
Analysis of System Requirements Negotiation Behavior Patterns

Alexander Egyed and Barry Boehm
University of Southern California

Los Angeles, CA 90089-0781 USA

ABSTRACT

Roughly 35 three-person teams played the
roles of user, customer, and developer in negoti-
ating the requirements of a library information
system. Each team was provided with a suggested
set of stakeholder goals and implementation op-
tions, but were encouraged to exercise creativity
in expanding the stakeholder goals and in creat-
ing options for negotiating an eventually satis-
factory set of system requirements.

The teams consisted of students in a first-year
graduate course in software engineering at USC.
They were provided with training in the Theory
W (win-win) (Boehm-Ross, 1989) approach to
system requirements determination and the asso-
ciated USC WinWin groupware support system
(Boehm, et al, 1995)(Horowitz, 1996). They were
required to complete the assignment in two
weeks.

Data was collected on the negotiation process
and results, with 23 projects providing suffi-
ciently complete and comparable data for analy-
sis. A number of hypotheses were formulated
about the results. Some of the hypotheses ad-
dressed the use and potential improvement of
WinWin features. Others addressed more general
process issues, e.g. that the uniform set of initial
conditions would lead to uniform results. This
paper summarizes the data analysis, which shows
that expectations of uniform group behavior were
generally not realized.

In terms of goals for relevant Capability Ma-
turity Models (CMM’s), this implies that the
System Engineering CMM’s Level 2 goal of
Planned and Tracked processes is more realistic
than the Software CMM’s Level 2 goal of Re-
peatable processes.

KEYWORDS

Integrated Product Development, Teams,
Case Studies, Software Systems Engineering,
Requirements, Capability Maturity Models

INTRODUCTION

A major objective in several software process
initiatives is to achieve repeatable processes, to
which techniques such as statistical process con-
trol may be applied. For example, Level 2 of the
SEI Software Capability Maturity Model (Paulk,
et al, 1995) is called the Repeatable level. An
early description of the model (Humphrey, 1989)
states:

“Dr. W.E. Deming, in his work with the
Japanese after World War II, applied the
concepts of statistical process control to
many of their industries. While there are
important differences, these concepts are
just as applicable to software as they are to
producing consumer goods like cameras,
television sets, or automobiles.”

On the other hand, level 2 of the Systems En-
gineering Capability Model (Bate, et al, 1995) is
called the Planned and Tracked level. This indi-
cates that expectations for systems engineering
processes to be repeatable (i.e. for several sys-
tems engineering groups starting from the same
problem statement to arrive at the same solution
by the same sequence of steps) are not as high as
those implied by the software CMM.

If one is performing systems engineering for a
software-intensive-system, how repeatable should
one expect the process and results to be? The
software CMM would lead me to expect more
repeatability than would the systems engineering
CMM. It is very difficult to obtain comparable
observational or experimental project data to ex-
plore this and related issues.

An opportunity arose to experiment on such
issues in the context of a first-year graduate
course on software engineering. In this course,
student teams were trained in a particular system
requirements approach (win-win). They then used
the approach to negotiate a set of requirements
for a Library Information System, for which a

Published in the Proceedings of 7th Annual International Symposium on Systems Engineering, 1997

common baseline problem description and candi-
date set of system functions were provided.

Given the prepackaged nature of this activity,
one might expect that the teams would execute
repeatable processes and produce repeatable re-
sults. Hypotheses were formulated and tested on
several dimensions of this issue; the results are
provided below.

Although the student-and-coursework context
of this requirements activity is only moderately
representative of actual practice, it can be argued
that the results of such a pre-structured activity
would serve as a lower bound on the repeatability
of system and software requirements engineering
processes and results in general project practice.
A primary objective of the experiment and analy-
sis is to explore the nature of such lower bounds.

Context

An attractive approach for determining sys-
tem requirements is to use Integrated Product
Teams (IPT’s) composed of representative system
stakeholders. However, there are few guidelines
for the process by which the IPT should converge
on a solution, and few criteria for determining
when one has achieved a satisfactory solution.

We have been developing a systems man-
agement theory (Theory W), a systems engineer-
ing and development process (the Win-Win Spi-
ral Model), and an IPT groupware support tool
(WinWin) which provide such guidelines, crite-
ria, and processes.

Theory W (Boehm-Ross, 1989) provides the
principle and criterion that your project will suc-
ceed if and only if you make winners of all the
critical stakeholders. Clearly, if all the
stakeholders (users, customers, developers,
maintainers, interoperators, etc.) are delighted
with the project outcome, your project has suc-
ceeded. However, if you create a win-lose situa-
tion, the losing stakeholder can generally work
out a way to survive at the expense of the other
stakeholders, producing an unsuccessful project.
For example, if a customer and user drive a de-
veloper to underbid a set of ambitious require-
ments, the developer can generally reinterpret the
requirements in a way that is contractually com-
pliant, but which leaves the customer and user
with a low-value system.

The Theory-W concepts have been incorpo-
rated into the WinWin spiral process model

(Boehm, et al, 1995) shown in Figure 1. The spi-
ral model approach (Boehm, 1988) incorporates
an evolutionary process which allows, and even
encourages, multiple iterations of system and
software development stages until the final goal
is achieved. The Theory-W extension modifies
the spiral model in such a way that each iteration
identifies all critical stakeholders and their win
conditions in advance.

As compared to hierarchical sequentialized
systems engineering processes such as SPC’s
IDEF0-based Integrated Systems and Software
Engineering Process (Rose, et al, 1996), the
WinWin spiral model emphasizes cycles of con-
current elaboration. In each cycle, the key system
definition artifacts (operational concept descrip-
tion, system requirements, system prototypes, and
life cycle plan) are elaborated in a risk-driven
fashion, along with a system rationale artifact
which establishes the feasibility and consistency
of the other artifacts.

The WinWin spiral model has also added the
concept of “anchor points” to synchronize the
spiral cycles with critical management decision
points. The front-end anchor points are a Life Cy-
cle Objectives (LCO) milestone and Life Cycle
Architecture (LCA) milestone. (Boehm, 1996)
provides more detail on how these milestones
relate to spiral cycles in various situations. For
system engineering and architecting of hardware-
software systems (Rechtin-Maier, 1997) provides
a similar synchronizing mechanism between
software spiral cycles and intermediate hardware
configurations, represented as intermediate cir-
cles in a spiral diagram.

To complement the process model, a group-

2. Identify Stakeholders’
win conditions

1. Identify Next-
level Stakeholders

3. Reconcile win
conditions. Establish
next level of
objectives, constraints,
alternatives

4. Evaluate product
and process
alternatives, resolve
risks

5. Define next level of
product and process -
including partitions

7. Review, commitment

6. Validate product
and process
definitions

Figure 1. WinWin Spiral Model
(Boehm, et al, 1994)

ware tool support system has been developed to
ensure that the right amount of communication
and collaboration is guaranteed during all cycles
of the system development process. This tool is
WinWin which is described below.

The WinWin Groupware Support System

WinWin is a groupware system which was
primarily designed to be applicable for system
and software requirements engineering.
Stakeholders use the tool to identify win condi-
tions, resulting conflicts, possible options, and
finally solutions. The goal is to work towards
agreements which incorporate all win conditions
and resolve all conflicts. Additional negotiation
aids such as domain taxonomy, glossary, and
risk-resolution tools support the stakeholders in
their efforts (Horowitz, 1996).

The WinWin negotiation model is primarily
based on four artifact types: Win Conditions, Is-
sues, Options, and Agreements. Win Conditions
capture the stakeholders’ goals and concerns with
respect to a new system. If a Win Condition is
non-controversial, it is adopted as an Agreement
(see Figure 2). Otherwise, an Issue artifact is cre-
ated to record the resulting conflict among Win
Conditions. Options allow stakeholders to sug-
gest alternative solutions which can resolve Is-
sues. Finally, Agreements may be used to accept
these solutions.

Each of the four artifact types contains infor-
mation which is helpful for negotiations. Detailed
information on the artifacts is available in an ex-
panded Web version of this paper (Egyed-Boehm,
1997).

The WinWin model has been formally speci-
fied and analyzed for consistency (Lee, 1996) but
only little is known about the correctness and use-
fulness of assumptions made during this process.
Many questions have been raised such as these:

How are people and negotiation results af-
fected by using a negotiation tool such as Win-
Win?

How similar are the negotiation results if
stakeholders for all groups have a similar win
conditions to start with and a pre-defined nego-
tiation model to follow?

How do people factors, like work experience
or age, effect the process and the outcome of the
negotiation?

Do people use the tool as it was anticipated
by the model?

And there are many more unanswered ques-
tions. Some of these questions are general; others
are more related to the specific WinWin method-
ology. However, knowing the answers to these
questions is vital in providing more useful and
powerful negotiation aids for stakeholders.

THE PROJECT

The WinWin usage analysis was based on
student projects. The projects are a key part of
USC‘s core course in Software Engineering,
which is designed to meet the increased needs for
people capable of integrating systems and soft-
ware engineering in an applications context
(Boehm, 1994). The goal of these projects was to
negotiate functionality, budget, architecture, and
schedule for a proposed library system, called
LSDI (Library Selective Dissemination of Infor-
mation), to be used at the hypothetical SCU uni-
versity (Southern California University). The
university has three major campuses, each of
which has a main library which will provide
LSDI services. Each of the three campuses will
operate a server running a COTS client-server
library service package.

In addition, the SCU Library, Computer Sci-
ence Department, and Computing Services Op-
eration have been funded to develop an experi-
mental Selective Dissemination of Information
(SDI) system to provide SCU users with infor-
mation about new library acquisitions of interest.
It will do this by comparing attributes of new li-
brary acquisitions with interest profiles provided
by the library users. The funding grant provided

Win Condition involves

covers

Issue

Option

Agreement

addresses

adopts

Figure 2. Inter-Artifact Relationship
(Boehm, et al, 1995)

initially $1,350K for development of the system
and additional money for maintenance.

The basic components for the system were
given prior to the negotiations. However, the stu-
dents had the freedom to agree on different levels
of detail for each component, or on whether it
should be implemented or not. They could also
add new components if desired. Details of the
components are in the Web version (Egyed-
Boehm, 1997).

Each level of each capability was character-
ized by its number of lines of code and other
COCOMO cost drivers, enabling the stakeholders
to use COCOMO for analysis of tradeoffs among
cost, schedule, functionality, performance, and
reliability.

Besides the software components, the stu-
dents had to choose between two types of proces-
sors which would be used for the central library
server. Processor X was a slower but reliable
processor whereas processor Y was a faster but
less mature processor. Additionally the size of the
COTS integration was affected by the choice of
the processor. The use of processor X required
less lines-of-code integration for COTS than
processor Y.

The budget was initially $1,350K but was
changed later to $1,100K. No constraints were
defined for the schedule but the different
stakeholders had different requirements on how
fast the system should be available.

Schedule and People

Details on the negotiation schedule are in the
Web version (Egyed-Boehm, 1997).

Limitations and Constraints

The analysis had to focus primarily on the end
results, and only partially on the way people
reached these results. This was caused because
only the final team results were captured (the ne-
gotiation exercise was followed by a storage in-
tensive architecture exercise which caused the
students to delete their negotiation files before we
had captured them; we have since developed a
more robust instrumentation capability).

Another limitation was that it could not be as-
sured that all teams worked independently. Inter-
action and information exchange might, there-
fore, have caused students to change their minds.
However, based on observations during the short
time frame in which the students had to do the
requirements negotiation (only 2 weeks), it can be
assumed that information exchange was not very
extensive.

PROJECT ANALYSIS

A number of hypotheses were formulated
about the uniformity or repeatability of the nego-
tiation results across the 23 teams. The data
analysis resulted in rejection of several of these
hypotheses, indication that the results were not
repeatable even in this prestructured situation.
For some other hypotheses, however, the uni-

formity hypothesis was sus-
tained by the data.

Functional and Non-
Functional Requirements

Since functionality of the
new system was the single
most important negotiation
factor, the outcome of it is
especially interesting.

Because of the fact, that
all students had a similar
educational background, the
same negotiation goals, and a
pre-defined process model to
follow, it was assumed that
most teams would come up
with uniform functional re-
sults for the LSDI system.

User Interest Profile

Access Control

Acquisition Data
Handling

User Services

Usage Analysis

Trend Analysis

Library Network Access

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Figure 3. Functional Results

Figure 3 lists the functionality results of all
teams. No box means that this function was not
specified to be built. A light gray colored box
means basic level, gray means extended level,
and dark gray means rigorous level. The 23
groups produced 12 different results in function-
ality. The most common result (see e.g. group 1
in Figure 3) was used seven times. The next
common ones were used three times, three times,
and two times. All other teams negotiated differ-
ent results.

A significant issue was the relative priority of
non-functional requirements, such as perform-
ance and reliability. It is frequently hazarded that
computer science students are more enamored
with performance than reliability. Thus, another
hypothesis was that most teams would choose the
faster processor Y instead of the slower, but more
reliable processor X. This turned out to be false
because all teams chose to use processor X. Reli-
ability was therefore rated far more important
than performance, indicating that the student
teams were doing a reasonable job of customer
and developer role-playing.

Negotiation Cardinality

Additional hypotheses, based on the previous
ones, were created which reflected assumptions
about the negotiation processes. For all teams to
come up with uniform solutions, it was assumed
that the solution paths (processes) must have been
uniform as well. A uniform solution path does
not only imply a similar number of artifacts but
also a similar way of connecting and commenting
them.

One set of hypotheses was therefore that the
number of artifacts, connections, comments, etc.
created by the stakeholders would be similar for
all teams (±10%). These hypotheses were clearly
rejected as Tables II and III indicate. As indicated
in line 3 of Table II, the hypothesis of uniform
number of artifacts was rejected at the 19.2%
level (a significance level of less than 5% is gen-
erally considered necessary for acceptance of a
hypothesis). Lines 4-6 of Table II indicate that the
uniformity hypotheses for numbers of connec-
tions, comments, and attachments were rejected
between 57.5% and 75.3%.

Table II summarizes the experiment hypothe-
ses and their level of significance. The smaller
the number the stronger the support for this hy-
pothesis (a level of significance below 5% indi-

cates strong support). Table II highlights accepted
hypotheses through gray shaded areas. Dark gray
shaded areas indicate hypotheses with a level of
significance below 1% (very strong support).
These significance levels were used to accept or
reject the hypotheses in this paper.

The diversity in outcome is not only reflected
in the functionality but also in the way the stu-
dents used the WinWin tool. The average, mini-
mal, and maximal number of artifacts, connec-
tions, comments, and attachments show high ra-
tios between the evaluated projects (1 to 4 for ar-
tifacts, 1 to 8 for connections). This is a clear in-
dication that the project groups came up with
very different ways of solving their problems.

To get more insight into the usage of artifacts,
some hypotheses were formulated about the car-

Table I. Summary of WinWin Entries

Average Minimum Maximum

Artifacts 46.1 21 80

Connections 65.5 23 188

Comments 19.5 0 101

Attachments 2.3 0 16

Table II. Level of Significance for Hypotheses

No. Hypothesis Level of
Significance

1 Budgets are within 10% of $1,100K <<1%

2 Schedules are within 10% of mean <<1%

3 Number of artifacts are within 10% 19.2%

4 Number of connections are within 10% 57.5%

5 Number of comments are within 10% 69.4%

6 Number of attachments are within 10% 75.3%

7 Customers have more artifacts than users <1%

8 Developers have more artifacts than users <1%

9 Customers have more artifacts than developers 13.8%

10 More comments on Issues than on Win Condi-
tions

42.7%

11 More comments on Issues than on Agreements 2.1%

12 More comments on Options than on Win Condi-
tions

28.8%

13 More comments on Options than on Agreements 35%

14 More comments on win cond. than on Agree-
ments

2.1%

15 Win Conditions were used longer than Issues 1.8%

16 Win conditions were used longer then Options 1.3%

17 Win Conditions were used longer than Agree-
ments

2.4%

18 Issues were used longer then Options 47.4%

19 Agreements were used longer than Issues 30.4%

20 Agreements were used longer than Options 27.6%

i di i d h

dinality of the different artifact types (Win Con-
ditions, Issues, Options, and Agreements). Two
further hypotheses were that Win Conditions
would be the most common artifact type because
they represent the knowledge base and that there
would be more Options than Issues. These hy-
potheses were accepted (see the level of signifi-
cance of less than 1% for lines 21 and 22 in Table
II).

Further details on the distribution of artifacts
by stakeholder are in the Web version (Egyed-
Boehm, 1997).

Cost and Schedule

The cost and schedule for the software devel-
opment were calculated with the software cost
estimation tool COCOMO 81 (Boehm, 1981).
This tool derives the cost and schedule from the
effort required to build the system. The effort is
based on the estimated number of lines-per-code
and a set of adjustable cost drivers, which allow
the incorporation of software, project, and people
factors. As discussed above, the teams were pro-
vided with size and cost driver ratings for each of
the candidate Library SDI component choice lev-
els. The cost estimations yielded by COCOMO
are typically accurate within 20% of the actuals
around 70% of the time.

A hypothesis was that the teams’ negotiated
budget would be within 10% of available budget.
The budget of the library system was restricted to
$1,100K for the final system. It turned out that
all teams used up most of their money saving in
average less than $50K (or $100K at most). One
team used more money than actually allowed.
Thus, no team saved more than 10% of its budget
(see also level of significance for line 1 in Table
II).

Similar to the cost results, it was assumed that
the development schedules would be very similar
for all projects (±10%). This turned out to be true
for almost all projects. (see also level of signifi-
cance of line 2 in Table II). Only one team de-
cided to build the system faster by applying a low
COCOMO schedule cost driver in their
cost/schedule estimation. This cost driver incor-
porates the effects of building the system faster
by using more developer and sacrificing, for in-
stance, functionality to afford it. Most teams
came up with a schedule of 15 months. Two
teams needed more than 16 months. The team
with the low schedule cost driver was able to de-

velop the system within 13 months. Despite the
desire of the user stakeholders to build the system
as fast as possible, only one team finally agreed to
do so.

Negotiation Interaction

The main interaction method in WinWin is
via Comments. Comments can be attached to all
types of artifacts (e.g. Win Conditions, Issues,
Options) by all stakeholders. Additionally, Com-
ments give stakeholders the ability to add their
ideas to somebody else’s artifact because only the
owner of an artifact is allowed to change it’s
contents.

It was therefore interesting to know, whether
students used the Comments extensively to do
their negotiation or whether they performed face-
to-face communication. It was assumed that
stakeholders would use primarily Comments and
only secondary face-to-face communication.
Many groups chose to use Comments for their
negotiation. However, a number of the students’
post-project critiques indicated that they relied
considerably more on face-to-face negotiation.
This is consistent with the observation that only a
few teams had a complete coverage of all neces-
sary information (e.g. critics, rationale, etc.).

Furthermore, it was assumed that different
artifact types have different needs for communi-
cation. The hypothesis was that Issues and Option
would be more controversial than the other arti-
fact types. Lines 10 though 14 in Table II show
that different groups had indeed different views
on where to use Comments. It appears that Com-
ments were used far more frequently for Win
Conditions, Issues, and Options rather than for
Agreements.

Another issue investigated was whether the
tool was used synchronously most of the time.
Details on this issue are also in the Web version
(Egyed-Boehm, 1997

SUMMARY

Even though, the teams had a similar edu-
cational background and basically the same
Win Conditions, they came up with very dif-
ferent negotiation approaches and solutions.

The 23 teams produced 12 different results in
functionality. Repeatability was not achieved de-
spite simplified project assumptions and a prede-
fined negotiation process. Even those projects

which came up with the same results achieved
them through different negotiation paths.

Reliability and better functionality of the
software systems were far more important for
the stakeholders than performance.

All teams chose to use the more mature and
reliable processor X instead of the newer, faster,
but less reliable processor Y. There was a possi-
bility that some the student teams would be en-
ticed by the speed and novelty of processor Y.
But all the teams were responsive to the larger
number of win conditions for reliability and
functionality achievable via processor X.

Tool supported interaction provided
through Comments could not replace face-to-
face communication between the stakeholders.

The Comments method supported by WinWin
should not be the only method to support group
communication and collaboration but it is a help-
ful one. Many students used them, however, only
very few teams used them extensively. Several
students indicated that integrated use of e-mail
would have been valuable. We are exploring this
and other opinions such as audio and video at-
tachments to artifacts and videoconferencing.

Most people tried to solve their conflicts on
an equal level with similar participation. Only
very few groups seemed to have had a strong
leader dominate the creation of artifacts.

When it comes to negotiation, it is very im-
portant that all critical stakeholders have an equal
opportunity to participate in the negotiation(s)
and thus ensuring that everybody will become a
winner (note: participation was ‘measured’ in
number of artifacts and Comments used by
stakeholders). This equal-participation pattern is
probably characteristic of peer-to-peer negotia-
tions (e.g. independent user, customer, devel-
oper), but might not hold across asymmetric
power structures (e.g. boss-subordinate). Also,
participation was not exactly equal, as discussed
next.

Even though most stakeholders partici-
pated extensively during the negotiation, the
users produced clearly fewer artifacts of all
types than the other stakeholders.

The users had fewer artifacts than the cus-
tomers or developers in almost all project groups
regardless of artifact types. It should not be as-
sumed that this phenomenon was caused because

the user had fewer goals than the developer and
customer. In reality the number of user Win Con-
ditions were almost as high as the equivalent ones
of the customer and the developer. The user pro-
duced far less Issues and Options, and these are
activities were the users were equally qualified to
participate since all stakeholder were computer
science students in real life. The answer could be
that the most significant Issue driver involved
was meeting a limited budget, which affected the
customers and developers more immediately than
the users.

Most teams did not finish their negotia-
tions in one session but required multiple ses-
sions, negotiating for as long as 13 days.

Even though the problems the students had to
solve were rather simple ones (many real life
risks could be ignored or were simplified in the
task statements), it seems that it was still very
difficult to come up with agreements. This indi-
cates that collaboration is a very difficult task
which requires some training. This was borne out
by comments in the students’ post-project cri-
tiques, which indicated they felt they had learned
a great deal about how to negotiate requirements.

People tend to accept the results of analytic
tools (such as COCOMO) without questioning
them.

The cost estimation tool COCOMO was used
not only to decide on cost but also to come up
with schedule and functionality. However, people
tend to accept its results as ‘given facts’ even
though its “accuracy within 20%, 70% of the
time” was presented in class and in the model de-
scription. All teams used up most of their money
($1,100K) saving in average less than $50K (less
than 5%) for risk contingencies.

CONCLUSIONS

The results based on these facts may not nec-
essarily be applicable in all areas of group be-
havior because the team sizes were rather small
and people factors, such as experience and age,
were diverse (see also (Bullen-Bennett, 1990) for
other observations). Conclusions derived from
this analysis must, therefore, considered sugges-
tive rather than definitive with respect to other
situations.

Nevertheless, this experiment shows how dif-
ferently the same problem may be solved by dif-
ferent people. A list of goals together with a gen-

eral process model on how to proceed does not
achieve repeatability. Thus, for both systems en-
gineering and software engineering processes, we
conclude that the System Engineering CMM’s
Level 2 goal of Planned and Tracked processes is
more realistic than the software CMM’s goal of
Repeatable processes.

ACKNOWLEDGMENTS

This research is sponsored by DARPA
through Rome Laboratory under contract F30602-
94-C-0195 and by the Affiliates of the USC
Center for Software Engineering: Aerospace
Corp., Air Force Cost Analysis Agency, AT&T,
Bellcore, DISA, Electronic Data Systems, E-
Systems, Hughes Aircraft, Interactive Develop-
ment Environments, Institute for Defense Analy-
sis, Jet Propulsion Laboratory, Litton Data Sys-
tems, Lockheed Martin, Loral Federal Systems,
Motorola, Northrop Grumman, Rational Soft-
ware, Rockwell International, Science Applica-
tions International, Software Engineering Insti-
tute, Software Rome Laboratory, US Army Re-
search Laboratory, and Xerox.

Special thanks to Ming June Lee, Brad Clark,
Cristina Gacek, and other students, faculty, and
staff at the Computer Science Department, Uni-
versity of Southern California.

REFERENCES
Bate, R., et al, “A Systems Engineering Capability

Maturity Model,” Technical Report CMU/SEI-95-
MM-003, Software Engineering Institute, Pitts-
burgh, PA 15213, November 1995

Boehm, B.W. Software Engineering Economics,
Prentice Hall, 1981

Boehm, B.W. “A Spiral Model of Software Devel-
opment and Enhancement,” IEEE Computer, May
1988, pp. 61-72

Boehm, B.W. and Ross, R. “Theory W Software
Project Management: Principles and Examples,”
IEEE Transactions on Software Engineering, July
1989, pp.902-916

Boehm, B.W., Bose, P., Horowitz, E., Lee, M.J.
“Software Requirements As Negotiated Win Con-
ditions”, Proceedings of ICRE, April 1994, pp.74-
83

Boehm, B.W., “Integrated Software Engineering and
System Engineering,” The Journal of NCOSE, Vol.
I, No. I, July/September 1994, pp. 61-67

Boehm, B.W., Bose, P., Horowitz, E., Lee, M.J.
“Software Requirements Negotiation and Renego-
tiation Aids: A Theory-W Based Spiral Approach”,
Proceedings of ICSE-17, April 1995, pp.243-253

Boehm, B.W., “Anchoring the Software Process,“
IEEE Software, July 1996, pp.73-82

Bullen, C.V., Bennet, J.L., “Learning from User Ex-
perience with Groupware”, Conference on Com-
puter-Supported Cooperative Work, October 1990,
pp.291-302

Egyed, A., Boehm, B., “Analysis of System Require-
ment Negotiation Behavior Patterns (expanded ver-
sion),” USC-CSE Technical Report, January 1997,
at http://sunset.usc.edu/TechRpts/usccse97-
506.html

Ellis, C.A., Gibbs, S.J., Rein, G.L., “Some Issues and
Experiences”, Communications of the ACM, Vol.
34, No.1, January 1991, pp.38-58

Horowitz, E. “WinWin Reference Manual: A System
for Collaboration and Negotiation of Require-
ments”, Center for Software Engineering, Univer-
sity of Southern California Technical Report,
March 1996

Humphrey W.S., Managing the Software Process,
Addison-Wesley, 1989

Lee, M.J., “Foundations of the WinWin Require-
ments Negotiation System,” Ph.D. Dissertation,
Center for Software Engineering, University of
Southern California Technical Report, May 1996

Paulk, M.C., Weber, C.V., Curtis, B., Chrissis, M.B.,
The Capability Maturity Model - Guidelines for
Improving the Software Process, Addison-Wesley,
1995

Rechtin, E., Maier, M., The Art of Systems Archi-
tecting, CRC Press, 1997

Rose, S., et al, “Integrated Systems and Software En-
gineering Process,” Software Productivity Consor-
tium Report SPC-96001-CMC, Herndon, VA, May
1996

AUTHOR BIOGRAPHIES
Alexander Egyed is a PhD student at the Center for
Software Engineering at USC. His research interests
are in software architecture, software processes, and
requirements negotiation. He received a Dipl.-Ing. in
computer science from the Johannes Kepler Univer-
sity of Linz, Austria and a MS in computer science
from USC.

Barry Boehm is the TRW Professor of Software En-
gineering and Director of the Center for Software En-
gineering at the University of Southern California.
Boehm received a BA in mathematics from Harvard
University and an MS and PhD in mathematics from
the University of California at Los Angeles. He is a
fellow of the IEEE and the AIAA.

You may reach the authors at:

+1 213 740 5703
{aegyed, boehm}@sunset.usc.edu
http://sunset.usc.edu/

