
Automatically Generating and Adapting Model Constraints
to Support Co-evolution of Design Models

Andreas Demuth
Institute for Systems

Engineering and Automation
Johannes Kepler University

Linz, Austria
andreas.demuth@jku.at

Roberto E.
Lopez-Herrejon

Institute for Systems
Engineering and Automation
Johannes Kepler University

Linz, Austria
roberto.lopez@jku.at

Alexander Egyed
Institute for Systems

Engineering and Automation
Johannes Kepler University

Linz, Austria
alexander.egyed@jku.at

ABSTRACT

Design models must abide by constraints that can come
from diverse sources, like their metamodels, requirements,
or the problem domain. Software modelers expect these
constraints to be enforced on their models and receive in-
stant error feedback if they fail. This works well when con-
straints are stable. However, constraints may evolve much
like their models do. This evolution demands efficient con-
straint adaptation mechanisms to ensure that models are
always validated against the correct constraints. In this pa-
per, we present an idea based on constraint templates that
tackles this evolution scenario by automatically generating
and updating constraints.

Categories and Subject Descriptors

D.2.2 [Software Engineering]: Design Tools and Tech-
niques

General Terms

Design, Languages, Reliability, Performance

Keywords

Co-evolution, metamodeling, consistency checking

1. INTRODUCTION
In Model-Driven Development (MDD) [1], metamodels

play a key role as they define the language of models and the
constraints these models must satisfy. Over the past years, a
trend has emerged that calls for metamodels to be adaptable
– to customize the design to a particular discipline, domain,
or even application under development. Nowadays, a range
of ”flexible” design tools are available (e.g., [2–4]) and their
metamodels are about as changeable as any other develop-
ment artifact. Indeed, metamodels are allowed to evolve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ASE ’12, September 3–7, 2012, Essen, Germany
Copyright 12 ACM 978-1-4503-1204-2/12/09 ...$10.00.

continuously; for example, to reflect changes in the domain,
to meet new business needs or to improve the structure of
the metamodel. Co-evolution of models denotes the process
of evolving models and their metamodels concurrently – a
process that is non trivial since inconistent co-evolution may
cause models and metamodels to drift apart. Several ap-
proaches that perform this process incrementally have been
proposed (e.g., [5]).

However, what has been largely overlooked is the fact
that metamodels also impose constraints onto models and
while evolving metamodels one also ought to evolve their
constraints. For example, the Unified Modeling Language
(UML) [6] is supported by hundreds of well-formedness rules
and the community augmented these with even more consis-
tency rules. Modifying the UML metamodel thus impacts
these constraints. Constraints that previously were seman-
tically and syntactically correct can become incorrect as a
consequence of structural or semantic changes of the meta-
model. It is crucial to extend the notion of co-evolution
to include the continous maintenance of constraints such
that only correct constraints are enforced on design models.
Of course, it is also crucial to have available a consistency
checker that is not only able to react to design model changes
but also to metamodel/constraint changes. Generating and
adapting constraints incrementally as well as checking them
incrementally are thus pre-requisites to ensure that design-
ers are always given instant and reliable feedback on the
validity of their modeling work.

State-of-the-art consistency checkers are commonly em-
ployed to validate constraints and determine whether a
model is consistent with its metamodel. Most consistency
checkers perform the validation by presuming the existence
of constraints [7,8]. It is common to write constraints man-
ually, often in a standardized language such as the Object
Constraint Language (OCL) [9], or to ”hard-code” them into
the modeling tools. Standard consistency checkers also typ-
ically presume that the constraints remain stable through-
out model evolution. Although the automatic co-evolution
of metamodels and models has become an active field of
research, the issue of co-evolving constraints is not well ad-
dressed. State-of-the-art incremental consistency checkers
typically do not support the live updating of constraints.

In this paper, we discuss an approach for the co-evolution
of models and their constraints that uses constraint tem-
plates and a template engine to automatically and incre-
mentally generate and update constraints.

Figure 1: A metamodel for component-based sys-

tems with constraints.

In a world where little is stable, the fast and incremen-
tal co-evolution of models is becoming a fundamental best
practice for software development. The main benefit of our
approach in this regard is that model and metamodels can
be evolved concurrently while still benefiting from fast, in-
cremental error feedback.

2. EXAMPLE AND MOTIVATION
We use an excerpt of a simple metamodel, shown in Fig. 1,

to illustrate our work.
The metamodel consists of two elements: Component and

Communication. Every Component can include an arbitrary
number of sub-components and can directly use an unde-
fined number of other components. A Communication ex-
presses a data exchange from a source to at most one tar-

get component. Components can have an arbitrary number
of open communications (com).

For building this metamodel, we used a simple metameta-
model consisting of the elements: Class, Reference, De-

rivedReference. References between classes are drawn as
arrows with an assigned name and a defined cardinality.
Multiple references can be combined to a single derived ref-
erence which we draw without cardinality values and with
dashed arrows to the references from which it is composed.
For example, a derived reference is used to retrieve the com-
ponents that are involved in a communication (inv).

Since producing only valid models that conform to this
metamodel is crucial for using the MDD approach, con-
straints that stem from different sources may be added.

I: Metamodel directly. First, we use intuitive con-
straints that check the cardinality of references. For each
reference, we create a constraint (e.g., R1 or R2 in Fig. 1)
that ensures that every instance of the owning element is
connected to the specified number of elements in a model
(e.g., every instance of Communication must be connected to
exactly one Component instance through a connection named
source). We use the term connected in models to avoid am-
biguity with references in the metamodel. Connections are
depicted as named arrows in model diagrams. Constraints
for references with unrestricted cardinalities (e.g., com) are
not shown in Fig. 1 for readability reasons. Note that com-
mon modeling tools that use EMF [10] for example either
do not derive such constraints or have them ”hard-coded”,
meaning that changes cannot lead to constraint updates
which counters the idea of co-evolution.

Printer

Controller QueueFormatter

Output

Calculator

MemoryNumeric

ResultComm

sub sub
sub

use
use

use use

com source target

target inv

inv

inv

use
use

use

sub
sub

Figure 2: A model of a calculation system.

II: Metamodel semantics. Next, we create a constraint
for the derived reference (e.g., DR1 in Fig. 1) to ensure that
instances of the owning element are connected to all the el-
ements that are reached through the aggregated references
(e.g., for every instance of Communication, all elements that
are connected to it via source and target must also be
connected via inv). Note that our constraints make use of
OCL collection iterations even though they are invoked on
single objects. The issues arising because of the distinction
between single and multi-object values in OCL have been
discussed and identified in literature as a problem especially
during evolution [11]. For the sake of generality, we use
a consistency checker with an OCL interpreter that allows
collection operations being used with single objects by per-
forming the necessary conversions automatically.

III: Domain knowledge. While the first two kinds of
constraints could be generated automatically, constraints of
the third type cannot be derived from the metamodel auto-
matically with traditional approaches. An example would be
a constraint that restricts direct usage of components based
on component hierachies. We omit a detailed description of
such a constraint because of space restrictions.

As depicted in Fig. 2, the metamodel from Fig. 1 is used to
create a small model of a calculator system. The Calculator
component has two sub-components that are used directly:
Memory and Numeric. The Numeric component also uses the
component Memory. A Printer has three sub-components:
Formatter, Queue, and Controller. It uses the Queue to
store print jobs and informs the Controller, which retrieves
the data from the Queue and runs the Formatter before ac-
tually printing. Finally, there is an Output component to
display information to the user. The Calculator uses a Com-
munication element called ResultComm to send its results to
the Printer and the Output components.

As indicated by the encircled area in Fig. 2, the two tar-

get connections of ResultComm are causing an inconsistency
because only one target is allowed according to the meta-
model. Note that any consistency checking approach could
detect inconsistencies in the model according to the con-
straints we defined above.

2.1 Co-Evolution Examples
Let us consider what happens when a metamodel changes.

For instance, if the number of maximum targets of a Com-

munication rises from 1 to 100 because new technologies
allow multicasting of messages between components. Addi-
tionally, a new derived reference all is introduced to com-
bine the sub and use references of a Component. These two
changes are encircled with dotted lines in Fig. 3.

Figure 3: The evolved metamodel.

These changes have the following consequences:

• Constraint R1 becomes incorrect. The upper bound
checked by the constraint, value (1), is no longer equal
to the actual upper bound value of the reference (100).

• An additional constraint is now needed for the newly
created derived reference all.

In the first case, R1 must be adapted by replacing the
upper limit value 1 with literal 100. Without this adapta-
tion, the corresponding constraint instance, circled in Fig. 2,
would still incorrectly try to enforce an upper bound of 1. In
the second case, the inconsistency that neither Calculator
nor Printer have the required connection all in our model
is missed. To address this problem, a constraint that checks
the derived reference all needs to be added.

A common way of dealing with co-evolution is to manually
re-write the constraints after performing a metamodel mod-
ification. Although this approach can work in our example
because of its small size and simple constraints, manually
identifying and adapting affected constraints in more com-
plex models is both time consuming and error-prone.

3. CONSTRAINT TEMPLATES AND TEM-

PLATE ENGINE
We propose the use of constraint templates to automate

the co-evolution of models and their constraints. These tem-
plates are based on the metamodel and constraints we want
to evaluate. Basically, templates contain the static aspects
that constraints have in common (e.g., fragments of an OCL
constraint string) and define the points of variability. As
models evolve, the templates are filled with specific data –
to reflect the model evolution – and instantiated to auto-
matically generate or update the constraints.

3.1 Template Definition
Templates are written manually by metamodel authors

who are also in charge of maintaining and evolving meta-
models. Before discussing the authoring process in detail,
we discuss the structure of a template and the information
it requires. The instantiation context (IC) defines for which
elements, or combinations thereof, a template should be in-
stantiated. The abstract constraint expression (ACE) is used
to define the family of constraints generated from the tem-
plate. A constraint family consists of constraints that share

some static aspects (e.g., the structure) and have some vari-
able parts that differ for each constraint. Thus, the ACE
captures the static parts of the constraint family and also
identifies the locations of variability which are also defined
explicitly in the variable definition (VD). The VD declares
which parts of the ACE are interpreted as variables. To
bind specific values to these variables, data has to be read
from specific elements that are available when the template
is instantiated. These elements are specified in the instanti-
ation information (II). How the values for the variables are
extracted from the elements is declared in data extraction
expressions (DEE).

Let us now show how we can write a template T1 for the
constraint family of R1 and R2. Template T1, shown in
Table 1, creates a constraint every time an instance of Ref-
erence is connected to an instance of Class, for example
when the reference target is added to the class Communica-
tion during the initial modeling of our sample metamodel.
Therefore, we define the IC of our template to be <Class,

Reference>. This means that we provide an instance of
Class and an instance of Reference to the template in order
to create a new constraint. Note that templates are reusable
for other metamodels that conform to the same metameta-
model. We define the ACE by using the desired expression
of one sample constraint of the constraint family (e.g., an
OCL statement) and replacing all concrete values that are
specific for a single instance with variables. In our example,
we take the constraint R1 and replace the two values 0 and
1 with MIN and MAX, the context Communication with C, and
the two occurrences of target with R. The result is the ab-
stract constraint expression as defined in Table 1 with the
variable parts (VD) being <C, R, MIN, MAX>. The instan-
tiation information of T1 is <Class c, Reference r>. The
data extraction expressions can be written as r.min, r.max,
r.name and c.name. Note that – for convenience – we use
the n-th expression in the DEEs to extract the value for the
n-th variable in the VD in the paper. However, the connec-
tion between expressions in the DEE and the corresponding
variables in the VD could also be defined explicitly.

3.2 Template Instantiation and Change Man-
agement

For performing automatic instantiation of templates (i.e.,
generation of constraints) as well as automatic updates of
already instantiated ones, we propose the use of a template
engine. This engine observes the metamodel for changes.
Such changes may be the addition or removal of metamodel
elements as well as metamodel element modifications. For
the addition, the engine looks for templates with an instan-
tiation context that matches the added element. For each
match, the engine instantiates the template by executing

Table 1: Definition of template T1

IC: <Class, Reference>

ACE: context C inv:

self.R->size()>=MIN and

self.R->size()<=MAX

VD: <C, R, MIN, MAX>

II: <Class c, Reference r>

DEE: <c.name, r.name, r.min, r.max>

the data extraction expressions (DEEs) and replacing the
defined variables with the retrieved data, creating a con-
straint that is then passed to the consistency checker. Dur-
ing execution of the DEEs, the engine captures which meta-
model elements were accessed, building the scope of the gen-
erated constraint. If the engine observes a metamodel ele-
ment modification, it looks for generated constraints whose
scope includes the changed metamodel element. These con-
straints are potentially outdated and require updating. The
engine then re-instantiates the template by re-executing the
DEEs that retrieve the updated values, leading to an up-
dated constraint that replaces the outdated one. The re-
moval of metamodel elements indeed leads to the removal of
constraints that rely on the removed data.

4. RELATED WORK
There has been an extensive research activity in models

and their evolution. Here we focused on those closest to our
work. The efficient, and ideally automated, (tool-)support
for metamodel evolution and the corresponding co-evolution
of conforming models was identified by Mens et al. in 2005
as one of the major challenges in software evolution [12].
Since then, various approaches have been proposed to deal
with this challenge. Wachsmuth addresses the issue of meta-
model changes by describing them as transformational adap-
tations that are performed stepwise instead of big, manu-
ally performed ad hoc changes [13]. Changes to the meta-
model become traceable and can be qualified according to
semantics- or instance-preservation. He further proposes the
use of transformation patterns that are instantiated with
metamodel transformations to create co-transformations for
models. Cicchetti et al. classify possible metamodel changes
and decompose differences between model versions into sets
of changes of the same modification-class [14]. They iden-
tify possible dependencies that can occur between different
kinds of modifications and provide an approach to handle
these dependencies and to automate model co-evolution.

Herrmannsdoerfer et al. also classified coupled metamodel
changes and investigated how far different adaptations are
automatable [15]. One aspect that these approaches have
in common is that they are based on decomposing evolution
steps into atomic modification for deriving co-adaptations.
Our approach is also based on atomic modifications that are
handled individually to perform necessary adaptations incre-
mentally. However, we do not try to automate co-evolution
of metamodels and models in the first place. Instead, the co-
evolution of metamodels and constraints enables tool users
to perform adaptations of a model with both tool guidance
based on specific constraints and their own domain knowl-
edge.

In [16], Kim and Czarnecki deal with the evolution of
feature models and their specializations in software prod-
uct lines. One of the feature model evolutions they perform
is the restriction of cardinalities in the feature model. With
our approach, such changes are handled automatically and
specializations that are inconsistent with the evolved feature
model are detected immediately.

5. CONCLUSIONS
This paper introduced the idea of constraint templates

and an automated template engine to address the issue of
co-evolution of models and constraints. We illustrated how

constraint templates can be written and how constraints can
be generated from them. Moreover, we discussed how auto-
matic co-evolution of constraints can be achieved.

6. ACKNOWLEDGMENTS
The research was funded by the Austrian Science Fund

(FWF): P21321-N15, the EU Marie Curie Actions – Intra
European Fellowship (IEF) through project number 254965,
and FWF Lise-Meitner Fellowship M1421-N15.

7. REFERENCES
[1] D. C. Schmidt, “Guest editor’s introduction:

Model-driven engineering,” IEEE Computer, vol. 39,
no. 2, pp. 25–31, 2006.

[2] E.-J. Manders, G. Biswas, N. Mahadevan, and
G. Karsai, “Component-oriented modeling of hybrid
dynamic systems using the generic modeling
environment,” in MBD/MOMPES, 2006, pp. 159–168.

[3] J. C. Grundy, J. G. Hosking, J. Huh, and K. N.-L. Li,
“Marama: an eclipse meta-toolset for generating
multi-view environments,” in ICSE, 2008, pp. 819–822.

[4] H. Ossher, R. K. E. Bellamy, I. Simmonds, D. Amid,
A. Anaby-Tavor, M. Callery, M. Desmond, J. de Vries,
A. Fisher, and S. Krasikov, “Flexible modeling tools
for pre-requirements analysis: conceptual architecture
and research challenges,” in OOPSLA. ACM, 2010,
pp. 848–864.

[5] M. Herrmannsdoerfer, S. Benz, and E. Jürgens,
“COPE - automating coupled evolution of metamodels
and models,” in ECOOP, 2009, pp. 52–76.

[6] Object Management Group. Unified Modeling
Language (UML). http://www.uml.org/.

[7] M. Vierhauser, P. Grünbacher, A. Egyed, R. Rabiser,
and W. Heider, “Flexible and scalable consistency
checking on product line variability models,” in ASE.
ACM, 2010, pp. 63–72.

[8] A. Reder and A. Egyed, “Model/analyzer: a tool for
detecting, visualizing and fixing design errors in
UML,” in ASE. ACM, 2010, pp. 347–348.

[9] Object Management Group. Object Constraint
Language (OCL). http://www.omg.org/spec/OCL/.

[10] Eclipse Foundation. Eclipse Modeling Framework
(EMF). http://eclipse.org/modeling/emf/.

[11] F. Büttner, H. Bauerdick, and M. Gogolla, “Towards
transformation of integrity constraints and database
states,” in DEXA Workshops, 2005, pp. 823–828.

[12] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri, “Challenges in
software evolution,” in IWPSE, 2005, pp. 13–22.

[13] G. Wachsmuth, “Metamodel adaptation and model
co-adaptation,” in ECOOP, 2007, pp. 600–624.

[14] A. Cicchetti, D. D. Ruscio, and A. Pierantonio,
“Managing dependent changes in coupled evolution,”
in ICMT, 2009, pp. 35–51.

[15] M. Herrmannsdoerfer, S. Benz, and E. Jürgens,
“Automatability of coupled evolution of metamodels
and models in practice,” in MoDELS, 2008, pp.
645–659.

[16] C. H. P. Kim and K. Czarnecki, “Synchronizing
cardinality-based feature models and their
specializations,” in ECMDA-FA, 2005, pp. 331–348.

