Alexander Egyed

Johannes Kepler University (JKU), Linz, Austria
http://www.sea.jku.at

Who am [1?

Current Affiliations:

= Professor at
= Head of

(~14 Staff Members)

= Research Fellow at
Doctorate Degree:

Past Affiliations:

= Research Fellow at

= Research Scientist at

SEA

«==» © 2012 Alexander Egyed

, 2010-12

, USA 2000 (Dr. Boehm)

, UK 2007
, USA 2000

What the Customer cares @

about... oniversry Lnz | JKU

What the customer

/ gives

Requirements
i what the customer
IO takes away
\\\\N ?
A Code
SEA

«=«» © 2012 Alexander Egyed 3

Focus on Change @
vz | JKU

=0
T
mz=
X =
Nm
W
<=
—-o

SEA

===» © 2012 Alexander Egyed 4

Impact of a Change @
JOHANNES KEPLER |JKU
UNIVERSITY LINZ

= Changes can happen anywhere / anytime

» Requirements change, infrastructure change, law
change...

= A change is a ,,small” thing

* Inability to change a software system is one of the
foremost software engineering challenges

SEA

«=«» © 2012 Alexander Egyed 5

Models Complicate this
Relationship

A~

Requirements

THE BAD?

SEA

«==» © 2012 Alexander Egyed

\ Design Model

S KE

niversrry Lnz | JKU

THE GOOD?
Analyses / proofs

J
U

Picture says more than a 1000 words

Important design decisions
It is good engineering

S

Code

Model Dilemma @

oniversiry tinz | JKU

Nobody wants to MAINTAIN them

* Maintaining models is a burden

= Models were not made for change propagation

— Just like code, requirements, ...

SEA

«=«» © 2012 Alexander Egyed /

Many Solutions to a Given
Problem...

Solution Space

A

Problem Space

SEA.... Slide adapted from Nenad Medvidovic

Design Model Restricts the
Solution

A~

SEA.... Slide adapted from Nenad Medvidovic

Design Model Helps you =)
Choose a Solution

SEA

«==» © 2012 Alexander Egyed

Problem

= Models as a “Bridge” for Change Propagation

= But creating AND MAINTAINING THEM is still a
burden, or is it?

SEA

«==» © 2012 Alexander Egyed

11

Maintaining the Model %

SEA

s> © 2012 Alexander Egyed 12

Maintaining the Model

SEA

«==» © 2012 Alexander Egyed

Maintaining the Model @

SEA

«=«» © 2012 Alexander Egyed 14

Maintaining the Model @

SEA

s> © 2012 Alexander Egyed 15

Maintaining the Model

Software Engineer is
willing to spend
time: A

SEA

«==» © 2012 Alexander Egyed

16

Maintaining the Model %

...but they dont want —_ o=
to perform the same afi
change twice!

SEA

«==» © 2012 Alexander Egyed

Goal: how to L
avoid/reduce A_*A_7?

SEA

«=:» © 2012 Alexander Egyed 18

Maintaining the Model @

Answer: Propagate

Knowledge
A=A, %gs &

s> © 2012 Alexander Egyed 19

SEA

There are Many Models... @

Design Model

SEA

s> © 2012 Alexander Egyed 21

There are Many Models...

Class Diagram
Sequence Diagram

Statecharts

EHEH

-

Design Model

SEA

«==» © 2012 Alexander Egyed

27

...to Propagate Changes to

Class Diagram
\ Sequence Diagram

/

Statecharts

S
&

F_l—l

Design Model

SEA

> © 2012 Alexander Egyed

= O
—l
<>
mz
X =
Nm
—

S KE
Y

-0

A Motivating lllustration
for Change Propagation

(propagating changes, not models)

SEA

«==» © 2012 Alexander Egyed

i

iz | JKU

24

Modeling Languages are

sirv tinz | JKU

. JOHANN
Dlverse UNIVERSIT
Q Display (_* Behavior Display
select () // \.
% draw () G playing
5 playPaus| [7] Selecting a Movie

u:User d:Display st:< playPaus
Q SRt E u:U... E d: Dlspl E st:Stre
select pIayPause
1: select -~ 1.1: connect

% connect (,/
'fé wait ()
% stream ()

|
|
1] stopped
2.1: stream
2.1.1: draw :D ”
|

3.1: wait ﬁ
|

woep © 2l 75

2: playPause %

3: playPause

- Y- ﬂ\

SEA

A Change

Q Display

select ()
¥ draw ()
#5 playPause () §

Split
“playPause()”
Clsvaner | into “play()
| and “stop()”

| ¥ connect ()
¥ wait ()
'ﬁ"é_ stream ()

SEA

==» © 2012 Alexander Egyed 26

Change Propagates

Where to
Change?
u:User d:Display } gaStreamer
E u:U.. E d:Displ E st:Streamer “
| | |
| 1: select ~ 1.1: connect |
| 2: playPause ’E %']
| 1 2.1: stream
2.1.1:draw H
3: playPause
3.1: wait
1]

JOHANN
UNIVER

(_* Behavior Display

Ve

B L playing

N

play

=N

select \J/ I stop
|\

/

L L stopped }

/

J
-

27

Change Propagates

JOHANNES K
UNIVERSITY
(_* Behavior Display
How to
? - .
Change - E Qplaying J
N
uUser @ | d:Display st:Streamer play
E u:U. J E d:Displ... E st:Streamer
| | select stop
| 1: ¢ lect ~ 1.1: connect | L
| 2: play ’E %v] L stopped
| 1 2.1: stream
2.1.1: draw :D
3- st
R E 3.1: wait
Tl
28

Change Propagation is...

Class Diagram
\ Sequence Diagram

/

Statecharts

= Where to Change (Locations)
= How to Change (Values)

SEA

> © 2012 Alexander Egyed

29

Constraint-Driven Change @

Propagation S KE

niversiry tinz | JKU

= This is not about designing automatically

J
U

— The software engineer designs

— The automation only propagates their logical
conclusions

* More often constraints rather than model elements

= Designing is “fully manual”

SEA

s> © 2012 Alexander Egyed 30

i

iz | JKU

=0
— ek
mz
X =
Nm
—w»n

KE
Y

—o

Where to Change

SEA

«=:» © 2012 Alexander Egyed 31

Rename playPause() operation to play(). Show Design Rules.

Detect inconsistencies instantly (evaluation tree)

Two Advances @

oniversiry tinz | JKU

1) We treat every evaluation of a consistency rule as
a first class citizen - by maintaining change
impact scopes for them individually and
triggering individual re-evaluations

2) We use model profiling to observe the “behavior”
of consistency rules during their evaluation to
automatically compute change impact scopes

SEA

s> © 2012 Alexander Egyed 33

SEA

«==» © 2012 Alexander Egyed

model size

JOHANNES KEPLER
UNIVERSITY LINZ lJKU
3000
batch consistency checking
35 2500
c
Q -
2 Batch checking
=
£
© 1500 *
=
- *
o $
= 1000
g . A
© * M
-
© 500 * S e
//
0
100 1000 10000 100000

35

SEA

JOHANNES KEPLER
UNIVERSITY LINZ I.JKU
3000
3 2500
S
O -
2 This approach
% [Egyed 2006]
k=
© 1500
£
S
= 1000
© Model Analyzer
'© Approach
-
Y 500 /
. - ——— v s
100 1000 10000 100000
«+» © 2012 Alexander Egyed model size

36

Implications
(r)\'l-ll NNES KE

JOHANNE
UNIVERSITY

= We can quickly evaluate model changes

* And we can identify which model elements
resolve inconsistencies (where to change)

SEA

«==» © 2012 Alexander Egyed

P
LI

LER
NZ

=

JKU

37

i

iz | JKU

-O
T
mz=
X =

N
v

KE
Y

—o

How to Change

SEA

«=:» © 2012 Alexander Egyed 38

Enumerate repair alternatives affected by renamed operation

“playpause” to “play”

|:] st:Streamer

JOHANNES K
UNIVERSITY
= Display | Selecting a Movie
|
{l(‘:’;, select ()
{?’, draw () — — .
{&an() |_] u:U... |_] d:Displ...
1: select > 1.1: connect
V 2: pl h
- playPause 2.1:stream .
Ctranmar —
Sz for Change Propagation: L BeEn
1) rename message playPause
2) Change receiver of message playPause 1 3.1 wait

3) add
4) cha

a new operation to the class Display
nge the ownership of object display

6) rename operation select
/) rename operation play

8) rename operation draw
9) delete message playPause

=»» © 2012 Alexander Egyed

40

Quite good but not Perfect =X
JOHANNES KEPLER | J K
UNIVERSITY LINZ
1000
[Egyed 2007] O # Small Rules Actions
O # Medium Size Rule Action 1 |
O # Large Rule Action
100
10
1
54 95 1789 1707 2438 2593 2809 5373 16255 33347
SEA Model Size (# Model Elements)
===» © 2012 Alexander Egyed 41

il

niversiry tinz | JKU

To propagate changes, you
must understand the design
rules

SEA

«=«» © 2012 Alexander Egyed 47

FiXing:
If AA B = false then
either A needs fixing, B

needs fixing, or both A

and B need fixing.

[Nentwich, Emmerich, and
Finkelstein 2003]

SEA

> © 2012 Alexander Egyed

FIXing:
If A IS true then we need

not fix A iIf AA B = false
[Reder-Egyed 2012]

SEA

===» © 2012 Alexander Egyed 44

FIXing:
If A IS true then we need

not fix A iIf AA B = false
[Reder-Egyed 2012]

SEA

===» © 2012 Alexander Egyed 45

Fixing Actions for A A B @

university Linz | JKU
True A=true and B=false ~IX B=true
True A=false and B=true ~IX A=true
True A=false and B=false = Fix ®[A=true, B=true]
False A=true and B=true ~iX o [A=false, B=false]

Required Result for AAB = false if = (AAB)

SEA

«=«» © 2012 Alexander Egyed 46

Repairs

SEA

«=»» © 2012 Alexander Egyed

o fat R
= {a} G(a, -r®)
(G(br*) ifr® =t rg =1, 18 =
G(Q. 7‘9) ifr =, r;.—_f I‘g:
A {a, b} b= Gla, r®) e G(b,) ifrS=t, v, =f, 1, =
|G(a, %) +G(b, r®) ifr®=f, vl =1, 7y =1
[(G(a, r8) + G(b,) fre=t,ri=f, 7 =f
G(a, r%) ifrf = f,ro=t, rp = f
R = o 2
V {a. b} 4 G{b 7.6‘) er‘ =f r; =f T‘é — 1
(Gla, r°) e G(b, r) ifr"=f,r) =t , r, =
(G(a, r°) +G(b,) r®=t, vt =t, 1y = f
G(b, %) ifrs = f »3 =t vl =1
R = o b
= fa, 4} G(a,) e G(b,) ifr*=f,ri=f.r, =
Gla, r) tr® =ik =ferp.= f
({modify = (a.element, a.property, r})} ifr® =t, r, = const
b
modify = (b.element, b.property, r?¥ ifr® =t, r’ = const
a a
modify; = (a.element, a.property, ri)
. ifr® =t
0 lr= modifys = (b.element, b.property, r3)
- {a; b}) {modify = (a.element, a.property, # ri)} ifr® = f, ry = const
modify = (b.element, b.property, # r.) ifr® = f, ri = const
a a
modifys = (a.element, a.property, # ry)
+ ifr® = f
| | modifys = (b.element, b.property, #)
. clud b R— {add = (a.element, a.property, r})} ifr® =t
ncludes| {a;:b) "~]| {delete = (a.element, a.property, ry)} ifr® = f
f {o Ui delete; = (a.element, a.property, r;(Irgl — f)}
+ ifre =1t
v {a, b} B=:4 e Uiy Glbilry, = f, r°)
’ {add— (a.element, a.property, r, +]| bn+1 = f)}
4 +UG(bs|rg, =t, 7°)
({add = (a.element, a.property, r;n+l |r,‘;n+l = f)}
+ ifrf =t
3 |{ab} | R=3 +U Gy, = f,)
’ {o Ui, delete; = (a.element, a.property, r(']"r ['r,‘;’ = t}}
+ ifr® =7

o Ui, Glbe|ry =1t, r%)

Benefits

1000
O # Small Rules Actions
O # Medium Size Rule Action 1
O # Large Rule Action
100
10
WL
54 95 1789 1707 2438 2593 2809 5373 16255 33347
SEA Model Size (# Model Elements)
«==» © 2012 Alexander Egyed 49

=0
—ake
<>
mz
- =
W mr
—

S KE
Y

~ -0

Change Propagation: it’s
all about history

SEA

«==» © 2012 Alexander Egyed

i

iz | JKU

50

A Possible Dialog

Designer
= Change the class diagram

—HAL: can you help me
propagate this change
to the sequence
diagram?

SEA

«==» © 2012 Alexander Egyed

= Detects inconsistencies
= Computes repair
alternatives

— Assumption: no more
changes to the class diagram

51

|:] st:Streamer

JOHANNES K
UNIVERSITY
= Display | Selecting a Movie
|
{l(‘:’;, select ()
{?’, draw () — — .
{&an() |_] u:U... |_] d:Displ...
1: select > 1.1: connect
V 2: pl h
- playPause 2.1:stream .
Ctranmar —
Sz for Change Propagation: L BeEn
1) rename message playPause
2) Change receiver of message playPause 1 3.1 wait

3) add
4) cha

a new operation to the class Display
nge the ownership of object display

6) rename operation select
/) rename operation play

8) rename operation draw
9) delete message playPause

=»» © 2012 Alexander Egyed

57

- | Selecting a Movie

D u:U...

1: select

=

niversrry Lnz | JKU

D d:Displ... u st:Streamer

—
—p

1.1: connect

2: playPause
-

Y

2.1: stream

Alternztye Locztions for Change Propagation:
1) rename message playPause

2) Change receiver of message playPause

3) add a new operation to the class Display
4) change the ownership of object display

6) rename operation select

/) rename operation playPause

8) rename operation draw
9) delete message playPause

e

2.1.1: draw

T

= =

3.1: wait

YL © 2012 Alexander Egyed

Y

53

Execute repair (change propagation) that renames 15t message

‘playPause’ to ‘play’

Works in Reverse also. Rename message ‘playPause’ to ‘stop’.

Show

|:] st:Streamer

JOHANNES KEP
UNIVERSITY L
= Display | Selecting a Movie
|
{l(‘:’;, select ()
{EE,draw() |_] N |_] S Dicof
{&an() — uU.. —| d:Displ...
1: select - 1.1: connect
V 2: pl : L
- Dy T 2.1:stream .
Ctranamar -
Mierrizitlve Locziions for Change Propagation: _ 21 1draw
1) rename message stop
2) Change receiver of message stop — 3.1: wait

3) add a new operation to the class Display
4) change the ownership of object disp/ay

6) rename operation select

/) rename operation play

8) rename operation draw

9) delete message stop (makes rule obsolete)

= N0 © 2012 Alexander Egyed

55

@ Display

% select ()
{ﬁ’) draw ()
€ play ()

Alternzitive Locaitions for Change Propagation:

3) add a new operation to the class Display

6) rename operation select
/) rename operation play
8) rename operation draw

=" M. © 2012 Alexander Egyed

56

Show side effects of changing operations ‘select’, ‘play’, and

‘draw’

= Display - | Selecting a Movie
% stop ()
§ draw ()
% play () = uv

d:Displ...

E st:Streamer

= 1.1: connect

: J\\ Wolay
................. [:]QtrnnmnrJ______ \/

L""‘_
o

2.1: stream

Y

Alternzitive Locaitions for Change Propagation:

3) add a new operation to the class Display

6) rename operation select
/) rename operation p/ay
8) rename operation draw

2.1.1: draw

Y

-

—

3.1: wait

= N © 2012 Alexander Egyed

Y

58

Maintaining the Model @

SEA

s> © 2012 Alexander Egyed 59

Issues
(I)\ll-ll NNES KEPLER

JOHA P
UNIVERSITY LINZ

We do not design automatically, we only propagate
what is already known

A Change is only “propagetable” if there is a
constraint that detects failure to propagate

Models depict more than what you find in code

= Model maintenance cost will be higher
= A <A *A_

SEA

«==» © 2012 Alexander Egyed

=

JKU

60

Ongoing work

= Beyond design models

= Structural constraints vs. dynamic constraints

— Invariant checking in code based on design constraints

= Applicable not just to software engineering

— Integration with other disciplines

SEA

«==» © 2012 Alexander Egyed

61

Inter-Disciplinary Collaboration

JOH S KE
UNI

=

versity tinz | JKU

Machine Dynamics

.
| +»| Scaffolding mechanics

—| Power Unit — 12!-|z :

7 :
oiack / E| enfrequenc
Control Engineering
Important is the Flow -~ Barrel controllers ‘_ i
of Information

SEA

«==» © 2012 Alexander Egyed

62

Example: Flange Connection

= The construction
drawing is done in a
CAD tool and the
#screws calculation in
Excel

= [n the event of a
change that influences
the calculation of the
number of screws

SEA

«=»» © 2012 Alexander Egyed

63

Example: Flange Connection

= [n order to be able to
assemble the flange
connection another
constraint has to be
satisfied:
BoltCircleDiameter *
Pi >
1.4 * WrenchSize *
#Screws

SEA

«=»» © 2012 Alexander Egyed

64

We gratefully acknowledge IBM and the Austrian FWF for
funding this work under grant agreement P21321-N15

Contact me at alexander.egyed@jku.at

Johannes Kepler University, Linz (JKU)

http://www.sea.jku.at

