
Consistent Adaptation and Evolution of Class 
Diagrams during Refinement 

Alexander Egyed 

Teknowledge Corporation, 4640 Admiralty Way, Suite 1010 
Marina Del Rey, CA 90034, USA 

aegyed@ieee.org 

Abstract. Software models are key in separating and solving independent de-
velopment concerns. However, there is still a gap on how to transition design 
information among these separate, but related models during development and 
maintenance. This paper addresses the problem on how to maintain the consis-
tency of UML class diagrams during various levels of refinement. We present a 
new approach to automated consistency checking called ViewIntegra. Our ap-
proach separates consistency checking into transformation and comparison. It 
uses transformation to translate model elements to simplify their subsequent 
comparison. Transformation-based consistency checking, in the manner we use 
it, is new since we use transformation to bridge the gap between software mod-
els. No intermediate models or model checkers are required; developers need 
only be familiar with the models they design with and none other. The separa-
tion of transformation and comparison makes our approach to consistency 
checking more transparent. It also makes our approach useful for both propa-
gating design changes among models and validating consistency. This gives de-
velopers added flexibility in deciding when to re-generate a model from scratch 
or when to resolve its inconsistencies. Although this paper emphasizes the ad-
aptation and evaluation of class diagrams, we found our technique to be equally 
useful on other models. Our approach is tool supported. 

1   Introduction 

In the past decades, numerous software models were created to support software devel-
opment at large. Models usually break up software development into smaller, more com-
prehensible pieces utilizing a divide and conquer strategy. The major drawback of models 
is that development concerns cannot truly be investigated all by themselves since they 
depend on one another. If a set of issues about a system is investigated, each through its 
own models, then the validity of a solution derived from those models requires that com-
monalities (redundancies) between them are recognized and maintained in a consistent 
fashion. Maintaining consistency between models is a non-trivial problem. It is expensive 
and labor intensive despite the vast number of past and existing research contributions.  

In this work, we introduce a transformation-based approach to consistency checking 
called ViewIntegra. This paper describes our approach to automated consistency checking 
and shows how to translate models to simplify their comparison. The effect is that redun-
dant information from one model is re-interpreted in the context and language of another 



model followed by a simple, one-to-one comparison to detect differences. We limit the 
discussion in this paper to the abstraction and refinement of UML-like class diagrams 
[24]. We believe our approach to be equally applicable to other kinds of models. 

Figure 1 depicts the principle of transformation-based consistency checking. In order to 
compare the two (user-defined1) models A and B (e.g., high-level model and low-level 
model), we transform one of them into ‘something like the other’ so that the one becomes 
easier comparable to the other. For example, our approach transforms the low-level class 
diagram into a form that makes the results directly comparable with the high-level dia-
gram. As part of our collaboration with Rational Corporation we created such an trans-
formation technique [9] and, in this paper, we will demonstrate how its results can be used 
for direct, one-to-one comparison to detect inconsistencies.  

Our approach separates the propagation of design information (transformation) from 
the comparing of design information (consistency checking). It follows that transformation 
may be used independently from comparison for change propagation. For example, the 
above mentioned transformation technique can be used during reverse engineering to 
generate a high-level class diagram from a lower-level one; or the transformation tech-
nique can be used during consistency checking to suggest its transformation results as an 
option for resolving inconsistencies. 

Traceability among model elements is needed to guide transformation and comparison. 
We found that it is typically very hard to generate traceability information in detail al-
though developers are capable of approximating it [6]. This would be a problem for any 
consistency checking approach but our approach can alleviate this problem significantly. 
This paper will thus also demonstrate how our approach behaves with a partial lack of 
traceability information. 

Because our approach separates transformation from comparison during consistency 
checking, it also benefits from reuse of previously transformed, unchanged design infor-
mation. This greatly improves performance because subsequent comparisons require par-
tial re-transformations only. Another benefit is that consistency rules are very generic and 
simple since they have to compare alike model elements only.  

We evaluated our transformation-based approach to consistency checking on various 
types of heterogonous models like class diagrams, state chart diagrams, sequence diagrams 
[8], and the C2SADEL architecture description language [10]. Furthermore, we validated 
the usefulness of our approach (in terms of its scope), its correctness (e.g., true errors, 
false errors), and scalability via a series of experiments using third-party models [1,2] and 
in-house developed models. Our tool support, called UML/Analyzer, fully implements 

                                                           
1 User-defined views are diagrams that are created by humans (e.g., Figure 2). Derived views 

(interpretations) are diagrams that are automatically generated via Transformation. 
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Figure 1. View transformation and mapping to complement view comparison 



transformation-based consistency checking for class and C2SADEL diagrams. The other 
diagrams are partially supported only.  

The remainder of this paper is organized as follows: Section 2 introduces an example 
and discusses abstraction and refinement problems in context of two class diagrams de-
picted there. Section 3 will highlight consistency checking without transformation and 
discusses in what cases it is effective and where it fails. Section 4 introduces a transforma-
tion technique for abstracting class diagrams and discusses how it improves the scope of 
detectable inconsistencies. Section 4 discusses how our transformation and consistency 
checking methods are also able to interpret incomplete and ambiguous model information. 
Section 5 discusses issues like scope, accuracy, and scalability in more detail and Section 
6 summarizes the relevance of our work with respect to related work. 

2   Example 

Figure 2 depicts two class diagrams of a Hotel Management System (HMS) at two lev-
els of abstraction. The top diagram is the higher-level class diagram with classes like 
Guest and Hotel, and relationships like “a guest may either stay at a hotel or may have 
reservations for it.” This diagram further states that a Hotel may have Employees and that 
there are Expense and Payment transactions associated with guests (and hotels). It is also 
indicated that a Guest requires a Security deposit. The diagram uses three types of rela-
tionships to indicate uni-directional, bi-directional, and part-of dependencies (see UML 
definition [24]). For instance, the relationship with the diamond head indicates aggrega-
tion (part-of) implying that, say, Security is a part of Guest. Additionally, the diagram lists 
a few methods that are associated with classes. For instance, the class Expense has one 
method called getAmount(). 

The bottom part of Figure 2 depicts a refinement of the left side. Basic entities like 
Guest or Expense are still present although named slightly differently2 and additional 
classes were introduced. For instance, the lower-level diagram makes use of new classes 
like Reservation or Check to refine or extend the higher-level diagram. The refined class 
diagram uses the same types of relationships as the high-level one plus generalization 
relationships (triangle head) to indicate inheritance. The low-level diagram also describes 
methods associated with classes more extensively. 

Both diagrams in Figure 2 separately describe the structure of the HMS system. Obvi-
ously, there must be some commonality between them (i.e., redundancy). For instance, the 
high-level class Guest is equivalent to the low-level class GuestEntity and the high-level 
relationship “has” (between Guest and Expense) is equivalent to the combined relation-
ships with the classes Transaction and Account between them. The table in Figure 2 de-
scribes several cases of one-to-many mappings such as Hotel maps to HotelEntity, Room, 
HotelCollection, one case of a many-to-many mapping (there are several choices of how 
reservation_for and stays_at map to the low-level diagram), one case of a many-to-one 
mapping (HotelCollection is assigned to Hotel and Collection), and many cases of no 
mappings altogether (e.g., Employee in the high-level diagram or Account in the low-level 
diagram).  

                                                           
2 It must be noted that we use a disjoint set of class names in order to avoid naming confusions 

throughout this paper. Duplicate names are allowed as part of separate name spaces. 



Knowledge on how model elements in separate diagrams relate to one another is com-
monly referred to as traceability (or mapping) [13]. Traceability is usually generated 
manually [16] (either by using common names or maintaining trace tables as depicted in 
Figure 2) but there exists some automation [6]. Like other consistency checking ap-
proaches, our approach requires some traceability knowledge but a discussion on how to 
derive it is out of the scope of this paper.  

3   Simple Consistency Checking 

Current consistency checking approaches detect inconsistencies by transforming mod-
els into some third-party language followed by constraint-based reasoning (often model 
checking) in context of that language. For instance, consistency checking approaches like 
JViews (MViews) [14], ViewPoints [15] or VisualSpecs [4] read diagrams, translate them 
into common (and usually formal) representation schemes, and validate inconsistency 
rules against them. These approaches have shown powerful results; they are precise and 

Abstract Class
 Diagram

ExpenseTransaction

PaymentTransaction

getAmount()

CheckCash

CreditCard

Room Fee

Serv ice Fee

Cancelation Fee

TransactionCollection

HotelCollection

f ind()
insert()
modif y ()
remov e()

Location

setAddress()
getAddress()

PaymentSecurity

getNumber()
getExpiration()
getTy pe()

Transaction

0..n

1

0..n

1

transactions

HotelEntity

space_av ailable()
setName()
getName()
setLocation()
getLocation()
getGuests()
getReserv ations()

0..n
1

0..n
1 hotels

11
at_location

GuestCollection

f ind()
insert()
modif y ()
remov e()

Reserv ation

setNumberOfNights()
setNumberOf People()
setFromDate()
isValid()

1

1..n

1

1..n

reservation_security

1
0..n

1
0..n

reservation_for

Account

get_balance()

0..n0..n
has_transactions

Room

get_rate()
set_rate()

1

0..n

1

0..n
has_room

GuestEntity

getName()
setName()
getAccount() : Account
getReserv ations()

0..n1 0..n1

guests

0..n

1..n

0..n

1..n

has_reservation

1

1

1

1has_account

0..1

0..n

0..1

0..n

is_checked_in

Kitchen

Bath

Suite

Employ ee

Collection

Payment

getAmount()

0..n

1

0..n

1

payments

Expense

getAmount()

0..n

1

0..n

1

expenses

Security

Hotel

0..n0..n

has

employs

Guest

getName()
getAccount() : Integer
inGoodStanding()

0..n

1

0..n

1

guests

0..n0..n

makes

0..n
0..n

0..n
0..n

causes

0..n

0..n

0..n

0..n

reservation_for

11creditcard
11

debitcard

0..n

0..n

0..n

0..n

stays_at

Concrete Class Diagram

High-level 
Diagram 

Low-level Diagram 

Guest GuestEntity 
Hotel HotelEntity, Room, HotelCollection 
Security PaymentSecurity 
Expense ExpenseTransaction and Room Fee 
Payment PaymentTransaction 
Collection GuestCollection, and HotelCollection 

 

 
Figure 2. High-level and low-level class diagrams of HMS and mapping table 



computationally efficient. But there are also unresolved side effects that one could well 
argue to be outside the scope of consistency checking but that are related and significant: 
(1) Lack of Change Propagation: Existing approaches solve the problem of detecting 

inconsistencies very well but they lack support for the subsequent, necessary adapta-
tion of models once inconsistencies are found. 

(2) Lack of Traceability: Existing approaches require complete traceability to guide con-
sistency checking. Generating traceability is a hard, error-prone activity with a poten-
tially little life span. 

4   Transformation-Based Consistency Checking 

We describe our approach to automated consistency checking next and also discuss 
how it is able to handle above side effects. Our approach, called ViewIntegra [8], exploits 
the redundancy between models: for instance, the high-level diagram in Figure 2 contains 
information about the HMS system that is also captured in the low-level diagram. This 
redundant information can be seen as a constraint. Our approach uses transformation to 
translate redundant model information to simplify their comparison. The effect is that 
redundant information from one model is re-interpreted in the context and language of 
another model followed by a simple, one-to-one comparison to detect differences (effec-
tively enforcing the constraint).  

 
Abstraction implementing Transformation 

 
In the course of evaluating nine types of software models [8] (class, object, sequence, 

and state chart diagrams, their abstractions and C2SADEL) we identified the need for four 
transformation types called Abstraction, Generalization, Structuralization, and Transla-
tion. This paper focuses on inconsistencies during refinement and thus only needs Ab-
straction. See [8] for a discussion on the other types.  

Abstraction deals with the simplification of information by removing details not neces-
sary on a higher level. In [7], we identified two types of abstractions called compositional 
abstraction and relational abstraction. Compositional abstraction is probably the more 
intuitive abstraction type since it closely resembles hierarchical decomposition of systems. 
For instance, in UML, a tree-like hierarchy of classes can be built using a feature of 
classes that allows them to contain other classes. Thus, a class can be subdivided into 
other classes. In relational abstraction it is the relations (arrows) and not the classes that 
serve as vehicles for abstraction. Relations (with classes) can be collapsed into more ab-
stract relations. Relational abstraction is needed since it is frequently not possible to main-
tain a strict tree-hierarchy of classes. Our abstraction technique has been published previ-
ously; we will provide a brief summary here only. For a more detailed discussion, please 
refer to [7,9]. 

In order to abstract the low-level diagram in Figure 2, we have to apply both abstraction 
types. Figure 3 shows a partial view of Figure 2 depicting, in the top layer, the high-level 
classes Hotel, Guest, and Payment and, in the bottom layer, their low-level counterparts 
HotelEntity, HotelCollection, Room, GuestEntity, and PaymentTransaction. The bottom 
layer also depicts relationships among the low-level classes.  

The first abstraction step is to use compositional abstraction to group low-level classes 
that belong to single high-level classes. For instance, the low-level classes HotelEntity, 



HotelCollection, and Room are all part 
of the same high-level class Hotel 
(recall traceability in Figure 2). The 
grouped class, called Hotel, is depicted 
in the first (1) derived view in Figure 3. 
Besides grouping the three low-level 
classes, the abstraction method also 
replicated the inter-dependencies of 
those three classes for the derived, 
high-level class. It can be seen that the 
derived class Hotel now has relation-
ships to Reservation and Guest that 
were taken from HotelEntity and Room 
respectively. Also note that the single 
low-level classes GuestEntity and 
PaymentTransaction were grouped into 
the more high-level, derived classes 
Guest and Payment. They also took all 
inter-relationships from their low-level 
counterparts. Compositional abstrac-
tion simplified the low-level class 
diagram somewhat but it is still not 
possible to compare it directly to the 
high-level diagram. To simplify com-
parison, helper classes such as Reser-
vation, Account, and Transaction need 
to be eliminated since they obstruct our 
understanding on the high-level rela-
tionships between classes such as Hotel 
and Guest. The problem is that those 
classes were not assigned to any high-
level classes and thus could not be 
eliminated via compositional abstrac-
tion.  

The second abstraction step is to 
group low-level relationships into 
single high-level relationships. For 
instance, the low-level relationship 
path going from Guest via Reservation 
to Hotel in Figure 3 (bottom) may have 
some abstract meaning. This meaning 
can be approximated through simpler, 
higher-level model elements. In par-
ticular, this example shows an aggrega-
tion relationship between the classes 
Reservation and Guest (diamond head) 
indicating that Reservation is a part of 
Guest. The example also shows a uni-
directional association relationship 
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Figure 3. Abstraction applied on part of 
HMS showing high-level, low-level, and 

derived modeling information 



from Hotel to Reservation indicating that Reservation can access methods and attributes 
of Hotel but not vice versa. What the diagram does not depict is the (more high-level) 
relationship between Guest and Hotel. Semantically, the fact that Reservation is part of a 
Guest implies that the class Reservation is conceptually within the class Guest. Therefore, 
if Reservation can access Hotel, Guest is also able to access Hotel. It follows that Guest 
relates to Hotel in the same manner as Reservation relates to Hotel making it possible for 
us to replace Reservation and its relationships with a single association originating in 
Guest and terminating in Hotel (third derived view in Figure 3).  

In the course of inspecting numerous UML-type class diagrams, we identified over 120 
class abstraction rules [9]. Table 1 shows a small sample of these abstraction rules as 
needed in this paper. Abstraction rules have a given part (left of “equals”) and an implies 
part (right of “equals”). Rules 1 and 8 correspond to the two rules we discussed so far. 
Since the directionality of relationships is very important, the rules in Table 1 use the 
convention of extending the relationship type name with “Right” or “Left” to indicate the 
directions of their arrowheads. Furthermore, the number at the end of the rule indicates its 
reliability. Since rules are based on semantic interpretations, those rules may not always be 
valid. We use reliability numbers as a form of priority setting to distinguish more reliable 
rules from less reliable ones. Priorities are applied when deciding what rules to use when. 
We will later discover that those reliability numbers are also very helpful in determining 
false errors. It must be noted that rules may be applied in varying orders and they may also 
be applied recursively. Through recursion is it possible to eliminate multiple helper classes 
as in the case of the path between PaymentTransaction and GuestEntity (see second (2) 
and third (3) derived views in Figure 3). 

Compositional and relational abstraction must be applied to the entire low-level dia-
gram (Figure 2). A part of the resulting abstraction is depicted in the second row in Figure 
3 (third (3) view). We refer to this result as the interpretation of the low-level diagram. 
This interpretation must now be compared to the high-level diagram. 

 
Comparison 

The abstraction technique presented above satisfies our criteria of a good transforma-
tion method because it transforms a given low-level class diagram into ‘something like’ 
the high-level class diagram. Obviously, consistency checking is greatly simplified be-
cause a straightforward, one-to-one comparison will detect inconsistencies. This section 
introduces consistency rules for comparison. The beginning of Section 4 listed the lack of 
traceability as a major challenge during consistency checking. This section shows how to 
identify inconsistencies, and in doing so, how to handle missing traceability. In the follow-
ing, we will first describe the basics of comparison and how to handle traceability under 
normal conditions. Thereafter, we will discuss ambiguous reasoning to handle missing 
traceability. In the following we will refer to the interpretation as the abstracted (trans-
formed) low-level class diagram and to the realization as the existing high-level class 

Table 1. Excerpt of abstraction rules for classes [9] 
1) Class x Association x Class x AggregationRight x Class equals Association 100
2) Class x AggregationLeft x Class x AssociationLeft x Class equals AssociationLeft 100
3) Class x Association x Class x AggregationLeft x Class equals Association 90
4) Class x AggregationLeft x Class x GeneralizationLeft x Class equals AggregationLeft 100
5) Class x GeneralizationLeft x Class x GeneralizationLeft x Class equals GeneralizationLeft 100
6) Class x DependencyRight x Class x AggregationRight x Class equals DependencyRight  100
7) Class x AssociationRight x Class x GeneralizationRight x Class equals AssociationRight 70
8) Class x Aggregation x Class equals Class 100  



diagram. The goal of consistency checking is to compare the realization with the interpre-
tation. 

Before transformation, we knew about (some) traceability between the high-level dia-
gram (realization) and the low-level diagram but no traceability is known between the 
realization and the interpretation. This problem can be fixed easily. Any transformation 
technique should be able to maintain traceability between the transformation result (inter-
pretation) and the input data (low-level diagram). This is easy because transformation 
knows what low-level model elements contribute to the interpretation. Through transitive 
reasoning, we then derive traceability between the realization and the interpretation. For 
example, we know that the derived Hotel is the result of grouping {HotelEntity, Room, 
HotelCollection} (see dashed arrows in Figure 3) and we know that this group traces to 
the high-level Hotel (mapping table in Figure 2). Thus, there is a transitive trace depend-
ency between the class Hotel in the realization and the Hotel in the interpretation. Arrows 
with circular arrowheads in Figure 3 show these transitive trace dependencies between the 
realization and interpretation.  

Ideally, there should be one-to-one traces between realization and interpretation ele-
ments only. Unfortunately, partial knowledge about trace dependencies may result in one-
to-many dependencies or even many-to-many dependencies (e.g., realization relation 
reservation_for traces to two relationships in the interpretation). This is represented with a 
fork-shaped trace arrow in Figure 3. 

In the following we present a small sample of consistency rules relevant in this paper. 
Consistency rules have two parts; a qualifier to delimit the model elements it applies to 
and a condition that must be valid for the consistency to be true3: 

 
1. Type of low-level relation is different from abstraction: 
∀ r ∈ relations, interpretation(r)≠null ⇒ type(interpretation(r))=type(r) 

Rule 1 states that for a relation to be consistent it must have the same type as its corre-
sponding interpretation. Its qualifier (before “⇒”) defines that this rule applies to relations 
only that have a known interpretation. The traceability arrow in Figure 3 defines such 
known interpretations (or in reverse known realizations). In Figure 3, we have six interpre-
tation traces; three of which are originating from relationships (circular ends attached to 
lines): the realization relations “stays_at” and “reservation_for” satisfy above condition4, 
however, the realization relation “makes” does not. The latter case denotes an inconsis-
tency because “makes” is of type “aggregation” and its interpretation is of type “associa-
tion.” If we now follow the abstraction traces backward (dashed arrows, that were gener-
ated during abstraction), it becomes possible to identify the classes Account and Transac-
tion as well as their relationships to GuestEntity and PaymentTransaction a having con-
tributed to the inconsistent interpretation. 

 
2. Low-level relation has no corresponding abstraction: 
∀ r ∈ relations, abstractions(r)->size=0 ∧ realizations(r)=null ⇒  
¬[∃ c ∈ classes(r), realizations(c)≠null] 

                                                           
3 Some qualifier conditions were omitted for brevity (e.g., checking for transformation type) 

since they are not needed here. 
4 For now treat the one-to-many traces as two separate one-to-one traces. We will discuss later 

how to deal with it properly. 



Rule 2 states that all (low-level) relations must trace to at least one high-level model 
element. To validate this case, the qualifier states that it applies (1) to relations that do not 
have any abstractions (dashed arrows) and (2) to relations that do not have realizations. 
Figure 3 has many relations (derived and user-defined ones). Checking for relations that 
do not have abstractions ensures that only the most high-level, abstracted relations are 
considered; ignoring low-level relations such as the aggregation from Transaction to 
Account. The rule thus defines that consistency is ensured if none of the classes attached 
to the relation have realizations themselves. The generalization from Cash to Payment in 
Figure 3 violates this rule. This generalization neither has an abstraction nor a realization 
trace but its attached class Payment has a realization trace5. This example implies that the 
high-level diagram does not represent the relationship to Cash or that traceability about it 
is unknown. 

 
3. Destination direction/navigability of relation does not match abstract relation: 
∀ r ∈ relations, interpretation(r)≠null ∧ 
type(interpretation(r))=type(r) ⇒ [size(r->destClass ÷  
realization(interpretation(r)->destClass))=0] 

Rule 3 defines that for two relations to be consistent they ought to be pointing in the 
same directions (same destination classes). This rule applies to relations that have interpre-
tations and to relations that have the same type. It defines that the realization “r” must 
have the same destination classes as the realizations of the interpretation’s destination 
classes. A destination class here is a class at the end of a relation’s arrowhead (e.g., Hotel 
for reservation_for). This rule applies to the two relations reservation_for and stays_at 
only (the relation makes is ruled out since the qualifier requires relations to be of the same 
type).  

 
Ambiguous Reasoning 

 
Comparison is not sufficient to establish consistency correctly. Rule 3 applied to the 

realization relations reservation_for and stays_at results in consistency being true for both 
cases. This is misleading because the traceability is ambiguous in that the two high-level 
(realization) relations point to the same two interpretations (labeled (A) and (B) in Figure 
3). The problem is caused by the lack of traceability. Our approach addresses this problem 
by hypothesizing that at least one of the potentially many choices ought to be consistent. 
Thus, comparison attempts to find one interpretation for reservation_for and one for 
stays_at that is consistent. If no interpretation is consistent then there is a clear inconsis-
tency in the model. If exactly one interpretation is consistent then this interpretation must 
be the missing trace (otherwise there would be an inconsistency). Finally, if more than one 
interpretation is consistent then the situation remains ambiguous (although potentially less 
ambiguous since inconsistent interpretations can still be eliminated as choices). Should 
more than one consistency rule apply to a model element then all of them need to be satis-
fied. Each constraint may thus exclude any inconsistent interpretation it encounters. 

For instance, in case of the relation reservation_for, our approach compares it with 
both interpretations (A) and (B). It finds rule 3 to be inconsistent if the relation reserva-
tion_for is compared to interpretation (A); and it finds the rule to be consistent if it is 
                                                           
5 It is outside the scope of this paper to discuss the workings of our reduced redundancy model 

which treats derivatives like Payment together with PaymentTransaction as “one element.” 



compared to (B). Our approach thus eliminates the trace to interoperation (A) as being 
incorrect (obviously it leads to inconsistency which cannot be correct). What remains is an 
ideal, one-to-one mapping. Our approach then does the same for the realization stays_at 
with the result this it is also inconsistent with interpretation (A) and consistent with inter-
pretation (B). Again, the trace to the inconsistent interpretation is removed.  

Ambiguous reasoning must ensure that every realization has exactly one interpretation 
it does not share with another realization. For example, in the previous two evaluations we 
found exactly one interpretation for both realizations reservation_for and stays_at; how-
ever, in both cases it is the same interpretation. This violates one-to-one comparison. 
Recall that transformation ensures that model elements become directly comparable. 
Every realization must have exactly one interpretation. To resolve this problem we have to 
identify the conflicting use of the same interpretations: this is analogous to the resource 
allocation problem which handles the problem on how to uniquely allocate a resource 
(resource = interpretation). The maximum flow algorithm [5] (Ford-Fulkerson [12]) solves 
the resource allocation problem efficiently. The algorithm can be applied to undirected 
graphs (true in our case since traceability links are undirected) where the algorithm guar-
antees a maximum matching of edges (traces) without the same vertex (model elements) 
being used twice. In short, the maximum-bi-partite-matching problem can be used to avoid 
the duplicate use of interpretations. In the previous example, the algorithm is not able to 
find a solution that satisfies both realizations. It thus detects an inconsistency. 

It must be noted at this point that our ambiguity resolution mechanism has an element 
of randomness in that the outcome may vary if the order, in which model elements are 
validated, differs. As such, the maximum bi-partite algorithm will use interpretation (B) 
for either stays_at or reservation_for and report a resource conflict (~inconsistency) for 
the other.  

In summary, validating the consistency among model elements potentially encounters 
three situations as depicted in Figure 4. Situation (a) is the most simplistic one where there 
is a one-to-one mapping between interpretation (I) and realization (R). The example dis-
cussed in Rule 1 above showed such a case. Situation b) corresponds to the example we 
discussed with Rule 2 where we encountered a low-level interpretation (low-level relation) 
that had no abstraction. The reverse is also possible where there is a high-level realization 
that has no refinement. While discussing Rule 3 with its ambiguity example, we encoun-
tered situation c) where one realization had two or more interpretations (one-to-many 
mapping). This scenario required the validation of consistency on all interpretations (OR 
condition). Traces to inconsistent interpretations were removed and the maximum-partite 
algorithm was used to find a configuration that resolved all remaining ambiguities ran-
domly.  

R I

or

R IR/I I/R

a) c)b)

none

 
Figure 4. Basic Comparison Rules for Ambiguity 



5   Discussion  

Scope 
In addition to the (in)consistency rules presented in this paper, we identified almost 20 

more that apply to refinement [8]. Figure 5 (bottom left) shows an excerpt of inconsisten-
cies between the diagrams in Figure 2 as generated by our tool UML/Analyzer. Our tool is 
also integrated with Rational Rose which is used as a graphical front-end. The right side 
depicts the complete derived abstraction of the low-level diagram (Figure 2). Partially 
hidden in the upper left corner of Figure 5 is the UML/Analyzer main window, depicting 
the repository view of our example. Besides inconsistency messages, our tool also gives 
extensive feedback about the model elements involved. For instance, in Figure 5 one in-
consistency is displayed in more detail, revealing three low-level model elements (e.g., 
Reservation) as the potential cause of the inconsistency. We also identified around 40 
additional inconsistency types between other types of UML diagrams [8] (sequence and 
state chart diagrams) and the non-UML language C2SADEL [10].  

 
Accuracy (True Inconsistencies/False Inconsistencies) 

An important factor on how to estimate the accuracy of any consistency checking ap-
proach is in measuring how often it provides erroneous feedback (e.g., report of inconsis-
tencies were there are none or missing inconsistencies). As any automated inconsistency 
detection approach, our approach may not produce correct results at all times. However, 
our approach provides means of evaluating the level of “trust” one may have in its feed-
back. For instance, in Table 1 we presented abstraction rules and commented that each 
rule has a reliability number. Our approach also uses those numbers to derive an overall 
estimation of how accurate the abstraction is. For example, in Figure 5 we see that our tool 
derived a high-level association between Security and Hotel and indicated it to be 90% 
reliable (<<0.9>>) certain that it is correct, indicating high trustworthiness. Another way 

 
Figure 5. UML/Analyzer tool depicting inconsistencies  



of indicating accuracy is in the inconsistency feedback itself. For instance, in Figure 5 we 
see a warning asserting that stays_at has multiple ambiguous interpretations followed by 
another warning indicating that is_checked_in was removed as a viable interpretation of 
reservation_for. These warnings indicate that one should also investigate the surrounding 
elements due to ambiguity. The accuracy of our approach is improved if (1) transforma-
tion is more reliable and (2) more trace information is provided.  
 
Scalability 

In terms of scalability we distinguish computational complexity and manual interven-
tion. Comparison, our actual consistency checking activity is very fast (O(n)) since it only 
requires the one-time traversal of all model elements and a simple comparison. Compari-
son with ambiguous reasoning is also fast since the maximum bi-partite algorithm is com-
putationally linear with respect to the number of model elements. Naturally, transforma-
tion is more complex but its scalability can be improved by reusing previously derived 
model elements (see [9] for a detailed discussion on abstraction scalability). This is some-
thing a pure comparative consistency checking approach could never do. To date we have 
applied our tool on UML models with up to several thousand model elements without 
problems in computational complexity. More significant, however, is the minimal amount 
of manual intervention required to use our approach. For a small problem it is quite feasi-
ble to provide sufficient human guidance (e.g., more traces, less/no ambiguities), however, 
for larger systems it is infeasible to expect complete model specifications. In that respect, 
our approach has the most significant benefits. We already outlined throughout this paper 
how partial specifications, ambiguities, and even complex many-to-many mappings can be 
managed successfully by our approach. In case of larger systems this implies substantial 
savings in human effort and cost since complete specifications are often very hard if not 
impossible to generate manually [13]. 

 
Change propagation 

Model-based software development has the major disadvantage that changes within 
views have to be propagated to all other views that might have overlapping information. 
Our consistency checking technique supports change propagation in that it points out 
places where views differ. The actual process of updating models, however, must still be 
performed manually. Here, transformation may be used as an automated means of change 
propagation (see also [9]). 

 
Shortcomings of Transformation 

Our approach relies on good transformation techniques. Especially in context of a less-
than-perfect modeling language, such as the UML, the reliability of transformation suf-
fers. Comparison needs to compensate for deficiencies of transformation methods to re-
duce the number of false positives. For example, our approach conservatively identifies 
methods of abstracted classes where the true set of methods is a subset of the transforma-
tion result. This transformation deficiency can be addressed by comparison checking for a 
subset of methods instead of the same set. Other deficiencies can be addressed similarly. 



6   Related Work 

Existing literature uses transformation for consistency checking mostly as a means of 
converting modeling information into a more precise, formal representation. For instance, 
VisualSpecs [4] uses transformation to substitute the imprecision of OMT (a language 
similar to UML) with formal constructs like algebraic specifications followed by analyz-
ing consistency issues in context of that representation; Belkhouche-Lemus [3] follows 
along the tracks of VisualSpecs in its use of a formal language to substitute statechart and 
dataflow diagrams; and Van Der Straeten [???] uses description logic to preserve consis-
tency. We also find that formal languages are helpful, however, as this paper demon-
strated, we also need transformation methods that “interpret” views in order to reason 
about ambiguities. Neither of their approaches is capable of doing that. Furthermore, their 
approaches create the overhead of a third representation.  

Grundy et al.  took a slightly different approach to transformation in context of consis-
tency checking. In their works on MViews/JViews [14] they investigated consistency 
between low-level class diagrams and source code by transforming them into a “base 
model” which is a structured repository. Instead of reasoning about consistency within a 
formal language, they instead analyze the repository. We adopted their approach but use 
the standardized UML’s meta model as our repository definition. Furthermore, 
MViews/JViews does not actually interpret models (like the other approaches above), 
which severely limits their number of detectable inconsistencies.  

Viewpoints [15] is another consistency checking approach that uses inconsistency rules 
which are defined and validated against a formal model base. Their approach, however, 
emphasizes more “upsteam” modeling techniques; and has not been shown to work on 
partial and ambiguous specifications. Nevertheless, Viewpoints also extends our work in 
that it addresses issues like how to resolve inconsistencies or how to live with them; as-
pects which are considered outside the scope of this paper. 

Koskimies et al. [18] and Keller et al. [17] created transformation methods for se-
quence and state chart diagrams. It is exactly these kinds of transformations we need; in 
fact, we adopted Koskimies et al.’s approach as part of ours. Both transformation tech-
niques, however, have the drawback that they were never integrated with a consistency 
checking approach. This limits their techniques for transformation only. Also, as trans-
formation techniques they have the major drawbacks that extensive specifications and/or 
human intervention are needed while using them. This is due to the inherent differences 
between state charts and sequence diagrams. Ehrig et al. [11] also emphasizes model 
transformation. In their case they take collections of object diagrams and reason about 
their differences. They also map method calls to changes in their object views, allowing 
them to reason about the impact methods have.  Their approach has, however, only been 
shown to work for a single type of view and they also have also not integrated their ap-
proach into a consistency checking framework. 

Our work also relates to the field of transformational programming [20,22]. We have 
proposed a technique that allows systematic and consistent refinement of models that, 
ultimately, may lead to code. The main differences between transformational program-
ming and our approach are in the degrees of automation and scale. Transformational pro-
gramming is fully automated, though its applicability has been demonstrated primarily on 
small, well-defined problems [22]. Our refinement approach, on the other hand, can be 
characterized only as semi-automated; however, we have applied it on larger problems and 
a more heterogeneous set of models, typical of real development situations. 



SADL [21] follows a different path in formal transformation and consistency. This ap-
proach makes use of a proof-carrying formal language that enables consistent refinement 
without human intervention. The SADL approach is very precise, however, has only been 
shown to work on their language. It remains unknown whether a more heterogeneous set 
of models can be also refined via this approach. Also, the SADL approach has only been 
used for small samples using small refinement steps. 

Besides transformation, another key issue of consistency checking is the traceability 
across modeling artifacts. Traceability is outside the scope of this work but, as this paper 
has shown, it is very important. Capturing traces is not trivial, as researchers have recog-
nized [13], however, there are techniques that give guidance. Furthermore, process model-
ing is also outside the scope, although we find it very important in the context of model 
checking and transformation. To date, we have shown that a high degree of automation is 
possible, but have not reached full automation yet. Processes are important since they 
must take over wherever automation ends [19,23]. 

7   Conclusion 

This paper presented a transformation-based consistency checking approach for consistent 
refinement and abstraction. Our approach separates model validation into the major Map-
ping (Traceability), Transformation, and Comparison which may be applied iteratively 
throughout the software development life cycle to adapt and evolve software systems. To 
date, our approach has been applied successfully to a number of third party models includ-
ing the validation of a part of a Satellite Telemetry Processing, Tracking, and Command-
ing System (TT&C) [2], the Inter-Library Loan System [1] as well as several reverse-
engineered tools (including UML/Analyzer itself).  

We invented and validated our abstraction technique in collaboration with Rational 
Software. Our consistency checking approach is fully automated and tool supported. Our 
approach is also very lightweight since it does not require the use of third-party (formal) 
languages [4,15,21] but instead integrates seamlessly into existing modeling languages. 
We demonstrated this in context of the Unified Modeling Language and C2SADEL. 
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