instance, the class Expense has one
method called getAmount().

The bottom part of Figure 2 depicts a refinement of the left side. Basic entities like
Guest or Expense are still present although named slightly differently2 and additional
classes were introduced. For instance, the lower-level diagram makes use of new classes
like Reservation or Check to refine or extend the higher-level diagram. The refined class
diagram uses the same types of relationships as the high-level one plus generalization
relationships (triangle head) to indicate inheritance. The low-level diagram also describes
methods associated with classes more extensively.

Both diagrams in Figure 2 separately describe the structure of the HMS system. Obvi-
ously, there must be some commonality between them (i.e., redundancy). For instance, the
high-level class Guest is equivalent to the low-level class GuestEntity and the high-level
relationship “has” (between Guest and Expense) is equivalent to the combined relation-
ships with the classes Transaction and Account between them. The table in Figure 2 de-
scribes several cases of one-to-many mappings such as Hotel maps to HotelEntity, Room,
HotelCollection, one case of a many-to-many mapping (there are several choices of how
reservation_for and stays_at map to the low-level diagram), one case of a many-to-one
mapping (HotelCollection is assigned to Hotel and Collection), and many cases of no
mappings altogether (e.g., Employee in the high-level diagram or Account in the low-level
diagram).

2 It must be noted that we use a disjoint set of class names in order to avoid naming confusions

throughout this paper. Duplicate names are allowed as part of separate name spaces.

Knowledge on how model elements in separate diagrams relate to one another is com-
monly referred to as traceability (or mapping) [13]. Traceability is usually generated
manually [16] (either by using common names or maintaining trace tables as depicted in
Figure 2) but there exists some automation [6]. Like other consistency checking ap-
proaches, our approach requires some traceability knowledge but a discussion on how to
derive it is out of the scope of this paper.

3 Simple Consistency Checking

Current consistency checking approaches detect inconsistencies by transforming mod-
els into some third-party language followed by constraint-based reasoning (often model
checking) in context of that language. For instance, consistency checking approaches like
JViews (MViews) [14], ViewPoints [15] or VisualSpecs [4] read diagrams, translate them
into common (and usually formal) representation schemes, and validate inconsistency
rules against them. These approaches have shown powerful results; they are precise and

Abstract Class
 Diagram

ExpenseTransaction

PaymentTransaction

getAmount()

CheckCash

CreditCard

Room Fee

Serv ice Fee

Cancelation Fee

TransactionCollection

HotelCollection

f ind()
insert()
modif y ()
remov e()

Location

setAddress()
getAddress()

PaymentSecurity

getNumber()
getExpiration()
getTy pe()

Transaction

0..n

1

0..n

1

transactions

HotelEntity

space_av ailable()
setName()
getName()
setLocation()
getLocation()
getGuests()
getReserv ations()

0..n
1

0..n
1 hotels

11
at_location

GuestCollection

f ind()
insert()
modif y ()
remov e()

Reserv ation

setNumberOfNights()
setNumberOf People()
setFromDate()
isValid()

1

1..n

1

1..n

reservation_security

1
0..n

1
0..n

reservation_for

Account

get_balance()

0..n0..n
has_transactions

Room

get_rate()
set_rate()

1

0..n

1

0..n
has_room

GuestEntity

getName()
setName()
getAccount() : Account
getReserv ations()

0..n1 0..n1

guests

0..n

1..n

0..n

1..n

has_reservation

1

1

1

1has_account

0..1

0..n

0..1

0..n

is_checked_in

Kitchen

Bath

Suite

Employ ee

Collection

Payment

getAmount()

0..n

1

0..n

1

payments

Expense

getAmount()

0..n

1

0..n

1

expenses

Security

Hotel

0..n0..n

has

employs

Guest

getName()
getAccount() : Integer
inGoodStanding()

0..n

1

0..n

1

guests

0..n0..n

makes

0..n
0..n

0..n
0..n

causes

0..n

0..n

0..n

0..n

reservation_for

11creditcard
11

debitcard

0..n

0..n

0..n

0..n

stays_at

Concrete Class Diagram

High-level
Diagram

Low-level Diagram

Guest GuestEntity
Hotel HotelEntity, Room, HotelCollection
Security PaymentSecurity
Expense ExpenseTransaction and Room Fee
Payment PaymentTransaction
Collection GuestCollection, and HotelCollection

Figure 2. High-level and low-level class diagrams of HMS and mapping table

computationally efficient. But there are also unresolved side effects that one could well
argue to be outside the scope of consistency checking but that are related and significant:
(1) Lack of Change Propagation: Existing approaches solve the problem of detecting

inconsistencies very well but they lack support for the subsequent, necessary adapta-
tion of models once inconsistencies are found.

(2) Lack of Traceability: Existing approaches require complete traceability to guide con-
sistency checking. Generating traceability is a hard, error-prone activity with a poten-
tially little life span.

4 Transformation-Based Consistency Checking

We describe our approach to automated consistency checking next and also discuss
how it is able to handle above side effects. Our approach, called ViewIntegra [8], exploits
the redundancy between models: for instance, the high-level diagram in Figure 2 contains
information about the HMS system that is also captured in the low-level diagram. This
redundant information can be seen as a constraint. Our approach uses transformation to
translate redundant model information to simplify their comparison. The effect is that
redundant information from one model is re-interpreted in the context and language of
another model followed by a simple, one-to-one comparison to detect differences (effec-
tively enforcing the constraint).

Abstraction implementing Transformation

In the course of evaluating nine types of software models [8] (class, object, sequence,

and state chart diagrams, their abstractions and C2SADEL) we identified the need for four
transformation types called Abstraction, Generalization, Structuralization, and Transla-
tion. This paper focuses on inconsistencies during refinement and thus only needs Ab-
straction. See [8] for a discussion on the other types.

Abstraction deals with the simplification of information by removing details not neces-
sary on a higher level. In [7], we identified two types of abstractions called compositional
abstraction and relational abstraction. Compositional abstraction is probably the more
intuitive abstraction type since it closely resembles hierarchical decomposition of systems.
For instance, in UML, a tree-like hierarchy of classes can be built using a feature of
classes that allows them to contain other classes. Thus, a class can be subdivided into
other classes. In relational abstraction it is the relations (arrows) and not the classes that
serve as vehicles for abstraction. Relations (with classes) can be collapsed into more ab-
stract relations. Relational abstraction is needed since it is frequently not possible to main-
tain a strict tree-hierarchy of classes. Our abstraction technique has been published previ-
ously; we will provide a brief summary here only. For a more detailed discussion, please
refer to [7,9].

In order to abstract the low-level diagram in Figure 2, we have to apply both abstraction
types. Figure 3 shows a partial view of Figure 2 depicting, in the top layer, the high-level
classes Hotel, Guest, and Payment and, in the bottom layer, their low-level counterparts
HotelEntity, HotelCollection, Room, GuestEntity, and PaymentTransaction. The bottom
layer also depicts relationships among the low-level classes.

The first abstraction step is to use compositional abstraction to group low-level classes
that belong to single high-level classes. For instance, the low-level classes HotelEntity,

HotelCollection, and Room are all part
of the same high-level class Hotel
(recall traceability in Figure 2). The
grouped class, called Hotel, is depicted
in the first (1) derived view in Figure 3.
Besides grouping the three low-level
classes, the abstraction method also
replicated the inter-dependencies of
those three classes for the derived,
high-level class. It can be seen that the
derived class Hotel now has relation-
ships to Reservation and Guest that
were taken from HotelEntity and Room
respectively. Also note that the single
low-level classes GuestEntity and
PaymentTransaction were grouped into
the more high-level, derived classes
Guest and Payment. They also took all
inter-relationships from their low-level
counterparts. Compositional abstrac-
tion simplified the low-level class
diagram somewhat but it is still not
possible to compare it directly to the
high-level diagram. To simplify com-
parison, helper classes such as Reser-
vation, Account, and Transaction need
to be eliminated since they obstruct our
understanding on the high-level rela-
tionships between classes such as Hotel
and Guest. The problem is that those
classes were not assigned to any high-
level classes and thus could not be
eliminated via compositional abstrac-
tion.

The second abstraction step is to
group low-level relationships into
single high-level relationships. For
instance, the low-level relationship
path going from Guest via Reservation
to Hotel in Figure 3 (bottom) may have
some abstract meaning. This meaning
can be approximated through simpler,
higher-level model elements. In par-
ticular, this example shows an aggrega-
tion relationship between the classes
Reservation and Guest (diamond head)
indicating that Reservation is a part of
Guest. The example also shows a uni-
directional association relationship

1

H
ot

el
C

ol
le

ct
io

n

\
R

es
er

va
tio

n
H

ot
el

E
nt

ity
R

oo
m

G
ue

st
E

nt
ity

H
ot

el
R

es
er

va
tio

n

H
ot

el

G
ue

st
H

ot
el

0.
.*

0.
.*

0.
.*

0.
.*

st
ay

s_
at

re
se

rv
at

io
n_

fo
r

R
ea

liz
at

io
n

In
te

rp
re

ta
tio

n

H
ig

h
-L

ev
el

 V
ie

w

L
o

w
-L

ev
el

 V
ie

w
1

0.
. *

0.
. *

1.
. *0.
. *

0.
. 1

0.
. *

10.
. 1

0.
. *

1.
. *

0.
. *

0.
. *0.
. *

0.
.1

0.
. *

D
er

iv
ed

 V
ie

w
s

A
cc

ou
nt

1

T
ra

ns
ac

tio
n

0.
.n

P
ay

m
en

tT
ra

ns
ac

tio
n

C
as

h

1

A
cc

ou
nt

1

T
ra

ns
ac

tio
n

0.
.n

P
ay

m
en

t

1
0.

.n

G
ue

st

G
ue

st
P

ay
m

en
t

1

A
cc

ou
nt

1

0.
.n

G
ue

st
P

ay
m

en
t

0.
.n

P
ay

m
en

t

(1
)

(2
)

(3
)

m
ak

es

C
as

h

C
as

h
(B

)
(A

)

R
ea

liz
at

io
n

In
te

rp
re

ta
tio

n

Figure 3. Abstraction applied on part of
HMS showing high-level, low-level, and

derived modeling information

from Hotel to Reservation indicating that Reservation can access methods and attributes
of Hotel but not vice versa. What the diagram does not depict is the (more high-level)
relationship between Guest and Hotel. Semantically, the fact that Reservation is part of a
Guest implies that the class Reservation is conceptually within the class Guest. Therefore,
if Reservation can access Hotel, Guest is also able to access Hotel. It follows that Guest
relates to Hotel in the same manner as Reservation relates to Hotel making it possible for
us to replace Reservation and its relationships with a single association originating in
Guest and terminating in Hotel (third derived view in Figure 3).

In the course of inspecting numerous UML-type class diagrams, we identified over 120
class abstraction rules [9]. Table 1 shows a small sample of these abstraction rules as
needed in this paper. Abstraction rules have a given part (left of “equals”) and an implies
part (right of “equals”). Rules 1 and 8 correspond to the two rules we discussed so far.
Since the directionality of relationships is very important, the rules in Table 1 use the
convention of extending the relationship type name with “Right” or “Left” to indicate the
directions of their arrowheads. Furthermore, the number at the end of the rule indicates its
reliability. Since rules are based on semantic interpretations, those rules may not always be
valid. We use reliability numbers as a form of priority setting to distinguish more reliable
rules from less reliable ones. Priorities are applied when deciding what rules to use when.
We will later discover that those reliability numbers are also very helpful in determining
false errors. It must be noted that rules may be applied in varying orders and they may also
be applied recursively. Through recursion is it possible to eliminate multiple helper classes
as in the case of the path between PaymentTransaction and GuestEntity (see second (2)
and third (3) derived views in Figure 3).

Compositional and relational abstraction must be applied to the entire low-level dia-
gram (Figure 2). A part of the resulting abstraction is depicted in the second row in Figure
3 (third (3) view). We refer to this result as the interpretation of the low-level diagram.
This interpretation must now be compared to the high-level diagram.

Comparison

The abstraction technique presented above satisfies our criteria of a good transforma-
tion method because it transforms a given low-level class diagram into ‘something like’
the high-level class diagram. Obviously, consistency checking is greatly simplified be-
cause a straightforward, one-to-one comparison will detect inconsistencies. This section
introduces consistency rules for comparison. The beginning of Section 4 listed the lack of
traceability as a major challenge during consistency checking. This section shows how to
identify inconsistencies, and in doing so, how to handle missing traceability. In the follow-
ing, we will first describe the basics of comparison and how to handle traceability under
normal conditions. Thereafter, we will discuss ambiguous reasoning to handle missing
traceability. In the following we will refer to the interpretation as the abstracted (trans-
formed) low-level class diagram and to the realization as the existing high-level class

Table 1. Excerpt of abstraction rules for classes [9]
1) Class x Association x Class x AggregationRight x Class equals Association 100
2) Class x AggregationLeft x Class x AssociationLeft x Class equals AssociationLeft 100
3) Class x Association x Class x AggregationLeft x Class equals Association 90
4) Class x AggregationLeft x Class x GeneralizationLeft x Class equals AggregationLeft 100
5) Class x GeneralizationLeft x Class x GeneralizationLeft x Class equals GeneralizationLeft 100
6) Class x DependencyRight x Class x AggregationRight x Class equals DependencyRight 100
7) Class x AssociationRight x Class x GeneralizationRight x Class equals AssociationRight 70
8) Class x Aggregation x Class equals Class 100

diagram. The goal of consistency checking is to compare the realization with the interpre-
tation.

Before transformation, we knew about (some) traceability between the high-level dia-
gram (realization) and the low-level diagram but no traceability is known between the
realization and the interpretation. This problem can be fixed easily. Any transformation
technique should be able to maintain traceability between the transformation result (inter-
pretation) and the input data (low-level diagram). This is easy because transformation
knows what low-level model elements contribute to the interpretation. Through transitive
reasoning, we then derive traceability between the realization and the interpretation. For
example, we know that the derived Hotel is the result of grouping {HotelEntity, Room,
HotelCollection} (see dashed arrows in Figure 3) and we know that this group traces to
the high-level Hotel (mapping table in Figure 2). Thus, there is a transitive trace depend-
ency between the class Hotel in the realization and the Hotel in the interpretation. Arrows
with circular arrowheads in Figure 3 show these transitive trace dependencies between the
realization and interpretation.

Ideally, there should be one-to-one traces between realization and interpretation ele-
ments only. Unfortunately, partial knowledge about trace dependencies may result in one-
to-many dependencies or even many-to-many dependencies (e.g., realization relation
reservation_for traces to two relationships in the interpretation). This is represented with a
fork-shaped trace arrow in Figure 3.

In the following we present a small sample of consistency rules relevant in this paper.
Consistency rules have two parts; a qualifier to delimit the model elements it applies to
and a condition that must be valid for the consistency to be true3:

1. Type of low-level relation is different from abstraction:
∀ r ∈ relations, interpretation(r)≠null ⇒ type(interpretation(r))=type(r)

Rule 1 states that for a relation to be consistent it must have the same type as its corre-
sponding interpretation. Its qualifier (before “⇒”) defines that this rule applies to relations
only that have a known interpretation. The traceability arrow in Figure 3 defines such
known interpretations (or in reverse known realizations). In Figure 3, we have six interpre-
tation traces; three of which are originating from relationships (circular ends attached to
lines): the realization relations “stays_at” and “reservation_for” satisfy above condition4,
however, the realization relation “makes” does not. The latter case denotes an inconsis-
tency because “makes” is of type “aggregation” and its interpretation is of type “associa-
tion.” If we now follow the abstraction traces backward (dashed arrows, that were gener-
ated during abstraction), it becomes possible to identify the classes Account and Transac-
tion as well as their relationships to GuestEntity and PaymentTransaction a having con-
tributed to the inconsistent interpretation.

2. Low-level relation has no corresponding abstraction:
∀ r ∈ relations, abstractions(r)->size=0 ∧ realizations(r)=null ⇒
¬[∃ c ∈ classes(r), realizations(c)≠null]

3 Some qualifier conditions were omitted for brevity (e.g., checking for transformation type)

since they are not needed here.
4 For now treat the one-to-many traces as two separate one-to-one traces. We will discuss later

how to deal with it properly.

Rule 2 states that all (low-level) relations must trace to at least one high-level model
element. To validate this case, the qualifier states that it applies (1) to relations that do not
have any abstractions (dashed arrows) and (2) to relations that do not have realizations.
Figure 3 has many relations (derived and user-defined ones). Checking for relations that
do not have abstractions ensures that only the most high-level, abstracted relations are
considered; ignoring low-level relations such as the aggregation from Transaction to
Account. The rule thus defines that consistency is ensured if none of the classes attached
to the relation have realizations themselves. The generalization from Cash to Payment in
Figure 3 violates this rule. This generalization neither has an abstraction nor a realization
trace but its attached class Payment has a realization trace5. This example implies that the
high-level diagram does not represent the relationship to Cash or that traceability about it
is unknown.

3. Destination direction/navigability of relation does not match abstract relation:
∀ r ∈ relations, interpretation(r)≠null ∧
type(interpretation(r))=type(r) ⇒ [size(r->destClass ÷
realization(interpretation(r)->destClass))=0]

Rule 3 defines that for two relations to be consistent they ought to be pointing in the
same directions (same destination classes). This rule applies to relations that have interpre-
tations and to relations that have the same type. It defines that the realization “r” must
have the same destination classes as the realizations of the interpretation’s destination
classes. A destination class here is a class at the end of a relation’s arrowhead (e.g., Hotel
for reservation_for). This rule applies to the two relations reservation_for and stays_at
only (the relation makes is ruled out since the qualifier requires relations to be of the same
type).

Ambiguous Reasoning

Comparison is not sufficient to establish consistency correctly. Rule 3 applied to the

realization relations reservation_for and stays_at results in consistency being true for both
cases. This is misleading because the traceability is ambiguous in that the two high-level
(realization) relations point to the same two interpretations (labeled (A) and (B) in Figure
3). The problem is caused by the lack of traceability. Our approach addresses this problem
by hypothesizing that at least one of the potentially many choices ought to be consistent.
Thus, comparison attempts to find one interpretation for reservation_for and one for
stays_at that is consistent. If no interpretation is consistent then there is a clear inconsis-
tency in the model. If exactly one interpretation is consistent then this interpretation must
be the missing trace (otherwise there would be an inconsistency). Finally, if more than one
interpretation is consistent then the situation remains ambiguous (although potentially less
ambiguous since inconsistent interpretations can still be eliminated as choices). Should
more than one consistency rule apply to a model element then all of them need to be satis-
fied. Each constraint may thus exclude any inconsistent interpretation it encounters.

For instance, in case of the relation reservation_for, our approach compares it with
both interpretations (A) and (B). It finds rule 3 to be inconsistent if the relation reserva-
tion_for is compared to interpretation (A); and it finds the rule to be consistent if it is

5 It is outside the scope of this paper to discuss the workings of our reduced redundancy model

which treats derivatives like Payment together with PaymentTransaction as “one element.”

compared to (B). Our approach thus eliminates the trace to interoperation (A) as being
incorrect (obviously it leads to inconsistency which cannot be correct). What remains is an
ideal, one-to-one mapping. Our approach then does the same for the realization stays_at
with the result this it is also inconsistent with interpretation (A) and consistent with inter-
pretation (B). Again, the trace to the inconsistent interpretation is removed.

Ambiguous reasoning must ensure that every realization has exactly one interpretation
it does not share with another realization. For example, in the previous two evaluations we
found exactly one interpretation for both realizations reservation_for and stays_at; how-
ever, in both cases it is the same interpretation. This violates one-to-one comparison.
Recall that transformation ensures that model elements become directly comparable.
Every realization must have exactly one interpretation. To resolve this problem we have to
identify the conflicting use of the same interpretations: this is analogous to the resource
allocation problem which handles the problem on how to uniquely allocate a resource
(resource = interpretation). The maximum flow algorithm [5] (Ford-Fulkerson [12]) solves
the resource allocation problem efficiently. The algorithm can be applied to undirected
graphs (true in our case since traceability links are undirected) where the algorithm guar-
antees a maximum matching of edges (traces) without the same vertex (model elements)
being used twice. In short, the maximum-bi-partite-matching problem can be used to avoid
the duplicate use of interpretations. In the previous example, the algorithm is not able to
find a solution that satisfies both realizations. It thus detects an inconsistency.

It must be noted at this point that our ambiguity resolution mechanism has an element
of randomness in that the outcome may vary if the order, in which model elements are
validated, differs. As such, the maximum bi-partite algorithm will use interpretation (B)
for either stays_at or reservation_for and report a resource conflict (~inconsistency) for
the other.

In summary, validating the consistency among model elements potentially encounters
three situations as depicted in Figure 4. Situation (a) is the most simplistic one where there
is a one-to-one mapping between interpretation (I) and realization (R). The example dis-
cussed in Rule 1 above showed such a case. Situation b) corresponds to the example we
discussed with Rule 2 where we encountered a low-level interpretation (low-level relation)
that had no abstraction. The reverse is also possible where there is a high-level realization
that has no refinement. While discussing Rule 3 with its ambiguity example, we encoun-
tered situation c) where one realization had two or more interpretations (one-to-many
mapping). This scenario required the validation of consistency on all interpretations (OR
condition). Traces to inconsistent interpretations were removed and the maximum-partite
algorithm was used to find a configuration that resolved all remaining ambiguities ran-
domly.

R I

or

R IR/I I/R

a) c)b)

none

Figure 4. Basic Comparison Rules for Ambiguity

5 Discussion

Scope
In addition to the (in)consistency rules presented in this paper, we identified almost 20

more that apply to refinement [8]. Figure 5 (bottom left) shows an excerpt of inconsisten-
cies between the diagrams in Figure 2 as generated by our tool UML/Analyzer. Our tool is
also integrated with Rational Rose which is used as a graphical front-end. The right side
depicts the complete derived abstraction of the low-level diagram (Figure 2). Partially
hidden in the upper left corner of Figure 5 is the UML/Analyzer main window, depicting
the repository view of our example. Besides inconsistency messages, our tool also gives
extensive feedback about the model elements involved. For instance, in Figure 5 one in-
consistency is displayed in more detail, revealing three low-level model elements (e.g.,
Reservation) as the potential cause of the inconsistency. We also identified around 40
additional inconsistency types between other types of UML diagrams [8] (sequence and
state chart diagrams) and the non-UML language C2SADEL [10].

Accuracy (True Inconsistencies/False Inconsistencies)

An important factor on how to estimate the accuracy of any consistency checking ap-
proach is in measuring how often it provides erroneous feedback (e.g., report of inconsis-
tencies were there are none or missing inconsistencies). As any automated inconsistency
detection approach, our approach may not produce correct results at all times. However,
our approach provides means of evaluating the level of “trust” one may have in its feed-
back. For instance, in Table 1 we presented abstraction rules and commented that each
rule has a reliability number. Our approach also uses those numbers to derive an overall
estimation of how accurate the abstraction is. For example, in Figure 5 we see that our tool
derived a high-level association between Security and Hotel and indicated it to be 90%
reliable (<<0.9>>) certain that it is correct, indicating high trustworthiness. Another way

Figure 5. UML/Analyzer tool depicting inconsistencies

of indicating accuracy is in the inconsistency feedback itself. For instance, in Figure 5 we
see a warning asserting that stays_at has multiple ambiguous interpretations followed by
another warning indicating that is_checked_in was removed as a viable interpretation of
reservation_for. These warnings indicate that one should also investigate the surrounding
elements due to ambiguity. The accuracy of our approach is improved if (1) transforma-
tion is more reliable and (2) more trace information is provided.

Scalability

In terms of scalability we distinguish computational complexity and manual interven-
tion. Comparison, our actual consistency checking activity is very fast (O(n)) since it only
requires the one-time traversal of all model elements and a simple comparison. Compari-
son with ambiguous reasoning is also fast since the maximum bi-partite algorithm is com-
putationally linear with respect to the number of model elements. Naturally, transforma-
tion is more complex but its scalability can be improved by reusing previously derived
model elements (see [9] for a detailed discussion on abstraction scalability). This is some-
thing a pure comparative consistency checking approach could never do. To date we have
applied our tool on UML models with up to several thousand model elements without
problems in computational complexity. More significant, however, is the minimal amount
of manual intervention required to use our approach. For a small problem it is quite feasi-
ble to provide sufficient human guidance (e.g., more traces, less/no ambiguities), however,
for larger systems it is infeasible to expect complete model specifications. In that respect,
our approach has the most significant benefits. We already outlined throughout this paper
how partial specifications, ambiguities, and even complex many-to-many mappings can be
managed successfully by our approach. In case of larger systems this implies substantial
savings in human effort and cost since complete specifications are often very hard if not
impossible to generate manually [13].

Change propagation

Model-based software development has the major disadvantage that changes within
views have to be propagated to all other views that might have overlapping information.
Our consistency checking technique supports change propagation in that it points out
places where views differ. The actual process of updating models, however, must still be
performed manually. Here, transformation may be used as an automated means of change
propagation (see also [9]).

Shortcomings of Transformation

Our approach relies on good transformation techniques. Especially in context of a less-
than-perfect modeling language, such as the UML, the reliability of transformation suf-
fers. Comparison needs to compensate for deficiencies of transformation methods to re-
duce the number of false positives. For example, our approach conservatively identifies
methods of abstracted classes where the true set of methods is a subset of the transforma-
tion result. This transformation deficiency can be addressed by comparison checking for a
subset of methods instead of the same set. Other deficiencies can be addressed similarly.

6 Related Work

Existing literature uses transformation for consistency checking mostly as a means of
converting modeling information into a more precise, formal representation. For instance,
VisualSpecs [4] uses transformation to substitute the imprecision of OMT (a language
similar to UML) with formal constructs like algebraic specifications followed by analyz-
ing consistency issues in context of that representation; Belkhouche-Lemus [3] follows
along the tracks of VisualSpecs in its use of a formal language to substitute statechart and
dataflow diagrams; and Van Der Straeten [???] uses description logic to preserve consis-
tency. We also find that formal languages are helpful, however, as this paper demon-
strated, we also need transformation methods that “interpret” views in order to reason
about ambiguities. Neither of their approaches is capable of doing that. Furthermore, their
approaches create the overhead of a third representation.

Grundy et al. took a slightly different approach to transformation in context of consis-
tency checking. In their works on MViews/JViews [14] they investigated consistency
between low-level class diagrams and source code by transforming them into a “base
model” which is a structured repository. Instead of reasoning about consistency within a
formal language, they instead analyze the repository. We adopted their approach but use
the standardized UML’s meta model as our repository definition. Furthermore,
MViews/JViews does not actually interpret models (like the other approaches above),
which severely limits their number of detectable inconsistencies.

Viewpoints [15] is another consistency checking approach that uses inconsistency rules
which are defined and validated against a formal model base. Their approach, however,
emphasizes more “upsteam” modeling techniques; and has not been shown to work on
partial and ambiguous specifications. Nevertheless, Viewpoints also extends our work in
that it addresses issues like how to resolve inconsistencies or how to live with them; as-
pects which are considered outside the scope of this paper.

Koskimies et al. [18] and Keller et al. [17] created transformation methods for se-
quence and state chart diagrams. It is exactly these kinds of transformations we need; in
fact, we adopted Koskimies et al.’s approach as part of ours. Both transformation tech-
niques, however, have the drawback that they were never integrated with a consistency
checking approach. This limits their techniques for transformation only. Also, as trans-
formation techniques they have the major drawbacks that extensive specifications and/or
human intervention are needed while using them. This is due to the inherent differences
between state charts and sequence diagrams. Ehrig et al. [11] also emphasizes model
transformation. In their case they take collections of object diagrams and reason about
their differences. They also map method calls to changes in their object views, allowing
them to reason about the impact methods have. Their approach has, however, only been
shown to work for a single type of view and they also have also not integrated their ap-
proach into a consistency checking framework.

Our work also relates to the field of transformational programming [20,22]. We have
proposed a technique that allows systematic and consistent refinement of models that,
ultimately, may lead to code. The main differences between transformational program-
ming and our approach are in the degrees of automation and scale. Transformational pro-
gramming is fully automated, though its applicability has been demonstrated primarily on
small, well-defined problems [22]. Our refinement approach, on the other hand, can be
characterized only as semi-automated; however, we have applied it on larger problems and
a more heterogeneous set of models, typical of real development situations.

SADL [21] follows a different path in formal transformation and consistency. This ap-
proach makes use of a proof-carrying formal language that enables consistent refinement
without human intervention. The SADL approach is very precise, however, has only been
shown to work on their language. It remains unknown whether a more heterogeneous set
of models can be also refined via this approach. Also, the SADL approach has only been
used for small samples using small refinement steps.

Besides transformation, another key issue of consistency checking is the traceability
across modeling artifacts. Traceability is outside the scope of this work but, as this paper
has shown, it is very important. Capturing traces is not trivial, as researchers have recog-
nized [13], however, there are techniques that give guidance. Furthermore, process model-
ing is also outside the scope, although we find it very important in the context of model
checking and transformation. To date, we have shown that a high degree of automation is
possible, but have not reached full automation yet. Processes are important since they
must take over wherever automation ends [19,23].

7 Conclusion

This paper presented a transformation-based consistency checking approach for consistent
refinement and abstraction. Our approach separates model validation into the major Map-
ping (Traceability), Transformation, and Comparison which may be applied iteratively
throughout the software development life cycle to adapt and evolve software systems. To
date, our approach has been applied successfully to a number of third party models includ-
ing the validation of a part of a Satellite Telemetry Processing, Tracking, and Command-
ing System (TT&C) [2], the Inter-Library Loan System [1] as well as several reverse-
engineered tools (including UML/Analyzer itself).

We invented and validated our abstraction technique in collaboration with Rational
Software. Our consistency checking approach is fully automated and tool supported. Our
approach is also very lightweight since it does not require the use of third-party (formal)
languages [4,15,21] but instead integrates seamlessly into existing modeling languages.
We demonstrated this in context of the Unified Modeling Language and C2SADEL.

References

 [1] Abi-Antoun, M., Ho, J., and Kwan, J. Inter-Library Loan Management System: Revised
Life-Cycle Architecture. 1999.

 [2] Alvarado, S.: "An Evaluation of Object Oriented Architecture Models for Satellite
Ground Systems," Proceedings of the 2nd Ground Systems Architecture Workshop
(GSAW), February 1998.

 [3] Belkhouche, B. and Lemus, C.: "Multiple View Analysis and Design," Proceedings of the
Viewpoint 96: International Workshop on Multiple Perspectives in Software Develop-
ment, October 1996.

 [4] Cheng, B. H. C., Wang, E. Y., and Bourdeau, R. H.: "A Graphical Environment for
Formally Developing Object-Oriented Software," Proceedings of IEEE International Con-
ference on Tools with AI, November 1994.

 [5] Cormen, T.H., Leiserson, C. E., Rivest, R. L.: Introduction to Algorithms. MIT Press,
1996.

 [6] Egyed A.: A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Transac-
tions on Software Engineering (TSE) 29(2), 2003, 116-132.

 [7] Egyed, A.: "Compositional and Relational Reasoning during Class Abstraction," Pro-
ceedings of the 6th International Conference on the Unified Modeling Language (UML),
San Francisco, USA, October 2003.

 [8] Egyed, Alexander. Heterogeneous View Integration and its Automation. PhD Disserta-
tion, Technical Report from the University of Southern California, USA, 2000.

 [9] Egyed A.: Automated Abstraction of Class Diagrams. ACM Transaction on Software
Engineering and Methodology (TOSEM) 11(4), 2002, 449-491.

 [10] Egyed, A. and Medvidovic, N.: "A Formal Approach to Heterogeneous Software Model-
ing," Proceedings of 3rd Foundational Aspects of Software Engineering (FASE), March
2000, pp.178-192.

 [11] Ehrig H., Heckel R., Taentzer G., and Engels G.: A Combined Reference Model- and
View-Based Approach to System Specification. International Journal of Software Engi-
neering and Knowledge Engineering 7(4), 1997, 457-477.

 [12] Ford, L.R., Fulkerson, D. R.: Flows in Networks. Princeton University Press, 1962.
 [13] Gieszl, L. R.: "Traceability for Integration," Proceedings of the 2nd Conference on

Systems Integration (ICSI 92), 1992, pp.220-228.
 [14] Grundy J., Hosking J., and Mugridge R.: Inconsistency Management for Multiple-View

Software Development Environments. IEEE Transactions on Software Engineering (TSE)
24(11), 1998.

 [15] Hunter, A. and Nuseibeh, B.: "Analysing Inconsistent Specifications," Proceedings of 3rd
International Symposium on Requirements Engineering (RE97) , January 1997.

 [16] Jackson, J.: "A Keyphrase Based Traceability Scheme," IEE Colloquium on Tools and
Techniques for Maintaining Traceability During Design, 1991, pp.2-1-2/4.

 [17] Khriss, I., Elkoutbi, M., and Keller, R.: "Automating the Synthesis of UML Statechart
Diagrams from Multiple Collaboration Diagrams," Proceedings for the Conference of the
Unified Modeling Language, June 1998, pp.132-147.

 [18] Koskimies K., Systä T., Tuomi J., and Männistö T.: Automated Support for Modelling
OO Software. IEEE Software, 1998, 87-94.

 [19] Lerner, B. S., Sutton, S. M., and Osterweil, L. J.: "Enhancing Design Methods to Support
Real Design Processes," IWSSD-9, April 1998.

 [20] Liu, J., Traynor, O., and Krieg-Bruckner, B.: "Knowledge-Based Tranformational Pro-
gramming," 4th International Conference on Software Engineering and Knowledge Engi-
neering, 1992.

 [21] Moriconi M., Qian X., and Riemenschneider R. A.: Correct Architecture Refinement.
IEEE Transactions on Software Engineering 21(4), 1995, 356-372.

 [22] Partsch H. and Steinbruggen R.: Program Transformation Systems. ACM Computing
Surveys 15(3), 1983, 199-236.

 [23] Perry, D. E.: "Issues in Process Architecture," 9th International Software Process Work-
shop, Airlie, VA, October 1994.

 [24] Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language Reference
Manual. Addison Wesley, 1999.

 [25] Van Der Straeten, R., Mens, T., Simmonds, J. and Jonckers, V.: “Using Description Logic
to Maintain Consistency between UML Models,” Proceedings of 6th International Confer-
ence on the Unified Modeling Language, San Francisco, USA, 2003, pp. 326-340..

