
FineFine--Tuning Tuning
Transformation:Transformation:

Ch P tiCh P tiChange PropagationChange Propagation

Alexander EgyedAlexander Egyed
Johannes Kepler University (JKU), Linz, Austria

1© 2011 Alexander Egyed

http://www.sea.jku.at

Who am I?

Current Affiliations:Current Affiliations:
 Professor at Johannes Kepler University, 2008

f f S Head of Institute for Systems Engineering and
Automation (~12 Staff Members)

 Research Fellow at IBM, 2010
Doctorate Degree:g
 University of Southern California, USA 2000 (Dr. Boehm)
Past Affiliations:Past Affiliations:
 Research Fellow at University College London, UK 2007

R h S i ti t t T k l d C ti USA 2000 Research Scientist at Teknowledge Corporation, USA 2000

2© 2011 Alexander Egyed

A Bright Future for
TransformationTransformation

It i b li th t th f t f ft It is my believe that the future of software
modeling hinges on the ability to provide change
propagation

3© 2011 Alexander Egyed

Traditional Engineering View of
Modeling and CollaborationModeling and Collaboration

4© 2011 Alexander Egyed

Inter-Disciplinary Collaborationp y

Machine Dynamics

Power Unit 12Hz
Scaffolding mechanics

Power Unit 12Hz

Eigenfrequency
Black
box

Control Engineering

Barrel controllersImportant is the Flow
of Information

5© 2011 Alexander Egyed

Engineers Collaboratingg g

Model A Model B Model CModel A Model B Model C

6© 2011 Alexander Egyed

Models and Data

M d l hi l f i d t Models serve as vehicles for moving data
 From discipline to discipline
 From designer to designer
 From tool to toolFrom tool to tool

 Data inside models are introduced at some point
d d l tand consumed later

• Not documentation but communication
• Sometime in a different syntax or semantics

 The idea: enter a (modeling) fact once only andThe idea: enter a (modeling) fact once only and
propagate it to where it is needed

7© 2011 Alexander Egyed

Transformation in the
Largeg
(focus on models)

8© 2011 Alexander Egyed

90-2000 Transformation is
about Tool Integrationabout Tool Integration

Th “f li ” i th 90 / l 2000 There was a “feeling” in the 90s/early 2000
 The tools are great but they are not connected
 It is not easy to move information between them

 Goal: if we could just connect these tools then Goal: if we could just connect these tools then
many engineering problems would be eased

9© 2011 Alexander Egyed

Why Transformation in y
the Large is problematicg p
(the devil is in the details)()

10© 2011 Alexander Egyed

3 Diagrams = 3 Modelsg

Class
diagram

Statechart? Statechart
diagram?

Sequence

11© 2011 Alexander Egyed

diagram

Transform a Sequence Diagram
into a Class Diagraminto a Class Diagram

Class
?

Diagram
?

12© 2011 Alexander Egyed

Transform a Sequence Diagram
into a Statechart Diagraminto a Statechart Diagram

State
?

Diagram
?

13© 2011 Alexander Egyed

?

Problems

M ti• Many assumptions
• Many uncertaintiesy
 Need Bi-Directional Transformation

Abilit t t f i di ti d t i l Ability to transform in one direction does not imply
ability to transform into the other

 Scalability
 Transform every model to every other model: n2y y

14© 2011 Alexander Egyed

Bi-Directional Transformation

Class
diagram

Your StatechartYour
Diagram

Statechart
diagram

Sequence

15© 2011 Alexander Egyed

diagram

Some Transformations more
Comprehensive than OthersComprehensive than Others

M6
M5 M7

M8
M4

M9
M3

M10
M2

M10

M11
M1

M12Mn

M1

16© 2011 Alexander Egyed
M13

Mn

Summeryy

Cl l T f ti I Th L i f l f Clearly, Transformation-In-The-Large is useful for
larger tasks
 Initial (batch) transformation

 But what about transforming changes?
 Change can happen anytime, anywhere

17© 2011 Alexander Egyed

A Motivating Illustration g
for Change Propagationg p g
(transforming changes, not models)

18© 2011 Alexander Egyed

Modeling Languages are
DiverseDiverse

19© 2011 Alexander Egyed

Designer Changesg g

Split
“playPause”playPause

into “Play” and
“St ”

20© 2011 Alexander Egyed

“Stop”

Change Propagatesg p g

21© 2011 Alexander Egyed

Change Propagatesg p g

22© 2011 Alexander Egyed

Transformation in the
Small
(transforming changes, not models)

23© 2011 Alexander Egyed

Tool

Change “select” method to “order”

24© 2011 Alexander Egyed

Modeling Languages are
DiverseDiverse

Change
“select” to

“order”

25© 2011 Alexander Egyed

Propagate Change from Class
Diagram to Sequence DiagramDiagram to Sequence Diagram

?

26© 2011 Alexander Egyed

Method Name Change
PropagationPropagation

C t t[th d h]Context[method name change]
For all sequence diagrams that include q g
instances of method owner
Rename incoming messages where Rename incoming messages where
message name = old method name

27© 2011 Alexander Egyed

B t k h h ti But as we know, changes can happen anytime
and anywhere

28© 2011 Alexander Egyed

Tool

Change “select” message to “order”

29© 2011 Alexander Egyed

Designer

Change
“select” toselect to

“order”

30© 2011 Alexander Egyed

Designer

Change
“select” toselect to

“order”

31© 2011 Alexander Egyed

Message Name Change
PropagationPropagation

C t t[h]Context[message name change]
Change all messages with same name and

source

g g
receiver?
No: does method with new name exist?No: does method with new name exist?

Yes: Done
No: create method

Yes: does method with new name exist?

target

Yes: does method with new name exist?
Yes: Done
No: rename method target

32© 2011 Alexander Egyed

Change Propagation is No
Classical TransformationClassical Transformation

Transformation
T t d lSource model Target model

33© 2011 Alexander Egyed

Another Interesting
ObservationObservation

O d l l l it i t t f On model level it was easier to transform
sequence diagram to class diagram

 On model change level it was easier to transform
method name change (class diagram) tomethod name change (class diagram) to
message name change (sequence diagram)

 But n2 problem still existsu p ob e s e s s
 Even made it worse: 3 diagram types, dozens of model

element change typeselement change types

34© 2011 Alexander Egyed

Tool

Show splitting of “playPause” to “play” and “stop”

35© 2011 Alexander Egyed

A slightly more complex name
changechange

Split
“playPause”playPause

into “Play” and
“St ”

36© 2011 Alexander Egyed

“Stop”

A slightly more complex name
changechange

37© 2011 Alexander Egyed

38© 2011 Alexander Egyed

Problems

S lit th d Split method
 Splitting of “playPause” to “play” and “stop” does not

really work
 Perhaps need a special “split” refactoring and p p p g

transformation rules that react to it
 Also need Separate Transformation forAlso need Separate Transformation for

Message Name Change to Statechart
B t l t t h t d di d t But class, statechart and sequence diagrams do not
just “live” next to each other. They interact

39© 2011 Alexander Egyed

Transformation through g
Constraint Satisfaction

40© 2011 Alexander Egyed

Many Consistency Rules

Rule 1: Name of message must match an operation in receiver’s

y y

Rule 1: Name of message must match an operation in receiver s
class

Context Message:Context Message:
self.receiveEvent.oclAsType(InteractionFragment).covered->

forAll(represents.type.oclAsType(Class).ownedOperation->
exists(name=self.name))

Rule 2: Sequence of object messages must correspond toRule 2: Sequence of object messages must correspond to
events

Rule 3: Calling direction of association must match calling
direction of messagesdirection of messages
…
Rule 100+

Plus other Constraints:
Requirements, Domain

41© 2011 Alexander Egyed

Rule 100+ Requirements, Domain
(e.g., money or card)

Tool

Rename playPause message to Play (disable IBM mapping

f b th t th d fi t) D t t i i t iof both messages to methods first). Detect inconsistencies

instantly

42© 2011 Alexander Egyed

Two Advances

1) W t t l ti f i t l1) We treat every evaluation of a consistency rule
as a first class citizen – by maintaining change
impact scopes for them individually and
triggering individual re-evaluationsgg g

2) We use model profiling to observe the
“behavior” of consistency rules during theirbehavior of consistency rules during their
evaluation to automatically compute change
iimpact scopes

43© 2011 Alexander Egyed

Rule 3Rule 3

Rule 2

Rule 2

Rule 1
Rule 1

Rule 1

Rule 1

Rule 1

44© 2011 Alexander Egyed

Rule 1 evaluated on
“ l ”

Rule 1 evaluated on

message “select”

Rule 1 evaluated on
message “play”

45© 2011 Alexander Egyed

Model Analyzer Approach

W

y pp

Consistency
Wrapper

y
Checker

(1) Modeling Tool
(2)

Instant
Consistency UMLConsistency

Checker
UML

Model(3)

Scope

46© 2011 Alexander Egyed

Batch checking

47© 2011 Alexander Egyed

This approach

48© 2011 Alexander Egyed

Implicationsp

W i kl l t d l h We can quickly evaluate model changes

(also model changes done through
transformations)transformations)

 And we can identify which model elements to
change to resolve inconsistency (the first step ofchange to resolve inconsistency (the first step of
change propagation)

49© 2011 Alexander Egyed

Tool

Enumerate change propagation alternatives of renamed

“ l ” t “ l ”“playpause” to “play” message

50© 2011 Alexander Egyed

Alternative Locations Alternative Locations for Change Propagation:
1) rename message play
2) Change receiver of message playPause2) Change receiver of message playPause
3) add a new method to the class Display
4) change the ownership of object display
6) rename method select
7) rename method playPause
8) rename method draw

51© 2011 Alexander Egyed

8) rename method draw
9) delete message play (makes rule obsolete)

Transformation Alternatives

Ch P tiChange Propagation
through alternative transformationsg

leads to
lt ti t f ti ltalternative transformation results

The method/message name transformations
discussed earlier were just two alternatives It isdiscussed earlier were just two alternatives. It is
not even clear whether they are even the most
likely ones.

52© 2011 Alexander Egyed

Alternative Results Alternative Results for Change Propagation:
1) rename message play
2) Change receiver of message play to ???2) Change receiver of message play to ???
3) add a new method play to the class Display
4) change the ownership of object display to ???
6) rename method select to play
7) rename method playPause to play
8) rename method draw to play

53© 2011 Alexander Egyed

8) rename method draw to play
9) delete message play (makes rule obsolete)

Tool

Execute change propagation that renames ‘playPause’

th d t ‘ l ’ ith f ll i i t imethod to ‘play’ with follow-on inconsistencies

54© 2011 Alexander Egyed

Eliminate False Choices

55© 2011 Alexander Egyed

Alternative Results Alternative Results for Change Propagation:
1) rename message play
2) Change receiver of message play to ???2) Change receiver of message play to ???
3) add a new method play to the class Display
4) change the ownership of object display to ???
6) rename method select to play
7) rename method playPause to play
8) rename method draw to play

56© 2011 Alexander Egyed

8) rename method draw to play
9) delete message play (makes rule obsolete)

Multiple Change Propagationsp g p g

If ft h ti i i t iIf after change propagation no inconsistency is
caused

 Then propagation is complete
 Else further propagation is needed Else further propagation is needed

57© 2011 Alexander Egyed

Transformation Split and p
Mergeg
(serial and parallel transformation)(p)

58© 2011 Alexander Egyed

Change Propagation Unrollingg p g g

59© 2011 Alexander Egyed

Change Propagation Unrollingg p g g

60© 2011 Alexander Egyed

Change Propagation Unrollingg p g g

61© 2011 Alexander Egyed

N-angulationg

62© 2011 Alexander Egyed

The Many Uses of Constraints
during Transformationduring Transformation

Inconsistenciescauses Inconsistencies
(of problem)change(s)

Model
causes require

Model
change(s)

require

Transformation
Alternatives to Fix Inconsistencies selects
Inconsistencies(of solutions)

selects

63© 2011 Alexander Egyed

require

Know When To Transform

C t i t th d t d fi h t Constraints are the guards to define when to
transform

 Constraints are also the utility functions to gauge
a transformations successa transformations success
 A failure caused during transformation implies wrong

transformation or incomplete transformationtransformation or incomplete transformation
 Exploring Alternatives requires a toolbox of

transformations
 Small and (perhaps) larger ones(p p) g

64© 2011 Alexander Egyed

We would like to gratefully acknowledge the Austrian Science Fund (FWF) grants
P21321-N15 and M1268-N23, and the EU Marie Curie Actions – Intra European
Fellowship (IEF) project 254965Fellowship (IEF) project 254965

Contact me at alexander.egyed@jku.at

66© 2011 Alexander Egyed

Johannes Kepler University, Linz (JKU)
http://www.sea.jku.at

