
Automatically Discovering Transitive
Relationships in Class Diagrams

Alexander Egyed

Teknowledge Corporation aegyed@ieee.org

Large-scale class diagrams are overwhelming to designers of software systems.
They expose the designer to a level of detail that is often inappropriate for
basic understanding ; and they complicate evolutionary changes in that the
broader impact of changes is obscured by details. This chapter presents an
approach for the automated abstraction of class diagrams that allows designers
to ‘zoom out’ on class diagrams to investigate and reason about their bigger
picture. The approach is based on a large number of abstraction rules that
individually are not very powerful but, when used together, abstract complex
class diagrams quickly. The technique was validated on over a dozen models
where it was shown to be well-suited for model understanding, consistency
checking, and reverse engineering.

1 INTRODUCTION

Refinement is often considered the natural course of software development
where a problem is evolved into a solution. Yet, the more a class diagram
is refined, the more there is a need to step back to investigate the bigger
picture. We define abstraction to be the reverse of refinement. Abstraction is a
transformation process [Met05] that transforms lower-level class diagrams into
higher-level ones, containing fewer elements. Class abstraction has a number
of vital uses. It allows designers to (1) focus a class diagram on a particular
problem or goal, omitting details that are not needed in that context; and it
allows designers to (2) zoom out on a class diagrams to investigate its entirety
through a selected set of key elements.

In essence, abstraction is the simplification of models by removing details
that are deemed unimportant by the designer. This naturally improves the
understanding of class diagrams ; supports reverse engineering by transform-
ing low-level models into higher-level ones; and supports consistency checking
by comparing to existing higher-level models or architectures [EW01a] with



2 Alexander Egyed

abstracted ones. The technique may also help the designer in restructuring
class diagrams [GZL05].

This chapter presents a technique for abstracting class diagrams [BRJ99]
where designers decide which classes to keep (i.e., called important classes)
and which ones to temporarily remove (called helper classes). Since it is not se-
mantically correct to simply remove helper classes, the technique re-interprets
the helper classes in terms of their effect on the important classes. A designer
may guide the abstraction to emphasize different goals or concerns [Ham05].

Our technique computes how the important classes would interact with
one another if their interaction were not obscured by the helper classes. The
technique first identifies the paths of helper classes that span between any
two important classes. These paths are then abstracted and replaced by sin-
gle relationships that approximate the meanings of the paths. The technique
is supported through small yet numerous abstraction rules that define how
simple class/relationship paths are replaced by single relationships. The ap-
plication of an abstraction rules is guided by the paths of helper classes that
span between any two important classes. These paths are abstracted indi-
vidually by applying the abstraction rules in the order in which classes are
traversed while one important class interacts with another (through these
helper classes). This problem is similar to the graph transformation discussed
in [GGZ+05] but avoids the pattern matching problem by dealing with strings
of classes only.

We evaluated the technique on over a dozen real-world case studies ranging
from in-house developed models to third-party models. Most notably, we used
the technique in connection with the Inter-Library Loan System [AAHK99],
a part of a Satellite Ground System [Alv98], C2SADEL to UML integration
[EW01a], Video-On-Demand System, SDS Statechart Simulator [EW01b], and
other projects. The sizes of the models ranged from several dozen to several
hundred classes. The validation showed that the technique produces correct
abstractions 96% of the time. This chapter presents the technique, originally
introduced in [Egy02], and then discusses two key extensions:

• The number of paths between important classes rises exponentially with
the number of helper classes involved. We present an optimization that
identifies in linear time the actual classes and relationships used that reach
between any two helper classes; thus minimizing the path exploration prob-
lem.

• Complete paths are no longer computed before abstraction (i.e., due to
the exponential problem) but are stepwise abstracted while the paths are
explored. This avoids unnecessary path exploration because a partially
non-abstractable path is also not abstractable in its entirety.

Also, a new tool was built as an add-in to IBM Rational RoseTM. Rose
is used to draw class structures and, using Rose’s selection mechanism, a
designer selects important classes for abstraction. The abstraction results are
visualized in Rose also.



Automatically Discovering Transitive Relationships in Class Diagrams 3

2 ILLUSTRATIVE EXAMPLE

For illustrative purposes, this chapter uses a simple UML class diagram
[BRJ99] of a Hotel Management System (HMS) that provides support for
reservations, check-in/check-out procedures, and associated financial transac-
tions (see Figure 1). The figure defines that a Person may have an Account
and that a single account may belong to multiple persons; it also defines that
an account may have Transactions and transactions may be either Expenses
or Payments. Furthermore, it defines that a Guest is a Person who provides
services for reservation and check in/out procedures. Both Room and Reserva-
tion are part of Hotel to indicate that instances of Room and Reservation are
unambiguously associated with particular instances of Hotel. Guest is also
related to Room and Reservation but less tightly via calling dependencies.
These two calling dependencies describe that an instance of Guest may stay
at a Room of a Hotel or may have several Reservations for any given Hotel.

Expense�Payment�

Person�

Transaction�

is-a�is-a�

Account�0..1�

1..n�

0..1�

0..n�+transactions� 0..n�

+account�

Reservation�

Hotel�

0..n�0..n�
Room�

0..n�0..n�

Guest�
is-a�

0..n�

1..n�1..n�

has_reservation�0..1�

0..n�

0..1�

0..n�

stays_at�

Fig. 1. Illustrative Class Diagram of a Hotel Management System (HMS)

While this class diagram is simple enough for human comprehension ,
we have worked with class diagrams that include thousands of classes and
many more relationships. It is impossible for humans to comprehend such
class structures and designers resort to abstraction as a means of coping with
this complexity. Abstraction allows a designer to depict class structures from
a particular point of view, concern, requirement, or other form of interest.

Figure 2 depicts a couple abstractions of Figure 1 that emphasize on differ-
ent sets of important classes. For example, Figure 2 (a) depicts the important
classes Guest, Payment, and Expense but it also depicts relationships among
these three classes that are not to be found in Figure 1. These relationships
are the abstract interpretation of the hidden classes. Figure 2 (b) and (c)
depict yet other abstractions that ‘slice’ across the classes in Figure 1.



4 Alexander Egyed

Hotel�

Guest�

0..n�

0..n�0..n�

reservation_for�

0..n�

0..1�

0..n�

stays_at�

Guest may have a�
reservation for a�
hotel and/or stay�

at hotels�

(c)�
Guest may have Payment or�

Expense Transactions�

Expense�

0..n�0..n�

Payment�0..n�0..n�(a)�

Guest�

Guest may have one Account�

Account�

0..1�0..1�

(b)�

Guest�

Fig. 2. Abstractions of the HMS system

Clearly, there are a range of benefits associated with working with ab-
stractions. Each abstraction depicts a ‘slice’ of the class diagram and is easier
to understand. Also, in this case, each abstraction relates to some form of
requirement or system goal and designers may intuitively benefit from seeing
the HMS in terms of these individual goals.

3 SIMPLE ABSTRACTION

The main goal of class abstraction is to hide information from a class diagram
that is perceived as not important. Since designers likely have different notions
as to what classes are important (i.e., reflecting different goals or problem), a
class abstraction technique needs to be guidable. Guidance may be as simple as
a designer selecting model elements that are of particular interest; or guidance
may be provided via trace dependencies [Egy03][GF94]. In the following, we
presume that such guidance is available.

Abstraction replaces all unimportant helper classes in the class diagram
such that the resulting diagram depicts only the important classes and their
computed relationships. The main challenge of abstraction is to compute re-
lationships out of the helper classes. That is, if we simply hide the class
Reservation and its relationships in Figure 1 then the class diagram loses
the knowledge that a Guest may have a reservation for a Hotel.

This section presents generic abstraction rules (patterns) that are based
on the UML notation for class diagrams [BRJ99]. Currently supported are
class diagrams with four types of relationships: generalization (inheritance),
association (calling direction), aggregation (part-of), and dependency. The
presented abstraction rules are generic and applicable to a wide range of soft-
ware projects. Designers are not required to extend or modify this rule set
unless they wish to fine tune it (e.g., domain specific rules).



Automatically Discovering Transitive Relationships in Class Diagrams 5

3.1 Semantic Rules

The class abstraction technique interprets the transitive meaning of classes
and their relationships. For example, the information that a Person may have
an Account (association relationship in Figure 1) implies a property of the
class Person (class properties are methods, attributes, or relationships). Fur-
thermore, the information that Guest is-a Person (inheritance) implies that
Guest inherits all properties from Person. It follows that Guest inherits the as-
sociation to Account from Person implying that a Guest may have zero or one
Accounts. This knowledge of the transitive relationship between Guest and
Account (via Person) implies that the class Person (and its two relationships
to Guest and Account) could be ‘collapsed’ into a composite, more abstract
relationship linking Guest and Account directly. That composite relationship
should be of type ‘association’ with the cardinality ‘0..1’. This example shows
a case where knowledge about the semantic properties of classes and relation-
ships makes it possible to eliminate a class and derive a slightly more abstract
class diagram. The example above can be seen as a class abstraction pattern
of the following form (cardinalities are discussed later):
{1} GeneralizationRight - Class - AssociationRight -> AssociationRight

We use relationship names post-fixed with either ‘Left’ or ‘Right’ to indi-
cate directionality. ‘GeneralizationRight - Class AssociationRight’ implies a
generalization relationship terminating in the given class and an association
relationship originating from that same class. On the other hand, ‘Generaliza-
tionRight - Class AssociationLeft’ implies both generalization and association
relationships terminating in the same class. Given that the above abstraction
rule captures an observation that is universally true (meaning true for all in-
stances), this rule collapses any occurrence of the given pattern (before ->)
into an occurrence of the implies pattern (after ->).

The transitive property of inheritance may also be used for other types of
relationships. For instance, Guest could also inherit other relationships from
Person (e.g., aggregation, dependency, or reverse association relationships -
see rules 2-7 below).
{2} GeneralizationRight - Class - DependencyRight -> DependencyRight
{3} GeneralizationRight - Class - AssociationRight -> AssociationRight
{4} GeneralizationRight - Class - [Agg]Assoc.Right -> [Agg]Assoc.Right
{5} GeneralizationRight - Class - DependencyLeft -> DependencyLeft
{6} GeneralizationRight - Class - AssociationLeft -> AssociationLeft
{7} GeneralizationRight - Class - [Agg]Assoc.Left -> [Agg]Assoc.Left
{8} GeneralizationRight - Class - Association -> Association

UML class relationships are usually uni-directional requiring us to differ-
entiate ‘Left’ from ‘Right’. The only exception is the association relationship
which may also be bi-directional. Rule 8 in the above block of patterns states
that the bi-directionality of the association is maintained if abstracted to-
gether with a generalization.
{9} GeneralizationRight - Class - GeneralizationRight -> GeneralizationRight



6 Alexander Egyed

The previous assumption about inheritance is true for all relationship types
except for generalization relationships. On the one hand, it is valid to state
that A inherits from C if A inherits from B and B inherits from C (see rule 9);
however, if both A and C inherit from B (A and C share a common parent)
then transitively this does not imply a relationship between A and C. It follows
that no relationship exists between Payment and Expense in Figure 1. Similar
restrictions apply if two classes share a common child (multiple inheritance).
Rules 10 and 11 express these situations. The symbol ‘Ø’ is used to indicate
that no abstraction is possible.
{10} GeneralizationRight - Class - GeneralizationLeft -> Ø
{11} GeneralizationLeft - Class - GeneralizationRight -> Ø

To find more abstraction rules, consider the relationship between Guest
and Hotel in Figure 1. The class diagram uses the class Reservation to define
that a Guest may have reservation for a Hotel. If a designer were to derive
the transitive relationship from Guest to Hotel through Reservation then
the helper class Reservation and its relationships need to be replaced. In
order to do that, it is again necessary to investigate the transitive meaning of
the to-be-replaced model elements. The class diagram shows the class Hotel
with an aggregation relationship from Reservation to Hotel implying that
Reservation is a part of Hotel. The class diagram also defines that Guest has
an association relationship to Reservation (instance of Guest may call instance
of Reservation). Given that Reservation is a part of Hotel implies that the
class Reservation is conceptually within the class Hotel. If, therefore, Guest
depends on Reservation and Reservation is part of Hotel then Guest must also
depend on Hotel. It follows that Guest relates to Hotel in the same manner
as Guest relates to Reservation. We thus have found another abstraction rule
(rule 12). As before, the same reasoning is applied to other relationships (e.g.,
rules 13-15):
{12} Association - Class - Association [Agg] -> Association
{13} AssociationRight - Class - Association [Agg] -> AssociationRight
{14} AssociationLeft - Class - AssociationLeft[Agg] -> AssociationLeft
{15} AssociationLeft[Agg] - Class Assoc.Left[Agg] -> Assoc.Left[Agg]

Note that aggregations are UML associations with the aggregate property
[Agg] at one of its ends. The directionality of aggregations also has relevant
semantic meaning. For example, if Hotel were part of Reservation then one
could not readily apply the above patterns (e.g., as with the relationship
between Person and Transaction in Figure 1).

3.2 Living with Ambiguous Class Definitions

The example of determining the relationship between Person and Transaction
(Figure 1) introduces a new challenge. If one were to derive the transitive
relationship between Person and Transaction then one would need to abstract
away the helper class Account and its relationships. Person currently has an
association to Account and Transaction is part of Account (‘AssociationRight



Automatically Discovering Transitive Relationships in Class Diagrams 7

- Class - [Agg]Association’). By Person having an association to Account one
could argue that Person relates to every part of Account. Since Transaction
is a part of Account it follows that Person must also relate to Transaction.
Although this argument is true in many situations, it is flawed nonetheless.
We make the assumption that by Person relating to Account it relates to all
its parts. It is however conceivable that Person relates to a subset of Account
only - a subset other than Transaction (i.e., mostly the case where classes
provide independent services, e.g., a math library).

Taking a more critical stance towards our abstraction rules, one may find
that this is not the first case of uncertainty. Consider again the very first rule
1 ‘GeneralizationRight - Class - AssociationRight -> AssociationRight’. Pre-
viously, it was stated that Guest has an association relationship to Account
simply because it inherited one from Person. To illustrate this reasoning more
precisely, assume that Person has a method ‘foo’ that creates an instance
of Account (‘0..1’ association between Person and Account). Based on that
assumption, surely, one can infer that Guest also has a ‘0..1’ association re-
lationship to Account because Guest inherits method ‘foo’ from Person. Yet
the flaw in this reasoning becomes apparent if Guest inherits method ‘foo’ but
overwrites its body such that it no longer creates an instance of class Account
nor calls the overwritten method of the parent class. In such a case, Guest
would not inherit the ‘0..1’ association relationship from Person to Account.
Abstracting the pattern ‘GeneralizationRight - Class AssociationRight’ is
thus ‘AssociationRight’ in some cases but not abstractable (no relationship)
in other cases.

Observations such as this one naturally cause a dilemma. We are opposed
to using abstraction rules that are not 100% reliable but we encounter impre-
cise model definitions that take away from our ability to reason precisely. We
refer to these uncertainties as ‘model ambiguities’ because imprecise model de-
finitions lead to potentially different, ergo ambiguous interpretations. A simple
solution to this ambiguity problem is to create a semi-automated abstraction
process that lets the designer decide in case of uncertainty (e.g., [RK99]).
Given the large and complex nature of models, semi-automated abstraction
becomes very costly. Indeed, it has been our observation that not computing
time but human-intervention constitutes key complexities in activities such
as model transformation and consistency checking. A similar unsatisfactory
solution to this problem is to make arbitrary decisions about the most likely
abstraction case and ignore less likely scenarios (e.g., ignore that the child
may overwrite method ‘foo’ of the parent). This solution is unsatisfactory
because it makes our approach less reliable producing potentially erroneous
abstraction results without the designer being aware of it.

UML class diagrams, like many other graphical description languages, are
somewhat imprecise and ambiguous [JR00]. Indeed, we find that their relaxed
nature often encourages their use since designers are sometimes either unable
or unwilling to make precise design decisions. For instance, in UML it can-
not be modeled whether class A overwrites methods it inherits from class B.



8 Alexander Egyed

Although a lack of precision on part of UML, one may argue that it may
not always be obvious during design time when to overwrite methods. More
recent research has shown that formal annotations can improve the precision
of UML (or alike notations) [EFLR98][Ö98][MC01] but their use is generally
optional and left to the discretion of the designer.

Since the basic notation of UML is ambiguous, we take the stance that
automated abstraction needs to handle ambiguities. Our solution to the ambi-
guity problem is to maintain the ambiguity during abstraction. For instance, if
it is unknown whether methods get overwritten during inheritance then we ar-
gue that ‘GeneralizationRight - Class AssociationRight’ is ‘AssociationRight’
in some cases and ‘Ø’ (no relationship) in other cases. This implies that ab-
stract relationships indicated by our approach may or may not factually exist.
In cases where more complex abstractions allow multiple abstract interpreta-
tions, our approach suggests all of them to indicate this uncertainty (ambi-
guity). Our solution has the advantage that no abstract results are omitted
although false positives may happen. Section 6 will show that the likelihood
of false positives is very low ( 4%). Note that an alternative solution would be
to use a subset of abstraction rules that are known to be 100% correct. The
problem with this alternative solution is that only very few such rules exist
and large-scale abstraction would be rather ineffective as a consequence.

3.3 Other Abstraction Rules

Thus far we focused on class patterns that use generalization and aggregation
relationships. In the following, we briefly discuss some abstraction patterns
that use association and dependency relationships (please refer to [Egy03] for
more details).

An association relationship describes calling operations among classes. For
instance, Person having an association relationship to Account implies that
a method of Person may call methods of Account. If class A calls methods of
class B and class B calls methods of class C then, transitively, class A might
also call methods of class C (‘AssociationRight - Class - AssociationRight
-> AssociationRight’). In case an uni-directional association is abstracted to-
gether with a bi-directional association, the bi-directionality is replaced. For
instance, if class A can only call class B but classes B and C can call one
another then, transitively, class A can still only call class C but not the other
way around (‘AssociationRight - Class - Association -> AssociationRight’).

Dependency relationships are used in UML to indicate a required presence
of classes. For instance, if class A depends on class B then class B must be
present for class A to function. The notion of a dependency is other than
calling (association) and is used, i.e., to single out classes that are used as
parameters in method calls (i.e., class A does not call class B but class A has
a method that expects an instance of class B as a parameter). It is thus safe
to state that ‘DependencyRight - Class DependencyRight’ must also abstract



Automatically Discovering Transitive Relationships in Class Diagrams 9

Table 1. Complete List of Abstraction Rules for Class Diagrams

1. GeneralizationRight - Class - GeneralizationRight -> GeneralizationRight
2. GeneralizationRight - Class - DependencyRight -> DependencyRight
3. GeneralizationRight - Class - AssociationRight -> AssociationRight
4. GeneralizationRight - Class - [Agg]AssociationRight -> [Agg]AssociationRight
5. GeneralizationRight - Class - GeneralizationLeft -> Ø
6. GeneralizationRight - Class - DependencyLeft -> DependencyLeft
7. GeneralizationRight - Class - AssociationLeft -> AssociationLeft
8. GeneralizationRight - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
9. GeneralizationRight - Class - Association -> Association
10. GeneralizationRight - Class - [Agg]Association -> [Agg]Association
11. GeneralizationRight - Class - Association[Agg] -> Association[Agg]

12. GeneralizationLeft - Class - GeneralizationRight - Class-> Ø
13. GeneralizationLeft - Class - DependencyRight -> Ø
14. GeneralizationLeft - Class - AssociationRight -> Ø
15. GeneralizationLeft - Class - [Agg]AssociationRight -> Ø
16. GeneralizationLeft - Class - GeneralizationLeft -> GeneralizationLeft
17. GeneralizationLeft - Class - DependencyLeft -> DependencyLeft
18. GeneralizationLeft - Class - AssociationLeft -> AssociationLeft
19. GeneralizationLeft - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
20. GeneralizationLeft - Class - Association -> AssociationLeft
21. GeneralizationLeft - Class - [Agg]Association -> AssociationLeft
22. GeneralizationLeft - Class - Association[Agg] -> AssociationLeft[Agg]

23. DependencyRight - Class - GeneralizationRight -> DependencyRight
24. DependencyRight - Class - DependencyRight -> DependencyRight
25. DependencyRight - Class - AssociationRight -> DependencyRight
26. DependencyRight - Class - [Agg]AssociationRight -> DependencyRight
27. DependencyRight - Class - GeneralizationLeft -> DependencyRight
28. DependencyRight - Class - DependencyLeft -> Ø
29. DependencyRight - Class - AssociationLeft -> Ø
30. DependencyRight - Class - AssociationLeft[Agg] -> Ø
31. DependencyRight - Class - Association -> DependencyRight
32. DependencyRight - Class - [Agg]Association -> DependencyRight
33. DependencyRight - Class - Association[Agg] -> DependencyRight

34. DependencyLeft - Class - GeneralizationRight -> Ø
35. DependencyLeft - Class - DependencyRight -> Ø
36. DependencyLeft - Class - AssociationRight -> Ø
37. DependencyLeft - Class - [Agg]AssociationRight -> Ø
38. DependencyLeft - Class - GeneralizationLeft -> DependencyLeft
39. DependencyLeft - Class - DependencyLeft -> DependencyLeft
40. DependencyLeft - Class - AssociationLeft -> DependencyLeft
41. DependencyLeft - Class - AssociationLeft[Agg] -> DependencyLeft
42. DependencyLeft - Class - Association -> DependencyLeft
43. DependencyLeft - Class - [Agg]Association -> DependencyLeft
44. DependencyLeft - Class - Association[Agg] -> DependencyLeft

45. AssociationRight - Class - GeneralizationRight -> AssociationRight
46. AssociationRight - Class - DependencyRight -> DependencyRight



10 Alexander Egyed

47. AssociationRight - Class - AssociationRight -> AssociationRight
48. AssociationRight - Class - [Agg]AssociationRight -> AssociationRight
49. AssociationRight - Class - GeneralizationLeft -> AssociationRight
50. AssociationRight - Class - DependencyLeft -> Ø
51. AssociationRight - Class - AssociationLeft -> Ø
52. AssociationRight - Class - AssociationLeft[Agg] -> Ø
53. AssociationRight - Class - Association -> AssociationRight
54. AssociationRight - Class - [Agg]Association -> AssociationRight
55. AssociationRight - Class - Association[Agg] -> AssociationRight

56. AssociationLeft - Class - GeneralizationRight -> Ø
57. AssociationLeft - Class - DependencyRight -> Ø
58. AssociationLeft - Class - AssociationRight -> Ø
59. AssociationLeft - Class - [Agg]AssociationRight -> Ø
60. AssociationLeft - Class - GeneralizationLeft -> AssociationLeft
61. AssociationLeft - Class - DependencyLeft -> DependencyLeft
62. AssociationLeft - Class - AssociationLeft -> AssociationLeft
63. AssociationLeft - Class - AssociationLeft[Agg] -> AssociationLeft
64. AssociationLeft - Class - Association -> AssociationLeft
65. AssociationLeft - Class - [Agg]Association -> AssociationLeft
66. AssociationLeft - Class - Association[Agg] -> AssociationLeft

67. [Agg]AssociationRight - Class - GeneralizationRight -> [Agg]AssociationRight
68. [Agg]AssociationRight - Class - DependencyRight -> DependencyRight
69. [Agg]AssociationRight - Class - AssociationRight -> AssociationRight
70. [Agg]AssociationRight - Class - [Agg]AssociationRight -> [Agg]AssociatRight
71. [Agg]AssociationRight - Class - GeneralizationLeft -> [Agg]AssociationRight
72. [Agg]AssociationRight - Class - DependencyLeft -> Ø
73. [Agg]AssociationRight - Class - AssociationLeft -> Ø
74. [Agg]AssociationRight - Class - AssociationLeft[Agg] -> Ø
75. [Agg]AssociationRight - Class - Association -> AssociationRight
76. [Agg]AssociationRight - Class - [Agg]Association -> [Agg]AssociationRight
77. [Agg]AssociationRight - Class - Association[Agg] -> AssociationRight

78. AssociationLeft[Agg] - Class - GeneralizationRight -> Ø
79. AssociationLeft[Agg] - Class - DependencyRight -> Ø
80. AssociationLeft[Agg] - Class - AssociationRight -> Ø
81. AssociationLeft[Agg] - Class - [Agg]AssociationRight -> Ø
82. AssociationLeft[Agg] - Class - GeneralizationLeft -> AssociationLeft[Agg]
83. AssociationLeft[Agg] - Class - DependencyLeft -> DependencyLeft
84. AssociationLeft[Agg] - Class - AssociationLeft -> AssociationLeft
85. AssociationLeft[Agg] - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
86. AssociationLeft[Agg] - Class - Association -> AssociationLeft
87. AssociationLeft[Agg] - Class - [Agg]Association -> AssociationLeft
88. AssociationLeft[Agg] - Class - Association[Agg] -> AssociationLeft[Agg]

89. [Agg]Association - Class - GeneralizationRight -> [Agg]AssociationRight
90. [Agg]Association - Class - DependencyRight -> DependencyRight
91. [Agg]Association - Class - AssociationRight -> AssociationRight
92. [Agg]Association - Class - [Agg]AssociationRight -> [Agg]AssociationRight
93. [Agg]Association - Class - GeneralizationLeft -> [Agg]Association



Automatically Discovering Transitive Relationships in Class Diagrams 11

94. [Agg]Association - Class - DependencyLeft -> DependencyLeft
95. [Agg]Association - Class - AssociationLeft -> AssociationLeft
96. [Agg]Association - Class - AssociationLeft[Agg] -> AssociationLeft
97. [Agg]Association - Class - Association -> Association
98. [Agg]Association - Class - [Agg]Association -> [Agg]Association
99. [Agg]Association - Class - Association[Agg] -> Association

100. Association[Agg] - Class - GeneralizationRight -> AssociationRight
101. Association[Agg] - Class - DependencyRight -> DependencyRight
102. Association[Agg] - Class - AssociationRight -> AssociationRight
103. Association[Agg] - Class - [Agg]AssociationRight -> AssociationRight
104. Association[Agg] - Class - GeneralizationLeft -> Association[Agg]
105. Association[Agg] - Class - DependencyLeft -> DependencyLeft
106. Association[Agg] - Class - AssociationLeft -> AssociationLeft
107. Association[Agg] - Class - AssociationLeft[Agg] -> AssociationLeft[Agg]
108. Association[Agg] - Class - Association -> Association
109. Association[Agg] - Class - [Agg]Association -> Association
110. Association[Agg] - Class - Association[Agg] -> Association[Agg]

111. Association - Class - GeneralizationRight -> AssociationRight
112. Association - Class - DependencyRight -> DependencyRight
113. Association - Class - AssociationRight -> AssociationRight
114. Association - Class - [Agg]AssociationRight -> AssociationRight
115. Association - Class - GeneralizationLeft -> Association
116. Association - Class - DependencyLeft -> DependencyLeft
117. Association - Class - AssociationLeft -> AssociationLeft
118. Association - Class - AssociationLeft[Agg] -> AssociationLeft
119. Association - Class - Association -> Association
120. Association - Class - [Agg]Association -> Association
121. Association - Class - Association[Agg] -> Association

to a ‘DependencyRight’. Since dependencies can also be inherited (general-
ization) and a dependency of a part also implies a dependency of the whole
(aggregation) the usual assumptions can be made about their abstraction.

3.4 The Complete List

To date, we have validated our approach in context of UML class diagrams
and the relationship types: generalization, association, dependency, and ag-
gregation. Considering directionality, this implies eight uni-directional rela-
tionship types such as ‘GeneralizationRight’ or ‘AggregationLeft’ plus three
bi-directional relationship types ‘Association’, ‘[Agg]Assocition’, and ‘Associ-
ation[Agg]’. Altogether, those relationships may form 121 different patterns
(11*11). Table 1 gives the complete list of abstraction patterns as they are
currently defined in our approach.

It is interesting to observe that 29 patterns cannot be abstracted whereas
the remaining 92 patterns have abstract counterparts. Given that it should



12 Alexander Egyed

not matter from what direction a pattern is viewed (or abstracted) it follows
that mirror images of abstraction patterns must have the same values. For
instance, the pattern ‘GeneralizationRight - Class GeneralizationRight’ (rule
1) is equivalent to the pattern ‘GeneralizationLeft - Class GeneralizationLeft’
(rule 16).

4 COMPOSITE ABSTRACTION

The previous section discussed abstraction in context of numerous simple
rules. These abstraction rules are not very powerful but this section demon-
strates how complex class diagrams are abstracted using those rules.

4.1 Path Abstraction

We refer to a sequence of helper classes between two important classes as a
path. Abstraction rules are serialized to abstract a path of classes. Figure 3
(top) depicts a path from Guest to Payment ; taken from Figure 1. If it is of
interest to know the transitive relationship between Guest and Payment then
the abstraction rules in Table 1 have to be applied in sequence to eliminate
the helper classes Person, Account, and Transaction.

Guest� Payment�Person� Account� Transaction�

Guest� Payment�Transaction�Account�

Payment�Guest� Transaction�

Payment�Guest�

rule 3�

rule 54�

rule 49�

Fig. 3. Abstraction of a Path of Classes

The abstraction rules are applied in the order in which the classes are vis-
ited. That is, if Guest calls Transaction then this call first passes through Per-
son, then through Account, next through Transaction, before, finally, reaching
Payment. Thus, rule 3 (Table 1) is applied first to replace Person (and its re-
lationships to Guest and Account); rule 54 is applied next to replace Account,
and rule 49 is applied finally to replace Transaction. As a result, we discover
a transitive association relationship between Guest and Payment. Of course,
the path could also be explored in reverse from Payment to Guest.



Automatically Discovering Transitive Relationships in Class Diagrams 13

The abstraction of a path is different from [Egy02] in that no longer all path
combinations are explored. This was previously done to ensure that all rules
are treated equally during abstraction. For example, the problem in Figure 3
could have also been resolved by applying the rules in a different order. That is,
rule 54 could have been applied first (replacing Account), rule 3 next (replacing
Person), and rule 49 finally (replacing Transaction). In this particular case,
the outcome of the abstraction would have been identical. While there is
no guarantee that all combinations of all rules produce identical abstraction
results, we have not encountered a case where it would. Furthermore, given
that it is computationally expensive to explore all combinations of rules, the
technique now resolves a path in the order it is traversed.

4.2 Paths among Neighboring Important Classes

A path is a sequence of helper classes between two important classes. A path
should not contain important classes. Consider, for example, that a designer
is interested in the relationships among the important classes Hotel, Guest,
Payment, and Expense; ignoring helper classes such as Account, Reservation,
or Person. If one were to investigate all paths among Hotel, Guest, Payment,
and Expense then one would find nine (Figure 4 (top)): one path between
Payment and Expense, one path between Payment and Guest, one path be-
tween Expense and Guest, two paths between Hotel and Guest, two paths
between Hotel and Payment, and two paths between Hotel and Expense.

All nine paths reflect ways for the important classes Hotel, Guest, Pay-
ment, and Expense to interact with one another. However, it is not desired to
know about all possible transitive relationships among all classes of the Hotel -
Guest -Payment -Expense set. Instead it is desired to know about transitive re-
lationships between neighboring important classes only. Take for instance the
path Hotel -Reservation-Guest -Person-Account -Transaction-Expense in Fig-
ure 4 (top). Abstracting this path reveals a uni-directional association from
Hotel to Expense. However, this path also eliminates the important class Guest
because it is part of this path between Hotel and Expense. This is invalid here
since one should not declare Guest an important class for abstraction but at
the same time eliminate it in some abstraction path. This is invalid because
the abstract relationship between Hotel & Expense would be redundant with
other abstract relationships between Hotel & Guest and Guest & Expense
where the former relationship (Hotel -Expense) is an abstraction of the latter
two relationships. That is, Hotel is not capable of calling Expense directly
but requires Guest. It is thus sufficient to show that Hotel calls Guest and
that Guest calls Expense. Figure 4 (bottom) depicts the subset of paths from
Figure 4 (top) that do not contain any important classes.

This restriction of paths is also important for computational scalability.
That is, the number of paths would increase quadratically with the number
of important classes. Yet, if one is not interested in all transitive relation-
ships among all important classes; but only the transitive relationships among



14 Alexander Egyed

Expense�Payment�

Person�

Transaction�

is-a�is-a�

Account�0..1�

1..n�

0..1�

0..n�+transactions� 0..n�

+account�

Reservation�

Hotel�

0..n�0..n�
Room�

0..n�0..n�

Guest�

0..n�

1..n�

has_reservation�0..1�

0..n�

0..1�

0..n�

stays_at�

Expense�Payment�

Person�

Transaction�

is-a�is-a�

Account�0..1�

1..n�

0..1�

1..n�

0..n�+transactions� 0..n�

+account�

Reservation�

Hotel�

0..n�0..n�
Room�

0..n�0..n�

is-a�

0..n�

1..n�

has_reservation�0..1�

0..n�

0..1�

0..n�

stays_at�

Abstracted Paths�
Constrained by Classes�
Selected for Abstraction�

Complete Set of�
Abstraction Paths�

without Constraints�

Guest�

Fig. 4. All Transitive Relationships (top) and Transitive Relationships of Neigh-
boring Classes (bottom)

neighboring important classes then this significantly reduces the number of
paths (i.e., the number of neighboring classes is a relative constant that is
not affected by the number of important classes). Usability is also increased
because the number of abstraction results is reduced by the same degree.

4.3 Abstracting Cardinalities

The rules in Table 1 emphasize the syntactic nature of ‘boxes’ and ‘arrows’
in class diagrams. However, class diagrams consist of more than just boxes
and arrows. Figure 5 (left), depicts the familiar class diagram of the HMS
system showing the relationships among Hotel, Guest, Reservation, and Room.
Additionally, the figure depicts the cardinalities among those classes as they
were originally introduced in Figure 1. For example, it shows that a Guest may
stay at zero or one Rooms and may have zero, one, or more Reservations. Also,
a Hotel may have zero, one, or many Rooms and each Room belongs to exactly



Automatically Discovering Transitive Relationships in Class Diagrams 15

one Hotel (the diamond head of the aggregation relationship has cardinality
one unless defined otherwise).

Hotel�

0..n�0..n�

0..n�

1..n�

0..1�

0..n�0..n�

Hotel�

Guest�

0..*�0..1�

0..*�

Reservation�Room�

Guest�

0..*�

Fig. 5. Abstracting Cardinalities

Figure 5 (right) shows that the Hotel -Room-Reservation-Guest class struc-
ture is abstractable into two relationships between the important classes Guest
and Hotel : a bi-directional association and a uni-directional association (Fig-
ure 5 (right)). These two relationships are based on the two distinct paths
that exist between Guest and Hotel. Since an instance of Guest interacts with
zero or one instances of Room and, in turn, an instance of Room is always
associated with exactly one instance of Hotel (semantic implication of aggre-
gation relationship) a Guest may stay at zero or one Hotels at any given point
in time. This is a transitive property. Since associations and aggregations have
two ends, there are always exactly two cardinalities one has to consider. The
second cardinality investigates the reverse where an instance of Hotel may in-
teract with zero, one, or more instances of Room and an instance of Room may
interact with zero, one, or more instances of Guest. This implies that multiple
guests may stay at any given Hotel room. Other cardinality scenarios follow
the same pattern and are described in more detail in [Egy02].

4.4 Path Exploration

Section 4.2 discussed how important classes restrict the exploration of paths
in that only paths among neighboring important classes are considered. In
spite of this restriction, path exploration is still a computationally expensive
activity as there are often many paths between any two neighboring important
classes. We address this problem in the form of two optimizations that avoid
unnecessary path explorations.

The first optimization computes in advance what helper classes (and their
relationships) are part of paths between two given important classes. For ex-
ample, if it is desired to understand the transitive relationships among Guest,



16 Alexander Egyed

Expense�Payment�

Person�

Transaction�

is-a�is-a�

Account�0..1�

1..n�

0..1�

1..n�

0..n�+transactions� 0..n�

+account�

Reservation�

Hotel�

0..n�0..n�
Room�

0..n�

Guest�
is-a�

0..n�

1..n�

has_reservation�0..1�

0..n�

0..1�

0..n�

stays_at�

Fig. 6. Helper Classes and Paths between Important Classes

Payment, and Expense (Figure 6) then it is not necessary to explore paths that
involve classes such as Room or Hotel. Yet, the path exploration algorithm in
[Egy02] explored paths recursively without knowing, in advance, what paths
would succeed in connecting the desired important classes. The technique now
computes in linear time what classes bridge between desired important classes.
In the case of the example, the technique computes that only the classes Per-
son, Account, and Transaction bridge the important classes Guest, Payment,
and Expense. All other helper classes are ignored during the path exploration.

The second optimization limits the exploration of paths by continuously
evaluating the abstractability of paths. That is, there are potentially many
paths between any two helper classes but most of them are not abstractable.
It is thus not necessary to explore a path in its entirety if a partial exploration
and abstraction of that path already determines that it is not abstractable
(i.e., if a path is not abstractable partially then it is also not abstractable
in its entirety). This optimization avoids the exploration of subsequent path
alternatives not yet explored.

The two optimizations discussed in this section minimize the path ex-
ploration problem in that only those helper classes are considered that yield
useful paths and paths are only abstracted for as long as they are abstractable.

5 AUTOMATION AND TOOL SUPPORT

The abstraction technique requires a designer to guide the abstraction by
defining important classes in a class diagram. The technique then replaces
the remaining helper classes with transitive relationships. The tool support
fully automates the replacement of helper classes. This reduces manual effort
and makes abstraction results reproducible. This section describes the tool we
developed.



Automatically Discovering Transitive Relationships in Class Diagrams 17

Our approach was co-developed with Rational Software [EK99] who devel-
oped a tool called Rose/Architect (construction of Rose/Architect was sub-
contracted to Ensemble Systems by Rational Corporation). Since then, the
approach was extended and the author developed another non-proprietary
tool. The new tool was integrated with IBM Rational RoseTMfor the pur-
pose of creating and modifying diagrams. Designers mark important classes
through Rose’s selection mechanism. The abstraction results are then visu-
alized in Rose. Figure 7 depicts two screen snapshots of the tool. The top
of Figure 7 shows a class diagram of the HMS as defined in Rose. The bot-
tom of Figure 7 shows Rose visualizing an abstracted class diagram with
the important classes Hotel, Guest, Payment, and Expense. The abstraction
tool was integrated with Rose using an integration framework developed at
Teknowledge Corporation for integrating software components with COTS
(commercial-off-the-shelf) components.

Fig. 7. Class Abstraction Tool integrated with IBM Rational Rose TM

6 VALIDATION

This section discusses the validity of our approach in terms of its correctness,
and manual overhead.

6.1 Validity of Abstraction Rules and Algorithm

We evaluated the validity of abstraction results on a representative set of 12
models. Many of the models were built by third parties. Some models were



18 Alexander Egyed

implemented into systems although we did not have access to some of the im-
plemented systems. Some models we reverse engineered from the implemented
system. The sizes of the models varied substantially, with up to several hun-
dred classes.

In total, considering the large number of models, experiments, and model
elements involved, we found that our technique produces reliable results 96%
of the time (only 4% false positives). For about two thirds of the experiments,
our approach did not produce any false positives. For the remaining one third,
our approach produced less than 10% bad results—with one exception: In one
case study, our approach produced 40% incorrect results. This is a very high
number but given the small size of the model (26 classes), higher fluctuations
are to be expected. Although our approach produces highly reliable results
most of the time, all results have to be investigated to reason about their
correctness. Section 6.2 (manual versus automated abstraction) discusses that
it is significantly cheaper to manually inspect abstraction results produced by
our approach instead of abstracting manually.

Our rules are tailored in a fashion that prevents false negatives. This im-
plies that the lack of an abstraction truly means that no abstraction exists.
Because of this, our abstraction technique has 100% sensitivity. Note, sensi-
tivity refers to the proportion of paths that are abstractable that have positive
abstraction results. It is computed as (True Positives)/(True Positives+False
Negatives). Our abstraction technique also has 99.3% specificity. Specificity
refers to the proportion of paths that are not abstractable that have no
abstraction results (True Negatives)/(True Negatives+False Positives). True
negatives were computed by subtracting abstracted paths from all investigated
paths. For more details about these metrics, please refer to [Egy02].

6.2 Manual Abstraction versus Automation

Despite our approach’s preference to err in favor of abstracting too much in-
stead of too little, it produces mostly correct abstraction results. This has the
advantages that the designer does not get overwhelmed with too much (wrong)
information and consequently incorrect abstraction results can be identified
with reasonable effort. We observed during validation that our approach pro-
duced a total of 418 abstract relationships among 170 abstract classes (ratio
of 2.45 relationships per class). This is not much higher than the ratio among
original relationships and original classes which is 1.83.

The low number of false positives produced by our approach also implies
that it is significantly easier to validate abstraction results produced by our
approach than having to abstract paths manually. It still requires a human
decision maker to make the final judgment on the correctness of the abstrac-
tion result but our approach relieves the human designer from the extremely
time consuming task of inferring abstract relationships among all class com-
binations and potential paths. We observed that there were 21024 potential
dependencies among all 170 abstract classes of all 18 experiments; but there



Automatically Discovering Transitive Relationships in Class Diagrams 19

were only 258 transitive relationships. It follows that there were almost 100
times more dependencies to investigate than transitive relationships to vali-
date. Even if tool support is provided that automatically determines all paths
among abstract classes, we found that there were 2374 different paths among
the 170 abstract classes. Most of those paths were not abstractable and thus
there was still a 10-fold benefit in manually validating the abstraction results
versus manually abstracting those paths. This data showed clearly that it is
significantly better to investigate the abstracted diagrams without having to
do all the abstraction work. The task of validating abstraction results is addi-
tionally simplified through trace information (mapping) between abstraction
results and their original input. This makes it straightforward for designers
to trace back particular abstraction results to investigate their origin and
consequently their correctness. As for the actual effort required for validat-
ing results, this is entirely dependent on the designer’s familiarity with the
models. We found that if a designer is very familiar with a model then it
was generally straightforward and fast to judge the correctness of abstraction
results. For more details about these metrics, please consult [Egy02].

7 RELATED WORK

Many techniques have been proposed to aid the understanding of complex
class diagrams. There are reading techniques such as inspection [Fag86] that
use group effort to cope with complexity. Most of these techniques are man-
ual and involve high effort and manpower. Using multiple views is an effective
form of separating concerns [TOHS99]. Class diagrams can be subdivided into
multiple views [AHM88][FKN+91][Gar88] where partial and potentially over-
lapping portions of the diagram are depicted. The sum of all views (diagrams)
is the complete class diagram itself. Multiple views make use of the fact that
one does not need access to all classes to understand a particular concern.
Although multiple views can make classes belonging to individual concerns
more understandable, they generally do not project a high-level, simplified
abstraction of the overall class diagram.

Lieberherr et al. [LHX94] defined class transformation methods to capture
evolution. They argue that class evolution is inevitable and results in new
class models that, preferably, should be as consistent as possible with earlier
versions. Although, one could argue that evolution is a form of refinement,
we take a more narrow stance. For us, refinement has to maintain consistency
within a given model. Their work thus addresses evolutionary ‘refinement’
and ‘consistency issues’ that are considered outside the scope of this chapter.
Nonetheless, one can envision a strong need for our approach to be combined
with theirs so that model refinement and abstraction can be complemented
with model evolution.

Fahmy and Holt [FH00] examined structural aspects of models in form
of graph re-writing. In their work, they define rules on how to transform



20 Alexander Egyed

graph patterns. They do not single out class diagrams; however, their work
is applicable since class diagrams can be seen as graphs containing vertices
(classes) and edges (relationships). They also define transformation rules for
‘lifting’ and ‘hiding interior/exterior’ which could be seen analogous to our
approach. Indeed, graph re-writing could provide a more generic framework
for our work and we are considering to integrate some of their ideas; however,
currently they do not define class abstraction rules in the level of detail we do,
nor do they define an algorithm that can avoid problems of race conditions.
Furthermore, their transformation algorithm is computationally very expen-
sive since they can define complex patterns and anti-patterns. Instead, our
approach relies on relatively simple patterns that can be abstracted quickly.

The works of Schuerr et al. [SWZ95] is similar to Fahmy and Holt. They
also propose a graph rewriting approach called PROGRES with similar limi-
tations. However, an interesting feature of PROGRES is the improved perfor-
mance of pattern matching which they recognized as being a severe problem.
They propose a heuristic-based approach that optimizes the use of a limited
set of graph rewrite rules to achieve faster performance. The limitation of their
approach is that it works best on small sets of rules. We took an alternative
approach with a large number of graph rewrite rules (abstraction rules) but
only very simple rule patterns (string of relationships). Our pattern matching
approach is thus as simple and as efficient as string matching. As such, we see
their work as an interesting alternative in dealing with the computationally
expensive problem of pattern matching.

Streckenbach and Snelting [ST98] devised a technique in restructuring class
hierarchies by investigating how classes are used by applications. In a form
they abstract the essence of classes by creating perspectives of class hierarchies
as relevant to individual applications. They then combine those individual per-
spectives to yield a better class hierarchy. Although their work re-interprets
class diagrams (hierarchies) it cannot be used to reason about abstract interde-
pendencies among classes. It is, however, a good example that class hierarchies
(or diagrams) are ambiguous and information within them (i.e., methods) can
be moved around without destroying behavioral consistency.

Racz and Koskimies [RK99] created an approach to class abstraction that
is probably the closest to ours. They also recognized the powerful but simple
nature of abstracting relationships with classes into abstract relationships.
However, they only defined a small set of abstraction rules and they did
not investigate the issue of path abstraction. As a result, they did not de-
vise an automatable abstraction technique but instead developed a tool for
semi-automated use. In Section 6, we pointed out the disadvantages of semi-
automated abstraction on large-scale class diagrams. Irrespective of the draw-
backs of their approach, we see their work as a confirmation of the validity of
our abstraction technique because like us they acknowledge the usefulness of
abstracting class patterns based on the transitive meaning of relationships.

Our abstraction technique is conceptually related to transformation tech-
niques such as Sequence to Statechart transformation [KSTM98][SKK01],



Automatically Discovering Transitive Relationships in Class Diagrams 21

Collaboration to Statechart transformation [KEK98], and Sequence to Class
transformation [TE00]. All these approaches recognized the fact that model
transformation in general can be done without the use of intermediate, third-
party languages. For instance, [KSTM98] describes an approach for combin-
ing sequence diagrams into statechart diagrams directly without creating the
overhead of using an additional languages. These works demonstrate that it
is possible to define precise, formal transformations using informal languages
(UML diagrams) as input and generating other informal languages as out-
put. Our approach is also well-defined and formal and like their approaches
we avoided using third-party languages to represent UML although such lan-
guages exist.

8 CONCLUSION

This chapter presented an approach for the automated abstraction of class
diagrams. The approach investigated the semantic meaning of paths of classes
to infer transitive properties. Although our abstraction rules are primitive in
form, they are rich enough in number to abstract large-scale class diagrams.
To date we have validated the technique and its rules on numerous third-
party applications and models with up to several hundred model elements.
We showed that our technique scales and produces correct results most of the
time. We demonstrated various forms of ambiguities and showed that there
are ways of living with them even preserving them during transformation.

Our abstraction approach is fully tool supported and integrated with IBM
Rational RoseTM. We believe our abstraction technique to be well-suited for
model understanding, reverse engineering, and consistency checking. During
model understanding, our technique provides a light-weight, fast, and easy
to use method for ‘zooming out’ of a model for inspection (e.g., whenever
the model changes). For reverse engineering, our technique helps in creating
higher-level interpretations of implementation classes and their relationships.
And for consistency checking, our approach makes a lower-level class diagram
easier comparable with existing higher-level ones.

9 ACKNOWLEDGEMENTS

We wish to thank Philippe Kruchten for the initial idea and support. We also
wish to thank Barry Boehm, Cristina Gacek, Paul Grnbacher, Nenad Medvi-
dovic, Dave Wile, and the anonymous reviewers for insightful discussions. This
work was supported by Rational Corporation and DARPA through contracts
F30602-99-1-0524, F30602-00-C-0200, and F30602-00-C-0218.



22 Alexander Egyed

References

[AAHK99] M. Abi-Antoun, J. Ho, and J. Kwan. Inter-Library Loan Management
System: Revised Life-Cycle Architecture. Center for Software Engineer-
ing, University of Southern California, Los Angeles, CA, USA, 1999.

[AHM88] R.A. Altmann, A.N. Hawke, and C.D. Marlin. An integrated program-
ming environment based on multiple concurrent views. Australian Com-
puter Journal, 20:65–72, 1988.

[Alv98] S. Alvarado. An evaluation of object oriented architecture models for
satellite ground systems. In Proceedings of the 2nd Ground Systems Ar-
chitecture Workshop (GSAW), El Segundo, CA. 1998.

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson. ¡The Unified Modeling Lan-
guage User Guide. Addison Wesley, 1999.

[EFLR98] A. Evans, R. France, K. Lano, and B. Rumpe. The uml as a formal
modeling language. Journal Computer Standards & Interfaces, 19, 1998.

[Egy02] A. Egyed. Automated abstraction of class diagrams. ACM Transaction
on Software Engineering and Methodology (TOSEM), 11:449–491, 2002.

[Egy03] A. Egyed. A scenario-driven approach to trace dependency analysis.
IEEE Transactions on Software Engineering (TSE), 29:116–132, 2003.

[EK99] A. Egyed and P. Kruchten. Rose/architect: A tool to visualize archi-
tecture. In Proceedings of the 32nd Hawaii International Conference on
System Sciences (HICSS), Maui, HI. 1999.

[EW01a] A. Egyed and D. Wile. Statechart simulator for modeling architectural
dynamics. In Proceedings of the 2nd Working International Conference
on Software Architecture (WICSA), Amsterdam, The Netherlands, pages
87–96. 2001.

[EW01b] A. Egyed and D. Wile. Statechart simulator for modeling architectural
dynamics. In Proceedings of the 2nd Working International Conference
on Software Architecture (WICSA), Amsterdam, The Netherlands, pages
87–96. 2001.

[Fag86] M.E. Fagan. Advances in software inspections. IEEE Transactions on
Software Engineering (TSE), 12:744–751, 1986.

[FH00] H. Fahmy and R.C. Holt. Using graph rewriting to specify software archi-
tectural transformations. In Proceedings of the 15th IEEE International
Conference on Automated Software Engineering (ASE), pages 187–196.
2000.

[FKN+91] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke.
Viewpoints: A framework for integrating multiple perspectives in system
development. International Journal on Software Engineering and Knowl-
edge Engineering, 31-58, 1991.

[Gar88] D. Garlan. Views for tools in integrated environments. In Advanced
Programming Environments, pages 314–343. 1988.

[GF94] O.C.Z. Gotel and A.C.W. Finkelstein. An analysis of the requirements
traceability problem. In Proceedings of the First International Conference
on Requirements Engineering, pages 94–101. 1994.

[GGZ+05] Lars Grunske, Leif Geiger, Albert Zündorf, Niels Van Eetvelde,
Pieter Van Gorp, and Daniel Varro. Using graph transformation for
practical model driven software engineering. In Sami Beydeda, Matthias
Book, and Volker Gruhn, editors, Model-driven Software Development –



Automatically Discovering Transitive Relationships in Class Diagrams 23

Volume II of Research and Practice in Software Engineering. Springer,
2005.

[GZL05] Jeff G. Gray, Jing Zhang, and Yuehua Lin. Generic and domain-specific
model refactoring using a model transformation engine. In Sami Beydeda,
Matthias Book, and Volker Gruhn, editors, Model-driven Software Devel-
opment – Volume II of Research and Practice in Software Engineering.
Springer, 2005.

[Ham05] Imed Hammouda. A tool infrastructure for model-driven development
using aspectual patterns. In Sami Beydeda, Matthias Book, and Volker
Gruhn, editors, Model-driven Software Development – Volume II of Re-
search and Practice in Software Engineering. Springer, 2005.

[JR00] D. Jackson and M. Rinard. Software analysis: A roadmap. In Proceedings
of the 20th International Conference on Software Engineering (ICSE),
pages 133–145. 2000.

[KEK98] I. Khriss, M. Elkoutbi, and R. Keller. Automating the synthesis of uml
statechart diagrams from multiple collaboration diagrams. In Proceedings
for the Conference of the Unified Modeling Language, pages 132–147.
1998.

[KSTM98] K. Koskimies, T. Syst, J. Tuomi, and T. Mnnist. Automated support
for modelling oo software. IEEE Software, 87-94, 1998.

[LHX94] K.J. Lieberherr, W.L. Hursch, and C. Xiao. Object-extending class trans-
formations. Journal Formal Aspects of Computing, 6:391–416, 1994.

[MC01] W.E. McUmber and B.H.C. Cheng. A general framework for formalzing
uml with formal languages. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE), pages 433–442. 2001.

[Met05] Andreas Metzger. A systematic look at model transformations. In Sami
Beydeda, Matthias Book, and Volker Gruhn, editors, Model-driven Soft-
ware Development – Volume II of Research and Practice in Software
Engineering. Springer, 2005.

[Ö98] G. Övergaard. A formal approach to relationships in the unified model-
ing language. In Proceedings of the Workshop on Precise Semantics for
Software Modeling Techniques (PSMT98), pages 91–108. 1998.

[RK99] F.D. Racz and K. Koskimies. Tool-supported compression of uml class
diagrams. In Proceedings of the 2nd International Conference on the
Unified Modeling Language (UML), pages 172–187. 1999.

[SKK01] S. Schönberger, R.K. Keller, and I. Khriss. Algorithmic support for model
transformation in object-oriented software development. Concurrency
and Computation: Practice and Experience, 13:351–383, 2001.

[ST98] G. Snelting and F. Tip. Reengineering class hierachies using concept
analysis. In Proceedings of the ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, pages 99–110. 1998.

[SWZ95] A. Schuerr, A.J. Winter, and A. Zündorf. Graph grammar engineering
with progres. In Proceedings of the 5th European Software Engineering
Conference (ESEC), pages 219–234. 1995.

[TE00] A. Tsiolakis and H. Ehrig. Consistency analysis of uml class and sequence
diagrams using attributed graph grammars. In Proceedings of GRATRA
2000, Berlin, Germany, pages 77–86. 2000.

[TOHS99] P. Tarr, H. Osher, W. Harrison, and S.M.Jr. Sutton. N degrees of sep-
aration: Multi-dimensional separation of concerns. In Proceedings of the



24 Alexander Egyed

21st International Conference on Software Engineering (ICSE 21), Los
Angeles, CA, pages 107–119. 1999.


