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Abstract—Software development artifacts—such as model descriptions, diagrammatic languages, abstract (formal) specifications,

and source code—are highly interrelated where changes in some of them affect others. Trace dependencies characterize such

relationships abstractly. This paper presents an automated approach to generating and validating trace dependencies. It addresses

the severe problem that the absence of trace information or the uncertainty of its correctness limits the usefulness of software models

during software development. It also automates what is normally a time consuming and costly activity due to the quadratic explosion of

potential trace dependencies between development artifacts.

Index Terms—Traceability, test scenarios, software models, Unified Modeling Language (UML).
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1 INTRODUCTION

IT has been shown that the programming portion of
software development requires less development cost

and effort than accompanying activities such as require-
ments engineering, architecting or designing, and testing
[3]. It has also been shown that these accompanying
activities may profoundly influence the quality of software
products. As software processes have become more
iterative [4], so have these activities. In an iterative process,
a developer cannot discard the requirements after the
design is built nor can a developer discard the design after
the source code is programmed. For software development,
this implies that its development artifacts are living entities
that need careful maintenance. Although techniques for
maintaining development artifacts are diverse, they all have
in common the need to understand certain interrelation-
ships between those artifacts, in particular, 1) how devel-
opment artifacts may be affected by changes in other
artifacts and 2) why development artifacts exist (e.g., a
requirement being a rationale for a design). Traces or trace
dependencies abstractly characterize these interrelationships
between development artifacts.

It has been argued repeatedly that software developers

need to capture traces [9], [22] between requirements,

design, and code. Most methods for capturing traces,

however, require extensive manual intervention [13]; even

semiautomated support is rare. As a consequence, known

trace dependencies are often incomplete and potentially

inaccurate. This causes a dilemma since maintaining

development artifacts usually requires complete and

accurate knowledge of their trace dependencies. It is thus

not uncommon that the lack of trace dependencies or the

mistrust in their accuracy leads to their disregard in practice

[6]. This reduces the usefulness of software models and

diagrams to a point where a developer may question the
foundation of modeling since there is little to no value in
using software models that do not consistently represent
the real software system [8], [9]. Modeling trace information
accurately is necessary for maintaining these various
models’ consistency and the lack of it constitutes a severe
problem—also known as the traceability problem [9], [12].

This work introduces a new, strongly iterative approach
to trace analysis. We will show that it is possible to
automatically generate new trace dependencies and vali-
date existing ones. The key benefit of our approach is its
automation, which must address several complicating
factors:

. development artifacts are often captured informally
(e.g., requirements) or semiformally (e.g., design
languages such as UML [5]);

. conceptual linkages between development artifacts
are often ill-defined or not understood;

. existing knowledge about traces may become invalid
as their development artifacts change;

. there is a quadratic explosion in the number of
potential trace dependencies.

Apparently, trace generation and validation is a com-
plex, time consuming, and costly activity that may have to
be done frequently due to the iterative nature of software
development. Our approach avoids much of this complex-
ity by requiring that the designer supply a set of test
scenarios for the software system described, as well as an
observable version of the software system itself. Addition-
ally, a few hypothesized traces must be provided that link
development artifacts with these scenarios. The essential
trick is then to translate the runtime behavior of these
scenarios into a footprint graph. Rules then characterize how
this graph relates to the existing hypothesized traces and
the artifacts to which they are linked. From these, the
algorithm generates traces, usually an order of magnitude
more in number than hypothesized ones. Our approach
requires only a small, partially correct, initial set of trace
hypotheses. Aside from generating new trace dependencies,
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our approach also validates existing ones. This gives
developers confidence in the numerous other automated
activities that rely on the existence of correct and abundant
trace dependencies among evolving development artifacts.
This includes, but is not limited to, consistency checking,
reverse engineering, model transformation, and code
generation.

2 APPROACH

2.1 Overview

As indicated above, the approach requires

1. the existence of an observable and executable soft-
ware system,

2. some list of development artifacts (i.e., model
elements),

3. scenarios describing test cases or usage scenarios for
those development artifacts, and

4. a set of initial hypothesized traces linking artifacts
and scenarios.

Scenarios are executed on the running software system to
observe the lines of code they use. We refer to the lines of
code used while executing a scenario as its footprint.
Footprints of all test scenarios are then combined into a
graph structure (called the footprint graph) to identify
overlaps between them (overlaps indicating lines of code
that two or more footprints have in common). A variety of
rules then interpret trace dependencies in the context of
these overlaps. For example, if scenario 1 uses a subset of
the lines of code of scenario 2, then that overlap may
indicate a trace dependency between both scenarios. If
initial hypothesized traces were defined between scenario 1
and development artifact “A” and between scenario 2 and
development artifact “B,” then our approach can derive that
there is a dependency between “A” and “B.” This kind of
reasoning can be used for:

. Trace Generation: The combined footprints in the
footprint graph form a foundation for trace analyses
to determine new, previously unknown trace
information.

. Trace Validation: Conflicts within the footprint
graph indicate inconsistencies in and/or incomple-
teness of the hypothesized trace information.

The extent of the generation and validation depends on
the quantity and quality of the input provided. Our
approach can indicate inconsistent input in the form of
conflicts and incomplete input in the form of ambiguous
results. An example of an ambiguous result is “A depends
on B or C but not D.” An ambiguous result is still a precise
statement but, semantically, it is weaker since it does not
constrain the dependency between development artifacts
completely (note that a nonambiguous statement defines
precisely what something is and what something is not).

Fig. 1 gives a schematic overview of the approach. In the
first step, scenarios are tested and observed. This results in
observed traces that are used together with other hypothe-
sized traces as input to commence trace analysis. Atomizing
then combines observed and hypothesized information into
the footprint graph. This graph is then subjected to various
manipulations such as normalizing, generalizing, or refin-
ing where modeling information is moved around its
nodes. The final graph is then interpreted to yield new
trace information as well as reports about inconsistencies or
incompletenesses. The trace analysis can be repeated once
inconsistencies and incompletenesses are eliminated or new
hypotheses become available.

In principle, the approach can detect trace dependencies
among any model elements that have a relationship to code.
For example, classes and methods in class diagrams,
processes in dataflow diagrams, actions and activities in
state chart diagrams, or use cases relate to code. It is
possible to define usage scenarios for those model elements
and it is possible to test those scenarios on the real system
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with observable footprints. The approach cannot detect
trace dependencies among model elements that do not
relate to code. For example, our approach is not suitable for
systems that are built out of hardware components (no code
available) or for model elements that describe design
decision. Our approach may be used during reverse
engineering (e.g., of previously developed systems or
legacy code) or it may be used during forward engineering.
The latter may not be intuitive at first since a running
system is required. Nonetheless, partial implementations
(e.g., subcomponents), prototypes, or even simulations may
be sufficient to commence analysis.

2.2 Example

To evaluate our approach, we applied it to some real-world
projects such as an Inter-Library Loan system, a Video-
On-Demand Client/Server application, and other case
studies. One of those case studies—the Inter-Library Loan
System (ILL) [1]—will be used to illustrate the approach.
The ILL system automates the lending process of books,
papers, and other forms of media among libraries. The
system was successfully transitioned to the customer where
patrons use it to order documents not available locally. ILL
allows document requests to be filed via web browsers,
requests that are then submitted as tagged emails to an
especially dedicated email account. There, email messages
are read and processed by a part of the ILL system called
the PopRead component.

For simplicity, this paper uses the PopRead component
only which is illustrated in Fig. 2. On the left, the figure
shows the functional decomposition of the PopRead compo-
nent in form of a dataflow diagram (DFD) (as depicted in

the Software System Requirements Document (SSRD) [1]). In
the middle, the figure shows the corresponding object-
oriented design using a UML class diagram, and, finally, on
the right, the figure shows a use case diagram depicting the
major services the Popread component has to offer (from an
user interface perspective). All three views show the
PopRead component in a high-level, abstract fashion. It can
be seen that PopRead reads email messages from the Inbox
(POP3 account), parses them, and, if the parsing is
successful (OnSuccess), stores the identified requests in a
back-end database (MS Access1).

Associated with the PopRead component, the ILL devel-
opers also created a number of usage scenarios (Table 1).
One such scenario is check for mail and unsuccessful parsing
(scenario C). Another scenario is the startup and showing the
About box (scenario F).

Despite all the modeling and documentation, the
ILL team failed to describe how the PopRead design
elements (Fig. 2) were actually implemented (e.g., what
lines of code were used by the dataflow element Add
Request). Thus, trace dependencies between the code and
the elements of the diagrams (dataflow, class, and use case
diagrams) are missing. Table 2 lists the 10 implementation-
level classes (code) of the Popread component.

Additionally, the development team did not specify how
the dataflow, class, and use case diagrams related to one
another (model elements in Table 3). It remains unclear
what higher-level classes make up individual dataflow
processes (e.g., is the class Request used in the dataflow
diagram?). Even in this rather small example, some
required trace dependencies are not obvious since func-
tional and object-oriented decomposition is mixed.
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Fig. 2. Popread Component of ILL System [1] represented in three different diagrams.

TABLE 1
Some ILL Test Scenarios

TABLE 2
ILL Implementation Classes (Code)



Some documents, however, did capture trace informa-
tion. The only problem is that we cannot safely assume their
correctness. Trace information is frequently defined and
maintained explicitly (e.g., in documents) which requires
manual labor to keep them up to date [2]. Even if the
development team took the effort to document the final
trace dependencies, the activity of identifying trace infor-
mation manually would still be error-prone. There exist a
total of 338 trace dependencies among the given elements
and it would be elaborate and time consuming to define all
these dependencies manually. Our approach does use some
existing trace information, despite the lack of faith in it, to
generate new traces and validate old ones.

Tables 1, 2, and 3 list the scenario elements, code
elements, and model elements of the ILL case study. Those
tables also list short unique identification strings we have
associated with each element. We will use those Ids later to
more concisely refer to those elements. Table 3 additionally
refers to a group ID. Groups are discussed later in Section 3.

2.3 Hypothesized, Generated, Validated, and
Observed Traces

The types of trace dependencies used in our approach are
depicted in Fig. 3. The figure captures the three basic
ingredients required for our approach: Scenarios (Table 1),
Code (Table 2), and Model Elements (Table 3). Additionally,
the figure shows types of trace dependencies between them.
Traces between scenarios and code (type a in Fig. 3) and
traces between model elements and scenarios (type b in
Fig. 3) are used as input to our approach. Both trace types a
and b could be hypothesized by software developers (users
of our approach); however, traces between scenarios and
code can also be observed automatically during the testing
of scenarios. As a result, our approach can generate new
traces between model elements and scenarios (type b),
model elements and code (type c), and between model
elements (type d). Additionally, our approach can detect
conflicts among the hypothesized traces (type b) to reason
about the correctness and consistency of the input (note that
we presume observed traces (type a) to be precise and
correct since they are measured as will be shown in
Section 3.1). Finally, our approach can pinpoint ambiguities

and incompleteness where more input is required (i.e.,
more hypotheses needed).

3 DETAILED APPROACH ON EXAMPLE

In the following, we present the details of our approach in
context of the Inter-Library Loan (ILL) case study [1], a
third-party software system.

3.1 Scenario Testing

The behavior of a software system can be observed using
kinds of test scenarios that are typically defined during its
development (e.g., acceptance test scenarios and module
test cases). By executing those scenarios in the running
system, the internal activities of that system can be observed
and recorded. This leads to observable traces (type a) that
link scenarios to implementation classes, methods, and lines
of code (called the footprint). Our trace analysis approach
relies on monitoring tools used for spying into software
systems during their execution or simulation. Those tools
are readily available. For instance, we used a commercial
tool from Rational Software called Rational PureCoverage1
in order to monitor the running Inter-Library Loan (ILL)
system. The tool monitored the footprint in terms of which
lines of code were executed, how many times each line was
executed, and when in the execution the line was covered.

Testing a system or some of its components and
observing the footprints is a straightforward activity.
Table 4 shows the summary of observing the footprints of
the 10 test scenarios from Table 1 using the Rational
PureCoverage tool. The numbers in Table 4 indicate how
many methods of each implementation class were used. For
instance, scenario “A” used 10 methods of the class
CAboutDlg and three methods of the class CMainWin. To
reduce the complexity of this example, Table 4 does not
display the actual methods (the information in the footprint
graph shown later would be too crowded). Nevertheless, by
only using classes as the finest granularity, the generated
traces will still be useful. The approach remains the same if
methods or lines of code are used.

Normally, observed traces are specific in nature since the
repeated execution of a single test scenario may actually use
different lines of code. This is caused by systems having
state and depending of the current state of the system the
execution of the same scenario may result in the execution
of (some) different lines of code. For instance, checking for
new book requests results in the execution of somewhat
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TABLE 3
ILL Model Elements

Fig. 3. Hypothesized, generated, validated, and observed traces.



different lines of code if there is no email in the inbox as
opposed to when there is email. To resolve this problem, we
combine the traces of individual observations. For instance,
if a test scenario is observed to use different lines of code
after multiple executions then the observed trace is the sum
of all individual observations.

Testing scenarios is normally a manual activity, but it can
be automated. Scenario descriptions may be in plain
English, in a diagrammatic form (e.g., sequence diagram
[19]), or in a formal representation that can be interpreted
by an automated testing tool. It is not important for our
approach whether scenarios are tested manually or auto-
matically as long as observation tools, such as Rational
PureCoverage, are used to observe the footprints the testing
of these scenarios make.

3.2 Finding Hypothesized Traces

Finding hypothesized traces requires reasoning in what
way model elements may relate to scenarios (traces of type b
in Fig. 3). Hypothesized traces can often be elicited from
system documentation or corresponding models. If no
documentation is available, the finding of hypothesized
traces may have to be conducted manually; however, this
activity becomes more automated over time since traces
generated via our approach can be used as hypothesized
traces in successive iterations.

An example of a hypothesized trace is the trace from
scenario A to the use case About [u4] in Fig. 2. Another
example is from scenario B to the dataflow elements Inbox
[d1] and GetMail [d2]. Table 5 lists all hypothesized traces
used in this case study. Our approach requires a small
number of initial, hypothesized traces only; again hypothe-
sized traces do not have to be comprehensive nor do they
have to be (fully) correct. We will show later how
inconsistent and insufficient trace hypotheses can be
detected through contradictions and ambiguities during
the trace analysis.

One of the major challenges of our approach is that most
traces in Table 5 are ambiguous. For instance, the second
hypothesis (check for new mail without any present) in
Table 5 is a test scenario for the dataflow elements Inbox [d1]
and GetMail [d2] (those are needed to read mail of the email
account) and this hypothesis is ambiguous because:

1. It is uncertain whether [d1,d2] relate to code
elements other than scenario B.

2. It is uncertain whether other model elements (e.g.,
[d5]) relate to scenario B.

3. It is uncertain what part of the observed code of B is
used by model element [d1] or [d2].

Allowing ambiguity in defining hypothesized traces is
very powerful for software developers because they tend to
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have partial knowledge only. This lack of knowledge, its
incompleteness and potential incorrectness, motivates the
need for trace analysis. Supporting ambiguous trace
hypotheses gives the users of our approach the freedom
to express dependencies in a more relaxed form. This is
why we also allow hypothesized traces to be expressed
through inclusion or exclusion. Trace inclusion defines
model elements that relate to scenarios (isScenarioFor). The
trace from scenario B to model elements [d1,d2] is an
example of inclusion. Exclusion defines model elements
that do not relate to scenarios. Scenario B is not a scenario
for class Parser [c6] (isNotScenarioFor) because no mail is
found and thus no mail should be parsed. Exclusion is
especially useful when it is easier to state what is not a trace
dependency than what is one. Like inclusion scenarios,
exclusion scenarios are ambiguous. Our approach can
handle ambiguous data and still produce precise, generic
results as will be shown next.

3.3 Trace Analysis

Trace analysis requires that we build a footprint graph and
then manipulate it via a set of rules. The building process is
called atomizing since we need to discover the largest,
nonoverlapping atomic units in the graph. The rule
applications comprise: normalizing, generalizing, and refining.
The aim of these rules, in essence, is to resolve the three
ambiguities discussed above. This section discusses these
activities in detail.

3.3.1 Atomize

Trace analysis is possible since scenarios may overlap in the
lines of code they execute (their footprints). These overlaps
are captured in the form of a graph structure that has as
many nodes as needed to explicitly represent all possible
overlaps among all scenarios (similar to concept lattices
[20]). Each node in the graph depicts the largest common
footprint that a set of scenarios may have in common. We
refer to this graph structure as the footprint graph and it is
used as the foundation for the remaining activities in this
paper. To build a footprint graph, consider the following
cases:

It was observed in Section 3.1, that scenario A used
several methods of the implementation classes CAboutDlg
and CMainWin. Scenario A thus had the observed footprint
{0,8} (Table 4). Similarly, scenario B was observed to have
the footprint {3,5,6,8}. To capture the footprints of both
scenarios, the footprint graph is given two nodes: The first
node captures scenario A with footprint {0,8} and the second
node captures scenario B with footprint {3,5,6,8} (Fig. 4).

Since both scenarios overlap in the footprint {8} (im-
plementation class CMainWin in Table 4), we know that
both scenarios executed some common code. To capture
this overlap, another node is created in the graph and that
node is then declared to be a child of the parent nodes that
spawned it. Fig. 4 shows the two parent nodes {0,8} and
{3,5,6,8} and the figure also shows the overlap between both
footprints in form of the child node {8}.

The next node added to the footprint graph is scenario C.
When it is added, it is found that it overlaps with all three
existing nodes. For instance, the footprint of scenario B is a
subset of the footprint of scenario C. Consequently, the
node for scenario B is made into a child of the node that was
created for scenario C. This also made node {8} an indirect
child of node {3,4,5,6,8} and no explicit edge between them
needs to be added. Note that node {3,4,5,6,8} also overlaps
with node {0,8}. This overlap requires no further attention
since it was already taken care of through node {8}—the
largest common child. It follows another property of our
graph in that overlaps are captured in a hierarchical manner
to minimize the number of nodes and edges in the graph.
Minimal nodes and edges result in faster computation later
during refinement and generalization.

Fig. 5 depicts the complete footprint graph for the 10
scenarios in Table 1 and their observed footprints in Table 4.
Adding a node to the footprint graph involves three steps.

1. The first step checks whether there is already a node
with equal footprint in the graph. If one is found,
then the new node is merged with the existing one
(note: merging combines the attributes of the nodes
which are discussed later).

2. If no equal node is found, then the second step
attempts to find existing nodes that have a subset of
the footprint of the new node (e.g., as {3,5,6,8} was a
subset of {3,4,5,6,8}). If a subset is found, then a
parent-child edge is added. Edges may also be
removed if a node is inserted that is both a child and
a parent of some existing nodes. For instance, later
on, node {3,5,8} gets added to the footprint graph
(see Fig. 5), which splits the edge between nodes
{3,5,6,8} and {8}.

3. The third and final step investigates partial overlaps
of footprints. If the footprint of an existing node
overlaps partially with the new node, then another
node with the partial overlap is created and inserted.
This case occurred when node {8} was created
because of a partial overlap. Since adding a node
that captures a partial overlap is equivalent to
adding a new node, steps 1-3 are called recursively
for each partial overlap.

Finally, to represent the most atomic footprints in the
graph (the individual implementation classes in this
example), a node is inserted for each individual code
element. The leaves of the footprint graph thus reflect the
individual code elements such as {1}, {2}, or {3}.

The footprint graph in Fig. 5 also contains modeling
information. Modeling information is elicited from hy-
pothesized input traces (trace type b) and gets added to the
graph in form of included, subset, or excluded elements (these
are the attributes of nodes).
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Included elements are modeling elements that are
associated with a node. For instance, the trace dependency:
C isScenarioFor [c3,c4,c6] in Table 5 implies the inclusion of
model elements [c3,c4,c6] to the footprint of scenario C.
Consequently, we add the model elements [c3,c4,c6] as
included elements to the node {3,4,5,6,8}. Excluded elements
are the opposite of included elements. For instance, B
isNotScenarioFor [c6] in Table 5 results in the element [c6]
to be excluded from footprint {3,5,6,8}. Subset elements are
used later during refinement in Section 3.3.4.

3.3.2 Normalize

Scenarios describe possible uses of model elements and are
specific pieces of information. Since we would like to
generate generic traces (trace types c and d in Fig. 3), we
need to normalize specific information. This is accom-
plished by merging all specific information about any given
model elements. The assumption is that the sum of all
specific behavior constitutes generic behavior. This assump-
tion is in line with works from Koskimies et al. [15] or
Khriss et al. [14] who also merge specific data to generate
generic data. The goal of normalizing is thus to define the
scope of a model element in terms of its code. The model
element is then presumed to relate to a subset of the defined
scope only. Normalizing resolves the first ambiguity
discussed in Section 3.2.

Normalizing adds the footprints of all scenarios that are
related to a given model element. It is then presumed that
the remaining footprint does not relate to the given model

element. Take, for instance, the model element [c2]. It was
added to the footprint graph through nodes {1,3,5,8,9} and
{0,1,3,5,7,8}. This implies that footprints {0}, {1}, {3}, {5}, {7},
{8}, and {9} were used to test scenarios related to model
element [c2]. Naturally, we cannot know whether [c2]
belongs to all these code elements or only to a subset of
them but we know that [c2] was never used with any other
code element. Consequently, we define footprints {2}, {4},
and {6} as not related to [c2]. In the footprint graph, we can
express this new information in form of excluded elements
on nodes. We add [c2] as an excluded element to all nodes
that have a subset of footprint {2,4,6}. Fig. 6 depicts a part of
the footprint graph of Fig. 5 and its normalized nodes.
Nodes such as {2} or {4} now have [c2] as an excluded
element. Nodes such as {3,4,5,6,8} do not have [c2] as an
excluded element since they also contain pieces of code (i.e.,
{3,5,8}) that potentially is associated with [c2].

The reasoning above is correct under the assumption that
we know everything about the specific behavior of the
model element [c2] (no missing scenarios). We presume this
to be the case until we encounter a conflict. Indeed, our
assumption about model element [c2] is incorrect since
footprint element {6} also belongs to [c2]. We will show later
that our approach finds a conflict related to code element {6}.

3.3.3 Generalize After Normalization

The main goal of the trace analysis is to determine how
model elements relate to all nodes in the footprint graph.
Ideally, we would like to know for each node what model
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elements it relates to (included) and what model elements it
does not relate to (excluded). The aim of generalizing is to
identify the breadth of a node in terms of all model
elements it could possibly support. Generalizing thus
resolves the second ambiguity discussed in Section 3.2
about the uncertainty of not knowing the complete relation-
ship between scenario and model elements. Generalizing is
also essential for refinement later since complete knowledge
about the relationship of all nodes and their model elements
is required there.

The rationale for generalizing is as follows: If some
knowledge exists that relates a given footprint (node) to a
model element, then this knowledge is still true for any
superset of that footprint because nothing gets taken
away. For instance, if model elements [d1,d2] relate to
node {3,5,6,8}, then we can also state that model elements
[d1,d2] must relate to node {3,4,5,6,8} (its parent). Since a
parent in the graph always has a larger footprint than
each of its children individually, it can be defined that a
parent may relate to equal or more model elements than
its children but never less. In short, the parent is the
union of all possible knowledge of its children.

We refer to this activity as Generalizing since model
information is generalized from child nodes, which are
more constrained, to their parent nodes, which are more
generic. Fig. 7 shows this activity on the same portion of the
footprint graph as was shown in Fig. 6. We see that model
elements such as [d1,d2] or [c3,c4,c6] were propagated to all
their parents.

Excluded model elements are treated differently from
included elements. Model elements that are excluded from
a node cannot be generalized from children to parents
since the exclusion constraint only holds on the given
footprint and its subsets. Generalizing an excluded element
is thus the reverse of generalizing an included element.
Take, for instance, node {3,5,6,8} which excludes any

relationship with [c5,c6] and [u2]. We cannot be certain

whether the parent still excludes those elements since the

parent has a larger footprint and possibly relates to a larger

set of model elements. In the reverse, however, if a model

element does not relate to a given footprint, then neither

may it relate to any subset of that footprint. It follows that

excluded model elements can be propagated down from

parents to children. For instance, model element [c6] is

propagated to all its children.
At this point, the fruits of our endeavor start to pay

off. By moving information around the graph, we extend

our knowledge on how model elements relate to nodes.

For instance, node {3,4,5,6,8} now lists the generalized

model elements [d1,d2] besides the originally defined

model elements [c3,c4,c6]. We have not yet completed the

trace analysis, but we can already claim that model

elements [d1,d2] must trace to model elements [c3,c4,c6]

because they use some common code. Translated this

implies that [DFD::Inbox,DFD::GetMail] has a dependency

on [CD::Request,CD::Inbox,CD::Parser]. Note that know-

ing a dependency between [d1,d2] and [c3,c4,c6] does not

imply knowledge about their individual dependencies.

For instance, does a change in [d2] cause a change in [c3],

[c4], [c6] or all of them? This ambiguity is the result of

the ambiguous input. We will see during refinement that

ambiguities can be resolved sometimes. When ambiguities

cannot be resolved, insufficient input is generally the

cause. Resolving ambiguities requires manual intervention

in form of defining new or refining old input hypotheses.

To support the user in this task, Section 3.4 will show

how our approach can pinpoint exactly where insufficient

information exists and possibly what input needs to be

extended or changed to resolve it. Section 3.4 will also

discuss other issues related to interpreting the footprint

graph.
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Since all edges among nodes in a footprint graph
describe subset/superset dependencies, generalizing model
elements is a simple activity. Generalizing is complicated
only by the computation of partial lists. Note that some
nodes in Fig. 7 have lists of included elements with an
asterisk at the end (“*”). The asterisk indicates that the list is
presumed partial (incomplete) and model elements are
assumed to be missing. Issues of partiality are important for
refinement; their discussion and definition is deferred to
Section 3.3.4.

Not everything went well during generalization; we also
encountered a contradiction. The parent node {0,1,3,5,7,8}
was declared to exclude model element [u2] (UC::Exit) but
one of its children’s children {8} was declared to include
[u2]. Because of generalization, these conflicting data were
combined into a single node (see Fig. 8). Node {8} now has
[u2] listed as an included and an excluded element–a
contradiction. It is possible to trace back the origin of the
contradiction and find that scenario F (startup and about)
excluded [u2] (UC::Exit) and scenario J (shutdown)
included [u2]. Normally, this implies that input data were
incorrect and the contradiction has to be resolved by

changing scenario F, J or their initial, hypothesized traces.
In this case, however, the input seems correct. Upon closer
inspection, it can be seen that the trace analysis failed
because it was conducted in a too coarse grained
environment. Both scenarios F and J use the same
implementation class {8}, but they use different methods
of that class; in fact, they did not share any lines of code.
Because we only consider the use of whole classes here, the
input data were imprecise. If we were to repeat this trace
analysis using methods as the most atomic footprints, then
we would not encounter this problem. Contradictions like
this are a simple form of finding inconsistent or imprecise
input. Later, we will show other techniques for finding
contradictions.

3.3.4 Refine

Refining is the next activity of our approach and it induces
those implications that model elements on the parent’s side
might have on their children. Refinement has the goal of
assigning model elements to individual code elements.
Refinement addresses the third and final ambiguity
discussed in Section 3.2 about the uncertainty of not
knowing which parts of the code are used by what model
elements. For instance, given that node {3,5,8} relates to
[c3,c4] it follows that [c4] relates to a subset of {3,5,8}, but
what subset?

Refining is not as simple as generalizing and depends on
whether model elements form close relationships. The
notion of close relationships is used in context of all
refinement rules and it essentially defines complementary,
nonorthogonal modeling information. Model elements that
are found within a single diagram often form a close
relationship. For instance, the classes [c1,c2,c3,c4,c5,c6]
describe distinct parts of the ILL system and together
complement one another. The term complementary implies
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that each model element can be expressed in form of
individual, nonoverlapping lines of code. For instance,
model element [c1] is presumed to have trace dependencies
to a different part of the source code than its sibling model
elements [c2,c3,c4,c5,c6]. We refer to the classes that form a
close relationship as a group. In Table 3, we assigned “CD”
as the unique group name for these classes. Table 3 also
showed that the dataflow elements are part of another
group called “DFD” and that the four use cases form
groups separately. Among groups it is possible to assign
same source code elements multiple times to model
elements but within groups this is illegal. As such, the
dataflow elements may use the same source code as the
classes but two dataflow elements may not use the same
portion of source code.

Note that a distinction is made between model elements
that can share code and model elements that cannot share
code. Our trace analysis is based on knowing that some
elements may share source code but others may not. If two
elements can share the same lines of code, then their
refinement is not intertwined (those model elements are
orthogonal to each other). All refinement rules are thus
applied separately for each group. In the following, we will
discuss refinement rules.

Rule 1: Refine elements to children that have no
elements. The simplest refinement is between parents that
have some model elements and children that have none. We
refer to included elements in the parent that are not found
in their children as available elements. In Fig. 7, available
elements in node {1,3,5,8,9} are [c2] for group “CD,” and
[u3] for group “U3;” those elements of the parent cannot be
found in the children nodes {9} or {1,3,5,8}. Refinement to
children that have no elements applies to group U3 only
since both children have no elements of that group. Given
that the model element [u3] was observed to use the
footprint of the parent, it is correct to argue that each child
node must cover a part of the functionality of that model

element. Consequently, we can add model element [u3] to

both children (see Fig. 9). Since each child covers a part of

[u3] only, it has to be added to each child node as a subset

element. This reasoning is correct since we perceive model

elements as atomic entities that cannot be divided.
Rule 2: Refine elements to children that have no or

partial elements. Refinement scenarios may encounter lists

of partial elements associated with nodes (recall Section 3.3).

In Fig. 7, partial elements were indicated with a star symbol

(“*”). Partial lists highlight places where model elements

are presumed missing. For instance, in node {3,4,5,6,8}, the

list of elements [d1,d2,*] was defined partial because one of

its two children nodes ({3,5,6,8}) fully covered those model

elements and the other one was empty. This raised the issue

of determining to which elements the empty child node

traces. One can presume that the parent has an incomplete,

partial set of model elements because its children were

partially investigated only. Partial is defined as follows:

. A list of model elements in a node is partial if a
subset of the node’s children cover the same list of
model elements and there exists at least one child
that has no model element.

. A list of model elements in a node is also partial if
there is at least one child node that is partial and that
partial child node has the same list of model
elements as its parent.

Partial lists of model elements can be treated like empty

lists during refinement. An example is the list of included

elements [d1,d2,d3,d4,d5,d6] in node {1,2,3,4,5,6,8}. One of

its child nodes has a partial coverage of elements [d1,d2,*]

and the other child nodes have no coverage. The list of

available elements is the model elements of the parent

minus the model elements of all its children—[d3,d4,d5,d6]

for this example. Since a partial list is an incomplete list,

available elements may be added to that list. The available
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elements can also be added to the empty node {2} as was
defined in the previous rule.

During the refinement of node {3,4,5,6,8}, we encounter
another case of a contradiction. The model element [c6] is
excluded in child node {3,5,6,8}, but it is refined from its
parent. Since [c6] is added as a subset, it may not be an
inconsistency unless no child accepts it. Recall that we
attempt to create stable configurations, where the sum of
the model elements of the children is equal to the model
elements of the parent. If no child accepts an available
model element, then there would be a contradiction. In this
case, however, the other child node accepts [c6] and no
contradiction is encountered. Note that this scenario also
shows how input ambiguities are resolved. It was pre-
viously unknown whether [c6] related to {3}, {4}, {5}, {6}, or
{8}, but now it is known that it must relate to {4} because it is
excluded by the others.

Rule 3: Refine elements to children that have no,
partial, or complete elements. If a node contains a complete
list of model elements, then no refinement rule applies to it.
A complete list exists only if the list has at least one model
element and it is not partial. For instance, node {3,4,5,6,8}
contains the complete list {c3,c4,c6}. A parent-child config-
uration where all nodes (parents and children) have
complete lists of model elements is considered stable. No
refinement operations can be applied on a stable config-
uration. If a parent-children configuration has a mix of
complete, partial, or empty lists, then this rule applies. This
rule ignores complete children and adds available elements
of the parent to partial and empty nodes only. The complete
child is still used to compute the list of available elements.
Fig. 10 shows the application of Rule 3 in context of the
nodes {0,1,3,5,7,8}, {1,3,5,7,8}, and {0,8} (see also Fig. 5). One
child node {1,3,5,7,8} has a complete list [c1,c3,c4,c5] and the
other child node {0,8} is empty (recall that refinement is
done for each group of closely-related elements separately).
The only available element [c2] is thus refined to node {0,8}
but not to node {1,3,5,7,8}.

It must be noted that there may exist cases where it
would be semantically correct to propagate model elements
to complete children since our notion of completeness is
only valid if complete and correct input data were
provided. Given that input data are likely ambiguous,
incomplete, and possibly incorrect, it follows that our
notion of completeness may not hold always. We take a
conservative stance here by not propagating model ele-
ments in case of uncertainty. It is always correct to

propagate [c2] to node {0,8} but possibly incorrect to

propagate it to {1,3,5,7,8}. Conservative rules avoid false

positives but at the expense that not all potential trace

dependencies are determined. Nonetheless, our graph has

the benefit of redundancy that may compensate for

conservative refinement rules in some cases. Consider the

example of node {3,5,6,8} which contains the presumed

complete list {d1,d2}. Its child {3,5,8} has two parents and

through the other parent {1,3,5,8}, it receives the elements

{d3,d4,d5,d6}. Those elements can be generalized later and,

thus, will reach the presumed complete parent, extending it

with new information.
It is valid to argue similarly for why only available

elements should be added to children and not all elements

of a parent. There are situations where it would be

semantically correct to propagate all elements a parent

has to offer irrespective of model elements already used by

some children. Again, we prefer to be conservative and only

propagate those elements of the parent that have not been

assigned to children. Fig. 10 shows one example of the

danger of propagating too much. The model element [u4] is

considered complete in node {0,8}. Through generalization,

it was added to its parent node and there it was determined

to be partial (star symbol). Would we ignore this informa-

tion and attempt to refine [u4] to node {1,3,5,7,8}, then we

would introduce an error since the model element [u4] does

not trace to footprints such as {1}, {3}, or {5}.
Rule 4: Refine subset elements. Subset elements can

also be refined from parent nodes to child nodes. Their

refinement is analogous to Rules 1-3 and also results in

subset elements. The only difference lies in the computation

of available elements. Here, available elements are the

subset elements of the parent minus the included elements

of the children. Subset elements of the children are not

subtracted because only a subset of them actually belong

there. Note that our refinement rules are defined in a

manner that avoids race conditions. It neither matters in

what order refinement rules are applied nor in what order

nodes are visited.

3.3.5 Generalize Specific after Refinement

This generalization activity is identical to the one discussed

in Section 3.3.3. It generalizes elements from children that

had two parents and potentially received complementary

information (i.e., node {3,5,8}).

3.4 Result Interpretation

In a final activity, the footprint graph is interpreted by

traversing its nodes to elicit new trace information or to find

contradictions. This activity investigates each node of the

graph to determine the model elements that are associated

with it. Depending on the state of the association of a model

element with a node (included, subset, or excluded), it is

then possible to infer trace dependencies. As mentioned

earlier, our approach can generate new trace dependencies

of types b, c, and d (recall Fig. 3) and, if contradictions are

encountered, our approach can invalidate hypothesized

trace dependencies of type b.
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3.4.1 Trace Generation

The rationale for trace generation is simple: If multiple
model elements share some lines of code (footprint), then
there has to be a trace dependency among them. Since
model elements associated with nodes are places where
those model elements share code, we can derive trace
dependencies by investigating them. For instance, through
node {3,4,5,6,8}, we learn that model elements [c3,c4,c6]
must trace to model elements [d1,d2] plus a subset of
½ðd3jjd4jjd5jjd6Þ� (subset notation implies zero or more
elements of [d3,d4,d5,d6]). If the code for {3,4,5,6,8} is
changed, then it may affect both ½d1; d2; ðd3jjd4jjd5jjd6Þ� and
[c3,c4,c5]. In reverse, if [c3,c4,c5] is changed, then this affects
the code {3,4,5,6,8}. Given that we know that a change to
{3,4,5,6,8} requires a change to ½d1; d2; ðd3jjd4jjd5jjd6Þ�, we
can infer that a change to [c3,c4,c5] also requires a change to
½d1; d2; ðd3jjd4jjd5jjd6Þ�—a trace dependency. This kind of
reasoning can be repeated for all nodes but one can do more.
Table 6 describes rules on how model elements can be
interpreted in the context of leaf nodes (nodes without
children). Leaf nodes are the most atomic nodes in the graph
and it is presumed that each leaf node may trace to only
single model elements of same groups (recall that we
disallow model elements of the same group to share code).
Table 6 lists the number of included, subset, and unknown
elements on the left. Included and subset elements can be
derived directly out of the leaf nodes. For instance, node {4}
has no included element and one subset element [c6].
Unknown elements are total elements of a group minus
included, subset, and excluded elements. For instance, the
model elements in group “CD” are [c1,c2,c3,c4,c5,c6]. We
know that [c6] is subset and [c1,c2,c5] are excluded. The
relationships of elements [c3,c4] to node {4} are thus
unknown. In case of node {4}, Table 6 allows the subset
element [c6] in node {4} to be upgraded to an included
element since it is the only element that has claimed interest
in that node.

Table 6 also shows that some combinations of included,
subset, and unknown elements are considered indications
for incompleteness or inconsistency. For instance, if a leaf
node has no included element but two or more subset
elements (e.g., [c3,c4] in node {5}), then the provided input
hypotheses were insufficient to make a more precise
statement. Recall that insufficient (incomplete) input data
generally yield ambiguous results. Examples for inconsis-
tencies are leaf nodes that have more than one included
element or one included element and one or more subset
elements. These examples indicate cases where multiple

model elements of the same group claim a portion of source
code as their own.

If the rules in Table 6 are applied to all leave nodes in the
footprint graph, then Table 7 is the result. The table contains
an “I” if an element is included, an “S” if an element is
subset, an “X” if an element is excluded, “?” if the
relationship of that element is unknown, and “(I)” if a
model element is both included and excluded. Some model
elements were upgraded from subset to included (i.e., [c2])
and some model elements remain ambiguous (i.e, [c3]). In
case of code element {6}, we encounter a contradiction: No
single subset or included model element was identified but
unknown ones exist. This implies that node {6} was
observed to belong to some classes but it was never
determined what classes those may be. This case is a
contradiction because the given input was overconstrained
and, thus, likely incorrect. It may be necessary to investigate
all hypothesized input traces related to the parent’s
footprint to understand the cause of the conflict.

The trace analysis was very effective in assigning classes
and use cases to code elements. Dataflow elements are still
very ambiguous. Based on Table 7, one can derive new trace
dependencies such as the following:

. Use case UC::Exit [u4] traces to the class CD::User-
Interface [c2].

. Class CD::Parser [c6] traces to a subset of
the dataflow elements DFD::ParseRequest [d3],
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DFD::AddRequest [d4], DFD::DeleteMail [d5], or
DFD::DatabaseBackEnd [d6].

. Use case UC::Settings [u3] traces to the classes
CD::UserInterface [c2], CD::Request [c3], CD::Inbox
[c4], CD::DBBackEnd [c5] (may seem nonintuitive
but [c3,c4,c5] are reconfigured upon completion of
Settings).

. Class CD::UserInterface [c2] traces to the implemen-
tation classes {0}, {8}, {9}, and possibly to {7}.

. Class CD::PopreadApp [c1] does not trace to any
dataflow elements.

. Dataflow element DFD::DeleteMail [d5] does not
trace to implementation classes {0,7,9}.

The above list of generated traces shows previously
unknown trace dependencies among model elements
(trace type d in Fig. 3) and between model elements
and code (trace type c). The generated traces cover both
inclusion and exclusion. Table 7 also contains some
counterintuitive trace observation such as UC::About
[u4] has some trace dependencies with at least one
dataflow element ½ðd1jjd2jjd3jjd4jjd5jjd6Þ�. This observa-
tion is counter-intuitive because displaying the about
dialog box should have nothing in common with the
dataflow diagram for checking email requests. This
observation arose because [u4] and the dataflow elements
share the implementation class {8}. As we discussed in
Section 3.3.3, both model elements actually use different
methods of that class and thus no factual trace depen-
dency exists. If we were to repeat the trace analysis using
methods or even lines of code as the most atomic code
elements, then we would not encounter this problem.

Although it is possible to generate substantial new trace
information through the leaf nodes in Table 7, they do not
replace the other nodes in the footprint graph. For instance,
in Table 7, we would find a trace dependency between
[c2,c3,c4,c6] and a subset of ½ðd1jjd2jj3jjd4jjd5jjd6Þ�. Earlier in
this section, we showed that through node {3,4,5,6,8} we can
derive a more precise statement in that [c2,c3,c4,c6] traces to
both [d1] and [d2] plus a subset of ½ðd3jjd4jjd5jjd6Þ�. The
latter statement is less ambiguous. Deriving trace depen-
dencies out of nodes has to be done carefully:

. It is potentially incorrect to derive trace dependen-
cies among subset lists. Subset elements contain
elements that are only partially correct. Deriving a
trace dependency between two partially correct
lists has the downside that the incorrect portions
are related as well. For instance, it is incorrect to

define a trace between [(c2)] and ½ðd3jjd4jjd5jjd6Þ� in
node {3,4,5,6,8}.

. It is potentially incorrect to derive trace dependen-
cies among partial lists: Partial lists are also
incomplete. Given that two partial lists may be
incomplete in distinct ways, it might be incorrect to
relate them. For instance, there is no trace depen-
dency between [u2,*] and [d1,d2,*] in node {3,4,5,6,8}.

Keeping the above constraints in mind, one can
generate dependencies from the nodes in the footprint
graph using the algorithm in Fig. 11. The algorithm takes
an arbitrary list of source elements as an input (i.e., source
= [c2]) and produces new trace dependencies between
those source elements and elements of other groups. Since
a dependency has a source and a destination, the
algorithm aims at finding all possible destinations to the
given source. To do so, it locates all nodes in the graph
that contain the given source element(s) (i.e., nodes {0}, {8},
{9}, {0,8} for [c2]). The variable excluded is computed by
finding the intersection of excluded elements of all nodes
([u2] is the only excluded element common to {0}, {8}, {9},
{0,8}). No trace dependency exists between source and
excluded ([c2] does-not-trace-to [u2]). The variable destina-
tion is the union of all included/subset elements in nodes
([u1], [u2], [u3], [u3], ½ðd1jjd2jjd3jjd4jjd5jjd6�, [u1,*], [u2,*],
[u3,*]); excluding those elements that are defined partial
but contain all elements of group (e.g., [u1,*], [u2,*], and
[u3,*] are defined partial but they already contain all
elements of their group). Since the destination may contain
elements of separate groups, we define trace dependencies
between source elements and the groups of destination
elements separately ([c2] traces-to [u1]; [c2] traces-to
½ðd1jjd2jjd3jjd4jjd5jjd6Þ�; etc.). The variable code is the union
of code elements of all given nodes ({0,8,9} for [c2]). A
trace dependency is thus between source and code ([c2]
traces-to [0,8,9]). Finally, the variable scenarios is the union
of all scenarios in given nodes (scenario A for {0,8};
scenario J for {8}). A final trace dependency is thus
between source and scenarios ([c2] traces-to [J,A]). The
following is the complete list of generated trace depen-
dences for model element [c2]:

LIST OF DEPENDENCIES AMONG MODEL ELEMENTS:

Dependency:

[c2] traces-to [(d1||d2||d3||d4||d5||d6)]

Dependency: [c2] traces-to [u1]

Dependency: [c2] traces-to [u2]

Dependency: [c2] does-not-trace-to [u2]

Dependency: [c2] traces-to [u3]
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Dependency: [c2] traces-to [u4]

LIST OF DEPENDENCIES BETWEEN MODEL ELEMENTS

AND CODE:

Dependency: [c2] traces-to [0,8,9]

LIST OF DEPENDENCIES BETWEEN MODEL ELEMENTS

AND SCENARIOS:

Dependency: [c2] traces-to [J,A]

3.4.2 Trace Validation

Based on the state of the footprint graph, it is possible to
infer incompleteness and inconsistencies. Previous sections
pointed out most rules for detecting them. The following
briefly summarizes those rules.

Incompleteness. Incompleteness in context of our
approach implies that insufficient input data were given
and the exact nature of trace dependencies could not be
inferred in all cases. Incomplete input data leads to
ambiguous results. Incompleteness can be measured in
how well the leaf nodes in the graph relate to individual
model elements. Consider, for instance, the leaf node {5}.
Although our approach was successful in matching code
elements to classes, it was not able to determine whether
code element {5} traces to model element [c3] or [c4]. A
simple tiebreaker would be to define a new input hypoth-
esis relating [c3] to {5}. Through leaf nodes, incompleteness
can be detected easily and potential solutions are obvious
(i.e., select from list of included/subset elements).

Inconsistencies. Inconsistencies in context of our
approach imply that conflicting constraints where given
as input and no solution is possible that would satisfy all
given constraints. We can detect the following types in
inconsistencies:

1. If a model element is included and excluded in the
same node (i.e., [u2] in {8}): This inconsistency can be
traced back to its origin by investigating how the
contradicting model elements converged onto that
node.

2. If a model element does not trace to any code: Since
we presume that every model element must have
some individual piece of code, no trace dependency
from a model element to code is a conflict (our
example has no such conflict).

3. If a leaf node contains more than one included
element of the same group: This is an inconsistency
because model elements of the same group cannot
share code.

4. If the model elements of the parent are not equal the
sum of all model elements of its children (included +
subset): This inconsistency can occur only if all
children are presumed complete (nonpartial) but the
parent has available elements not found with any
child (not encountered in our example).

5. If a leaf node (= code element) does not relate to any
model element of a given group but has unknown
elements of that group: Recall that unknown
elements are elements that are neither included nor
excluded. They imply the existence of a parent that
used the footprint in context of some model elements

of that group. Since it was never determined how the
elements of the parent refer to the conflicting child,
we may conclude that the input hypotheses were
overconstrained.

4 VALIDATION

Besides validating our approach on smaller or hypothetical

examples, our approach was also validated on several large-

scale, real-world case studies such as the Library Loan

System (ILL) or a Video-On-Demand system (VOD).

Furthermore, in our studies, we subjected our approach to

different input hypotheses and scenario observations to

evaluate its responses. This section discusses observations

made about quality, incorrect results, and other issues.

4.1 Quality of Results

Our example started out with only a few hypotheses and

during the course of analyzing the given information our

approach was able to generate new trace information and

invalidate existing ones (i.e., initial, hypothesized traces).

Upon inspecting the quality of the newly generated traces,

we indeed find that they fit the problem well. A major

concern was whether our approach produced incorrect

results (false positives). We observed that the false positives

produced were all caused by incorrect input data. We also

found that in most cases our approach was able to indicate

incorrect input through conflicts detected. In context of the

ILL system, our approach detected two conflicts. The first

conflict was about model element [u2] and its concurrent

inclusion and exclusion. The second conflict was about leaf

node {6} and the problem that it was not determined what

classes it traces to. The first conflict could be pinpointed and

resolved easily. The second conflict required the inspection

of the parent and siblings of node {6} to determine the cause

of the problem. It is future work to improve the automatic

localization and reasoning of the origin of conflicts.

The main reason why we avoid false positives is because

of our conservative set of rules. However, conservative

rules have the effect that some potentially correct trace

dependencies are discarded. For instance, model element

[c2] was determined to trace to code elements {0}, {8}, and

{9} and to not trace to {2}, {4}, {6}. If the input hypotheses

were correct, then one could be certain of these results.

Nonetheless, our approach was uncertain about code

elements {1}, {3}, {5}, and {7}. Given that our rules were

conservative our approach neither included nor excluded

them. It is thus possible that [c2] traces to more code

elements than {0}, {8}, and {9}.

4.2 Quantity of Results

In many disciplines, it is desirable not to get overwhelmed
with too much output data. In context of trace dependen-
cies, the opposite is desired. Trace dependencies are used
for a range of automated and manual activities including
model understanding, model transformation, code genera-
tion, reverse engineering, and consistency checking. It is
generally the lack of trace information, not its abundance,
which causes problems. Our case study was given seven
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precise and six ambiguous input hypotheses and the case

study used 12 scenario observations. Our approach gener-

ated over 200 precise and ambiguous results—a ratio of

about 10 new traces per input trace. We observed similar

gains in other case studies.

4.3 Complexity of Trace Analysis

The trace analysis activity is not very expensive computa-

tionally. The activities of normalizing, generalizing, and

refining are linear complex with O(n), where n is the

number of nodes in the footprint graph; the activity of

interpreting is O(n2). In the worst case, the number of nodes

in the graph could be as high as number of code elements +

(number of scenarios)2 where every scenario overlaps with

every other scenario in different ways—a rather unlikely

case. The case study in this paper only had 20 nodes for

10 scenarios and 10 code elements; all other case studies

were within this range (e.g., the video-on-demand system

had 65 nodes for 185 code elements and 28 scenarios).
The complexity of trace analysis is similar if more

granular code elements are used. Recall an earlier conflict

where model elements were linked because they used the

same implementation classes but different methods within

those classes. Such cases can be avoided if the trace analysis

is repeated using methods as the most granular code

elements. The trace analysis does not change and it does

not become much more expensive computationally. For

instance, in context of the video-on-demand system,

20 implementation classes produced 40 nodes, whereas

170 methods produced 75 nodes. Still there are other

computational aspects to consider. For instance, handling

170 methods during trace analysis costs more memory and

computation than handling 20 implementation classes (i.e.,

comparison of 170 methods would be more expensive than

the comparison of 20 implementation-level classes).

4.4 Required Quantity of Input Data

We found that our approach only requires a small amount

of input data in order to function. Trace analysis can be

performed at any time using any set of input data. If less

input data are given, our approach will produce ambiguous

results. Initially, our approach does not indicate how much

or what input data are required to produce precise results.

After the completion of the first iteration of the trace

analysis, this changes and the existence of ambiguities in

leaf nodes indicates very precisely what more information

is required to make the results better.

4.5 Required Degree of Correctness of Input Data

We observed that the trace analysis is less constrained when

less input is given. Incorrect input is more likely to remain

undetected in a weakly constrained environment. Since

undetected, incorrect input is trusted as correct, such input

may produce (partially) incorrect results. The advantage of

our approach is in its iterative nature. Our approach points

out where more information is needed (ambiguity) and the

more hypotheses are added the more constrained the

environment becomes. This constrains the analysis and

makes it increasing likely to detect incorrect input.

5 DISCUSSION

5.1 Semantic Meaning of a Trace

Our approach generates and validates trace dependencies
but our approach does not define the semantic meaning of
those trace dependencies. For instance, our approach is
capable of finding traces between some dataflow elements
and some code indicating what code may have to be
changed with a change in those dataflow elements or
indicating what dataflow elements may become invalid if
the code changes. Given that this trace spans between
dataflow elements and code, it gives rationale why the code
is there. It follows that semantic meaning of trace
dependencies can be inferred through the semantic differ-
ences among the development artifacts they bridge. The
implication is that we see traces as neutral entities—they
simply describe dependencies; however, how to interpret
dependencies or how to use them depends on the
development artifacts they bridge.

5.2 What if no Code is Available?

It is also possible to use our approach if no observable
software system exists. For instance, we experimented with
simulators that could replace running software systems.
Scenarios can then be tested and observed in context of the
simulated system. In case no simulation exists, it is also
possible to hypothesize about the footprint of scenarios. For
instance, one could use a model of the software system and
hypothesize the impact of testing a scenario onto the model.
The trace analysis would be identical, but the downside is
that conflicts may also arise out of wrongly hypothesized
observations.

5.3 Traces among Model Elements that form Close
Relationships

Our approach does not generate traces among model
elements that form close relationships. For instance, our
approach will not indicate a trace dependency between two
classes of the same class diagram. This is primarily because
it is presumed that they trace to different pieces of the
source code. We do not believe that this weakens our
approach because elements that form close relationships are
usually contained in a single diagram and that diagram
should already describe the dependencies among its
elements.

5.4 Legacy Systems and COTS Components

The ILL is a third-party software system and we were not
involved in its development. Furthermore, we did not
have the benefit of interacting with its developers while
performing this study. Our situation is therefore compar-
able to the situation of any development team that is
asked to reuse old legacy systems. While analyzing the
ILL system, we had to use a number of trial-and-error
steps to find hypothesized traces that result in only few
contradictions. Our approach supports this type of
explorative form of trace detection since success can be
measured in the number of ambiguities and conflicts
produced.

The case study also used COTS components. For one,
the Microsoft Foundation Classes1 (MFC) and a socket
library were used to display information and to access the
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POP3 server. Furthermore, Microsoft Access1 was used
to store book requests in a back-end database. Although
we were not able to observe the internal workings of those
components, our approach nevertheless was able to
generate trace information to them since observable
wrappers covered those COTS packages. Those wrappers
thus became substitutes for the COTS packages.

5.5 Functional and Object-Oriented Decomposition

An interesting feature of the chosen example is that it was
implemented in C++ but mixed functional and object-
oriented decomposition. As such, the parsing component
was implemented in a functional manner, whereas the rest
of the system was implemented in an object-oriented
manner. To complicate matters, the model also mixed
functional and object-oriented styles (dataflow diagram
versus class diagram). The circumstance that our approach
used the source code as a foundation for analysis ignored
these conceptual boundaries.

6 RELATED WORK

Current literature contains ample publications about the
need for traceability [9], [22]; however, few publications
report work in generating or validating trace information.

The works of Gotel and Finkelstein [9] discuss the
traceability problem and why it still exists. One reason they
believe to be the main cause is the lack of prerequirements
traceability. They argue that tracing requirements only, as
many do, is not sufficient since requirements do not capture
rationale. We agree with their point, but we also believe that
the lack of traceability throughout the entire software
development life-cycle is another significant reason. Our
work enables the traceability among all software develop-
ment artifacts and, thus, is a potential solution to the
traceability problem. We also demonstrated in context of
the video-on-demand case study that our approach can
generate prerequirements trace dependencies [7].

Lange and Nakamura present a program for tracing and
visualization [16]. They take a similar approach to ours
since they observe runtime behaviors of object-oriented
software systems. They do this to capture, visualize, and
analyze trace information. The main difference is that their
emphasis is on how to best visualize trace information.
Consequently, they do not perform trace analysis to
generate or validate trace information.

Pinheiro and Goguen [18] took a very formal approach to
requirements traceability. Their approach, called TOOR,
addresses traceability by reasoning about technical and
social factors. To that end, they devise an elaborate network
of trace dependencies and transitive rules among them.
Their approach is mostly useful in the context of require-
ments tracing and, thus, ignores the problem of traceability
among development artifacts in general. Their work also
ignores the problem of how to generate and validate trace
dependencies among development artifacts that are not
defined formally and completely.

Murphy et al. [17] present a different but formal
technique where source code information is abstracted to
match higher-level model elements. They use their abstrac-
tions for consistency checking between model and code. In

particular, they aim at finding how abstraction and model
diverge. Although their aim is to closely relate model and
code, they presume the existence of mapping rules between
them. Their work is thus only useful if complete trace
dependency knowledge exists.

Concept analysis is a technique similar to our atomizing
activity. Concept analysis (i.e., as used for the reengineering
of class hierarchies [20]) provides a structured way of
grouping binary dependencies. These groupings can then
be formed into a concept lattice that is similar in nature to
our footprint graph. It is unclear, however, whether concept
analysis can be used to group and interpret three-dimen-
sional artifacts (code, scenarios, and model elements) as
required in the footprint graph.

The approaches of Haumer et al. [11] and Jackson [13]
constitute a small sample of manual traceability techniques.
Some of them infer traces based on keywords, whereas
others use a rich set of media (e.g., video, audio, etc.) to
capture and maintain trace rationale. Their works only
provide manual processes, but do no automate trace
generation and validation (except for capturing traces). As
our example has shown, trace generation for even a small
system can become very complex. Manual trace detection,
though effective, can thus become very costly. Despite some
deficiencies of the approaches above, their techniques are
useful since they cover trace generation issues outside our
domain or could be used to derive hypothesized trace
information needed for our approach.

Our work also relates to program slicing. Our approach
observes the source code of a software system according to
test scenarios executed on it. This activity is similar to
slicing, where the source code is observed (sliced) according
to some property or rule. The main purposes of slicing are
to understand code dependencies, support debugging, and
to manipulate code to introduce or eliminate some prop-
erty. Slicing thus divides source code and then recomposes
it in a different manner to add or remove some desired or
undesired properties. Our approach does not have the goal
of manipulating the source code or the model. Our
approach simply uses observations made on both for
transitive reasoning.

Our work also relates to the research on separation of
concerns [21]. The aim of separation of concerns is to elicit
modeling information or code that relates to individual
concerns. For instance, a concern could be a nonfunctional
requirement that has to be satisfied. By separating concerns,
it is hoped that it becomes possible to manipulate them
without affecting one another. Our approach is a natural
complement to separation of concerns. We believe that it is
possible to define scenarios based on concerns. By using our
approach, one can then find model elements and source
code related to individual concerns.

7 CONCLUSIONS

With the growing use of elaborate, upstream software
modeling techniques, it is becoming crucial to better
understand the intricacies and interrelationships between
software models and code. We refer to these relationships
as trace dependencies and they are used in numerous
manual and automated activities ranging from model
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understanding, to consistency checking, code generation,
reverse engineering, change management, and more. The
lack of trace information is generally a strong inhibitor to
automation during model-based software development. In
some cases, it is impossible to automate without complete
traceability knowledge (i.e., consistency checking).

This paper introduced an approach for generating and
validating trace dependencies between models elements,
scenarios, and code. It was shown how to use observations
about the runtime behavior of systems to detect overlaps
among scenarios and their model elements. It was then
shown how these overlaps are captured in the form of a
footprint graph that is then manipulated and reinterpreted.
Our approach is automated, tool-supported, and computa-
tionally efficient. Our approach supports the iterative
generation and validation of trace dependencies, contrary
to the old practice of “develop first, document later.” Our
approach can and should be used in a highly iterative
manner, where previously detected traces become the
future hypothesized traces. Its ability to feed onto previous
results enables an incremental approach to trace generation
and validation. During each iteration, our approach can
pinpoint incompleteness and inconsistency.

The incremental nature of our approach makes it suitable
for both forward and reverse engineering. During forward
engineering, the trace analyses of subsystems can be used as
input to validate the system itself (i.e., validate the parts,
then validate the whole). During reverse engineering, trial-
and-error analyses can pinpoint wrong assumptions. Our
approach requires some hypothesized input to commence
analysis. We showed that the number of hypothesized
traces required can be variable and we showed that
hypothesized traces do not have to be (fully) correct. As a
general rule, the more correct the hypothesized trace
information, the fewer contradictions will be encountered.
Furthermore, the more complete the hypothesized trace
information, the fewer ambiguities will be found. Future
efforts should investigate how to support a richer set of
input hypothesis types and how knowledge of calling
direction during scenario testing affects trace generation
and validation.
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