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R h S i ti t t T k l d C ti USA 2000 Research Scientist at Teknowledge Corporation, USA 2000
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A Bright Future for 
TransformationTransformation

It i b li th t th f t f ft It is my believe that the future of software 
modeling hinges on the ability to provide change 
propagation

3© 2011 Alexander Egyed



Traditional Engineering View of 
Modeling and CollaborationModeling and Collaboration
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Inter-Disciplinary Collaborationp y

Machine Dynamics

Power Unit 12Hz
Scaffolding mechanics

Power Unit 12Hz

Eigenfrequency
Black
box

Control Engineering

Barrel controllersImportant is the Flow 
of Information
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Engineers Collaboratingg g

Model A Model B Model CModel A Model B Model C
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Models and Data

M d l hi l f i d t Models serve as vehicles for moving data
 From discipline to discipline
 From designer to designer
 From tool to toolFrom tool to tool

 Data inside models are introduced at some point 
d d l tand consumed later

• Not documentation but communication
• Sometime in a different syntax or semantics

 The idea: enter a (modeling) fact once only andThe idea: enter a (modeling) fact once only and 
propagate it to where it is needed
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Transformation in the 
Largeg
(focus on models)
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90-2000 Transformation is 
about Tool Integrationabout Tool Integration

Th “f li ” i th 90 / l 2000 There was a “feeling” in the 90s/early 2000
 The tools are great but they are not connected
 It is not easy to move information between them

 Goal: if we could just connect these tools then Goal: if we could just connect these tools then 
many engineering problems would be eased
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Why Transformation in y
the Large is problematicg p
(the devil is in the details)( )
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3 Diagrams = 3 Modelsg

Class 
diagram

Statechart? Statechart
diagram?

Sequence 
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Transform a Sequence Diagram 
into a Class Diagraminto a Class Diagram

Class
?

Diagram
?
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Transform a Sequence Diagram 
into a Statechart Diagraminto a Statechart Diagram

State
?

Diagram
?
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Problems

M ti• Many assumptions
• Many uncertaintiesy
 Need Bi-Directional Transformation

Abilit t t f i di ti d t i l Ability to transform in one direction does not imply 
ability to transform into the other

 Scalability
 Transform every model to every other model: n2y y
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Bi-Directional Transformation

Class 
diagram

Your StatechartYour 
Diagram

Statechart
diagram

Sequence 
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Some Transformations more 
Comprehensive than OthersComprehensive than Others

M6
M5 M7

M8
M4

M9
M3

M10
M2

M10

M11
M1

M12Mn

M1
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Summeryy

Cl l T f ti I Th L i f l f Clearly, Transformation-In-The-Large is useful for 
larger tasks
 Initial (batch) transformation

 But what about transforming changes?
 Change can happen anytime, anywhere
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A Motivating Illustration g
for Change Propagationg p g
(transforming changes, not models)
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Modeling Languages are 
DiverseDiverse
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Designer Changesg g

Split 
“playPause”playPause  

into “Play” and 
“St ”
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“Stop”



Change Propagatesg p g
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Change Propagatesg p g
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Transformation in the 
Small
(transforming changes, not models)
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Tool

Change “select” method to “order”
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Modeling Languages are 
DiverseDiverse

Change 
“select” to 

“order”
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Propagate Change from Class 
Diagram to Sequence DiagramDiagram to Sequence Diagram

?
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Method Name Change 
PropagationPropagation

C t t[ th d h ]Context[method name change]
For all sequence diagrams that include q g
instances of method owner
Rename incoming messages where Rename incoming messages where 
message name = old method name 
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B t k h h ti But as we know, changes can happen anytime 
and anywhere
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Tool

Change “select” message to “order”
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Designer

Change 
“select” toselect  to 

“order”
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Designer

Change 
“select” toselect  to 

“order”
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Message Name Change 
PropagationPropagation

C t t[ h ]Context[message name change]
Change all messages with same name and 

source

g g
receiver?
No: does method with new name exist?No: does method with new name exist?

Yes: Done
No: create method

Yes: does method with new name exist?

target

Yes: does method with new name exist?
Yes: Done
No: rename method target
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Change Propagation is No 
Classical TransformationClassical Transformation

Transformation
T t d lSource model Target model
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Another Interesting 
ObservationObservation

O d l l l it i t t f On model level it was easier to transform 
sequence diagram to class diagram

 On model change level it was easier to transform 
method name change (class diagram) tomethod name change (class diagram) to 
message name change (sequence diagram)

 But n2 problem still existsu p ob e s e s s
 Even made it worse: 3 diagram types, dozens of model 

element change typeselement change types

34© 2011 Alexander Egyed



Tool

Show splitting of “playPause” to “play” and “stop”
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A slightly more complex name 
changechange

Split 
“playPause”playPause  

into “Play” and 
“St ”
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“Stop”



A slightly more complex name 
changechange
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Problems

S lit th d Split method
 Splitting of “playPause” to “play” and “stop” does not 

really work
 Perhaps need a special “split” refactoring and p p p g

transformation rules that react to it
 Also need Separate Transformation forAlso need Separate Transformation for 

Message Name Change to Statechart
B t l t t h t d di d t But class, statechart and sequence diagrams do not 
just “live” next to each other. They interact
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Transformation through g
Constraint Satisfaction
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Many Consistency Rules

Rule 1: Name of message must match an operation in receiver’s

y y

Rule 1: Name of message must match an operation in receiver s 
class

Context Message:Context Message:    
self.receiveEvent.oclAsType(InteractionFragment).covered->

forAll(represents.type.oclAsType(Class).ownedOperation->
exists(name=self.name)) 

Rule 2: Sequence of object messages must correspond toRule 2: Sequence of object messages must correspond to 
events 

Rule 3: Calling direction of association must match calling 
direction of messagesdirection of messages 
…
Rule 100+

Plus other Constraints: 
Requirements, Domain
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Rule 100+ Requirements, Domain 
(e.g., money or card)



Tool

Rename playPause message to Play (disable IBM mapping 

f b th t th d fi t) D t t i i t iof both messages to methods first). Detect inconsistencies 

instantly
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Two Advances

1) W t t l ti f i t l1) We treat every evaluation of a consistency rule 
as a first class citizen – by maintaining change 
impact scopes for them individually and 
triggering individual re-evaluationsgg g

2) We use model profiling to observe the 
“behavior” of consistency rules during theirbehavior  of consistency rules during their 
evaluation to automatically compute change 
iimpact scopes
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Rule 3Rule 3

Rule 2

Rule 2

Rule 1
Rule 1

Rule 1

Rule 1

Rule 1
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Rule 1 evaluated on 
“ l ”

Rule 1 evaluated on

message “select”

Rule 1 evaluated on 
message “play”
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Model Analyzer Approach

W

y pp

Consistency
Wrapper

y
Checker

(1) Modeling Tool
(2)

Instant 
Consistency UMLConsistency

Checker
UML

Model(3)

Scope
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Batch checking
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This approach
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Implicationsp

W i kl l t d l h We can quickly evaluate model changes

(also model changes done through 
transformations)transformations)

 And we can identify which model elements to 
change to resolve inconsistency (the first step ofchange to resolve inconsistency (the first step of 
change propagation)
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Tool

Enumerate change propagation alternatives of renamed 

“ l ” t “ l ”“playpause” to “play” message
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Alternative Locations Alternative Locations for Change Propagation:
1) rename message play
2) Change receiver of message playPause2) Change receiver of message playPause
3) add a new method to the class Display
4) change the ownership of object display
6) rename method select
7) rename method playPause
8) rename method draw
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8) rename method draw
9) delete message play (makes rule obsolete)



Transformation Alternatives

Ch P tiChange Propagation 
through alternative transformationsg

leads to
lt ti t f ti ltalternative transformation results

The method/message name transformations 
discussed earlier were just two alternatives It isdiscussed earlier were just two alternatives. It is 
not even clear whether they are even the most 
likely ones.
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Alternative Results Alternative Results for Change Propagation:
1) rename message play
2) Change receiver of message play to ???2) Change receiver of message play to ???
3) add a new method play to the class Display
4) change the ownership of object display to ???
6) rename method select to play
7) rename method playPause to play
8) rename method draw to play
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8) rename method draw to play
9) delete message play (makes rule obsolete)



Tool

Execute change propagation that renames ‘playPause’ 

th d t ‘ l ’ ith f ll i i t imethod to ‘play’ with follow-on inconsistencies
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Eliminate False Choices
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Alternative Results Alternative Results for Change Propagation:
1) rename message play
2) Change receiver of message play to ???2) Change receiver of message play to ???
3) add a new method play to the class Display
4) change the ownership of object display to ???
6) rename method select to play
7) rename method playPause to play
8) rename method draw to play
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8) rename method draw to play
9) delete message play (makes rule obsolete)



Multiple Change Propagationsp g p g

If ft h ti i i t iIf after change propagation no inconsistency is 
caused 

 Then propagation is complete
 Else further propagation is needed Else  further propagation is needed
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Transformation Split and p
Mergeg
(serial and parallel transformation)( p )
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Change Propagation Unrollingg p g g
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Change Propagation Unrollingg p g g
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Change Propagation Unrollingg p g g
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N-angulationg
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The Many Uses of Constraints 
during Transformationduring Transformation

Inconsistenciescauses Inconsistencies
(of problem)change(s)

Model
causes require

Model 
change(s)

require

Transformation 
Alternatives to Fix Inconsistencies selects
Inconsistencies(of solutions)

selects
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Know When To Transform

C t i t th d t d fi h t Constraints are the guards to define when to 
transform

 Constraints are also the utility functions to gauge 
a transformations successa transformations success
 A failure caused during transformation implies wrong 

transformation or incomplete transformationtransformation or incomplete transformation
 Exploring Alternatives requires a toolbox of 

transformations
 Small and (perhaps) larger ones(p p ) g
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